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Abstract 

Global modes on a doubly infinite one-dimensional domain - ~  < x < + ~  are studied in the context of the complex 
Ginzburg-Landau equation with slowly spatially varying coefficients, i.e., coefficients depending only on a slow streamwise 
coordinate X = ~x, where e is a small parameter. A fully nonlinear frequency selection criterion is derived for global mode 
solutions under the assumption of weak inhomogeneity of the medium, The global mode is found to be governed by the fully 
nonlinear equations in a .region of finite size, and by the linearized equations in the vicinity of X = -4-oo. Asymptotic matching 
techniques are used to relate the WKBJ approximations in the linear and nonlinear regions through appropriate transition 
layers. The real global frequency is determined by requiring thai spatial branches issuing from X = - c o  and X = +oe  be 
continuously connected at a saddle point of the local nonlinear dispersion relation o) = I2 ne (k, R 2, X) between the frequency 
co, the wave number k and amplitude R at a given station X. The results constitute a fully nonlinear generalization of the linear 
frequency selection criteria previously obtained by Chomaz et al. (1991), Monkewitz et al. (1993), and Le Diz~s et al. (1996). 

1. Introduction 

Our present understanding of  hydrodynamic instabilities relies, to a great extent, on the scientific achievements 

of  Fritz Busse and his colleagues. For  instance, an intimate knowledge of  the Busse balloon [3] has indeed become 

prerequisite reading to any serious student of  Rayle igh-B6nard  convection in a fluid layer heated from below, one 

of  the most  widely studied closed flow systems. This is just  one example of  Fritz Busse 's  fundamen[al and lasting 

contributions to hydrodynamics.  Fritz has devoted a relatively small portion of  his boundless energy to the study of  

open shear flows, which may explain why our comprehension of  instabilities in open flows may have not reached 

the same fully mature stage. This contribution, which is dedicated to Fritz Busse in celebration of  his 60th birthday, 

illustrates one possible approach which could be successful in spatially developing open flows exhibiting a global 

resonance. 

Spatially developing flows may, under certain conditions, develop self-sustained oscillations. Fluctuations saturate 

at a finite amplitude in the locally unstable regions of  the flow and become tuned at an overall frequency. The 

intrinsic frequency and the associated spatial distribution of  fluctuations define a global mode. Relatively little is 

known regarding the nonlinear evolution stage of  such objects. Chomaz [4] and Couairon and Chomaz [7] have 
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recently introduced generalized definitions of absolute, convective and global instability applicable to the fully 
nonlinear case and demonstrated that linear absolute instability is not always synonymous with global instability. 
Furthermore, these authors have brought to light the close relationship existing between the dynamical systems 
point of view and the more classical description in terms of a dispersion relation. The goal of the present study is 
the derivation of a fu l l y  nonlinear global mode selection criterion in the context of the one-dimensional complex 
Ginzburg-Landau equation with slowly varying coefficients. 

The main stability concepts pertaining to spatially developing open flows have been reviewed by Huerre and 
Monkewitz [11]. Recent developments have been discussed in Le Diz~s et al. [16]. It is here sufficient to recall that 
specific classes of spatially developing open flows such as bluff-body wakes [9,13,18,24], low density jets [19,23] 
and countefflow mixing layers [25] may sustain in specific parameter ranges synchronized periodic oscillations over 
an extended region of the flow. In other words, such systems undergo a Hopf bifurcation as some control parameter 
is continuously varied. Global mode concepts have precisely been introduced to account for this peculiar behavior 
of open flows. 

In most basic flows of interest, the velocity profile is nonuniform in the streamwise direction, and in order to 
distinguish between local and global properties it is essential to assume that streamwise variations are slow over 
a typical instability wavelength. Under this hypothesis, local stability properties are obtained within the parallel 
flow approximation by freezing the slow streamwise coordinate X. At the local level of description, linear stability 
properties of normal modes e i(kx-°~t) are then characterized by a local dispersion relation D(k ,  co, X) = 0 between 
complex wave number k and frequency co. The goal of a global analysis is to construct in a self-consistent manner a 
global spatial distribution made up of saturated instability waves governed by the local properties of the flow. The 
global frequency cog is then considered as an eigenvalue to be determined by requiring that perturbations decay at 
X = 4-oo. The resulting global mode is viewed as a theoretical analog of the self-sustained oscillatory structures 
that are observed experimentally. 

The analysis by Chomaz et al. [6] of the linearized Ginzburg-Landan equation with slowly varying coefficients 
has demonstrated that a region of absolute instability is a necessary condition for linearly unstable global modes to 
exist. The dominant complex global frequency cog is obtained, at leading order in the WKBJ approximation, for a 
saddle point of the local linear dispersion relation co = £2 e (k, X), i,e., 

cog ~ COs = ~2e (ks, Xs), (1) 

where the complex pair (ks, Xs) satisfies 

0£2 e 0~2 e 
0k (ks, Xs) = ~ (ks, Xs) = 0. (2) 

The same linear frequency selection criterion has been derived by M0nkewitz et al. [20] in the framework of the 
Navier-Stokes equations linearized around an arbitrary weakly nonparallel basic flow. More recently, the frequency 
selection criterion pertaining to the Ginzburg-Landan equation over a doubly infinite domain has been examined 
anew by resorting to a comparison equation method [16]. It has been shown that global modes are either of type 1, 
with two simple turning points in the complex X-plane, or type 2, with a double turning point as defined in (2). The 
validity of the selection criterion (2) has further been confirmed by the exact Green function calculations of Hunt 
and Crighton [ 12]. 

The extension of these concepts to the nonlinear rrgime has until recently appeared somewhat problematic. 
It seems, at first sight, natural to perform a weakly nonlinear analysis in the vicinity of the global mode onset. 
Such an approach is straightforward for nonparallel effects of order unity, as shown by Chomaz et al. [5] in the 
case of the Ginzburg-Landau equation with a linearly or quadratically varying control parameter. Paradoxically, 
the introduction of a weakly nonparallel assumption in addition to the weakly nonlinear one leads to unexpected 
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Fig. I. Fully nonlinear global mode spatial structure: OL ±, outer semi-infinite linear regions close to X = ±oc; TL 1,2, transition layers 
of thickness O(~ I/2) connecting linear and nonlinear regions, CNL ±, central nonlinear regions of size O(I); SP, saddle point region of 
thickness O(~1/2). 

difficulties [ 16]: in the limit of zero nonparallelism, the Landau constant does not converge to a well-defined limit 
of c o n s t a n t  sign. In other words, the Landau equation formalism which purportedly describes a Hopf bifurcation 
near onset does not apply unless drastic conditions are met. In order to circumvent these difficulties, we choose 
in the present study to jump to the fully nonlinear r6gime while keeping the weakly nonparallel assumption. Thus 
we implement a nonlinear WKBJ approximation scheme which remains valid for amplitudes of order unity, as 
encountered in the phase dynamics of patterns [8,15,17,21] or in the description of slowly varying fully nonlinear 
wavetrains [2,10]. 

The main objective of the paper is the generalization of the linear frequency selection criterion (1), (2) to fully 
nonlinear global modes provided that the local nonlinear dispersion relation of the weakly inhomogenous flow is 
given. We should emphasize that, in contrast to the linear criterion, the present formulation will only involve purely 
real values of the wave number, frequency and local streamwise variable. In the present study there is no need 
to extend analytically the dispersion relation in the complex k-plane and X-plane, a feature which considerably 
simplifies the analysis: 

The inhomogeneities of the medium are characterized by a small parameter 

E ".. )~ /L  << 1, (3) 

where L is a typical evolution length scale of the basic flow and )~ a typical wavelength of the instability. Under the 
assumption • << 1, global mode solutions depend on two different length scales: a fast space variable x related to 
the rapid spatial oscillations of the carrier wave and a slow variable X = •x describing the slow spatial evolution of 
the "basic flow". Fluctuations qJ (x, t) around a given basic state are governed by a partial differential equation, the 
coefficients of which depend on the slow variable X. The local properties of the flow are then recovered by freezing 
X. This separation of scales calls for an analysis in terms of nonlinear WKB3 approximations: the slowly evolving 
local characteristics may be exploited to construct global mode solutions composed of slowly varying nonlinear 
wavetrains. 

In the course of the study, we are led to distinguish different regions characterizing the global mode spatial 
structure, as sketched in Fig.1. In central nonlinear regions of finite size (CNL ±) the wave has finite amplitude 
and satisfies the fully nonlinear governing equation of the problem. These central nonlinear regions are surrounded 
by two semi-infinite outer linear regions (OL +) where the global mode satisfies the linearized equation and is 
exponentially decaying towards infinity, as required by the boundary conditions. Transition layers (TL 1,2) of size 
• ,/2 (measured in units of X) allow a smooth crossover from the central nonlinear regions (CNL +) into the outer 
linear regions (OL±). As shown later, the existence of a nonlinear global mode requires two wave number branches 
to meet in the core of the nonlinear regions, at a saddle point of the local nonlinear dispersion relation. An additional 
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internal layer (SP) of size 61/2 around this saddle, point needs to be introduced in order to generate the nonlinear 
frequency selection criterion at arbitrary order. The selection mechanism is therefore entirely determined by the 
saddle point structure. Thus this inner transition layer (SP) is surrounded by nonlinear regions of finite extent 
(CNL +) which in turn are connected through transition layers (TE a,z) to the outer linear regions (OL :a) extending 
towards infinity. 

The organization of the present paper reflects the global mode structure. The global mode problem is stated in 
Section 2 and the linear WKBa approximations pertaining to the outer regions (OL +) are recalled in Section 3. 
Corresponding nonlinear WKBJ solutions relevant to the central nonlinear regions (CNL +) are derived in Section 4. 
In Section 5 the leading order nonlinear frequency selection criterion is obtained in the following form: a global 
mode can only be constructed if two wave number branches meet at a saddle point in the bulk of the nonlinear 
regions. The structure of the transition layers connecting linear and nonlinear regions is analyzed in Section 6. In 
closing we summarize the main conclusions and address some future developments• 

2. Nonlinear eigenvalue problem 

Throughout the study, complex scalar fluctuations ~P (x, t) around a given basic state are assumed to be governed 
by a nonlinear equation of the form 

i 3 ~  =x2ne(--i~---x'[q"J2'X) (4) 

where X = Ex is a slow space variable which describes the inhomogeneities of the medium and e is the WNBJ 
parameter introduced in (3). The operator O ne is the physical space counterpart of the local nonlinear dispersion 
relation co = O ne (k, R z, X) to be defined later. 

A nonlinear global mode is then defined as a time-periodic solution of Eq. (4) of rea/frequency co, satisfying 
vanishing boundary conditions at infinity• Thus it can be written as 

~ (x ,  t) = ~(x,  w)e -iC°t, 

where the global frequency co and the amplitude ~ are governed by the differential equation 

[co-a ' zng( - i0 -~ , l~12 ,  X)]~/f  = 0  (5) 

with the boundary conditions 

lim ap(x, co) = 0. (6) 
x--+:t:eo 

In the particular case of the complex Ginzburg-Landau equation [11], 

1 0zqJ 
iOgsOt = (coo(X) + lwkk(X)k~(X))qt + icokk(X)ko(X)~-- x -- ~cokk(X)~x 2 + y(X)[kOl2q/, (7) 

the nonlinear dispersion operator O ng may be separated into linear and nonlinear parts as 

• 0 

where the linear dispersion operator O e reads 

O e { . O "  ~ 1 2 8 1  02 
~ X -- a~o(X) + ~cokk(X)ko(X) + icokk(X)ko(X)Tx -- ~cokk(X)-ax 2. (8) 
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The complex functions o9o(X), COkk(X), ko(X), and y (X) which solely depend on the slow space variable X account 
for the weak inhomogeneities of the medium and their meaning is discussed in Section 3. 

The goal of the present study is to solve the nonlinear eigenvalue problem (5),(6) where the global mode amplitude 
¢ is O(1) in an interval of finite extent. We construct such global mode solutions in the r6gime e << 1 and determine 
how the global frequencies ogg depend on the characteristics of the "basic flow", as specified by the nonlinear 
dispersion relation. 

Since global modes must decay at infinity, they are governed by the linearized equation for sufficiently large X. 
The solutions of the associated linear equation are therefore required in outer linear regions (OL--), as reviewed in 
Section 3. 

3. Outer linear WKBJ regions OL" 

In the present section we examine the structure of the outer linear regions ( O L ' )  in Fig. 1 and recall the main 
features of the solutions of the linearized equation 

~ Ot . . . . . . . .  l~x  x , X q-" (9) 

for an arbitrary frequency o9 of order unity, as studied by Chomaz et al. [6] and Le Diz~s et al. [16]. 
Upon substituting O/Ox ~ ik and O/Ot -+ -io9 in (8) and (9) one obtains the associated local linear dispersion 

relation of the Ginzburg-Landau model in the form 

CO = $-d£(k, X )  ~ o90(X) -~- l o 9 k k ( S ) ( k  -- ko(X))  2. (10) 

In order to enforce causality we assume throughout that sufficiently large wave numbers are damped, i.e., 
o9kk,i(X) -- Im[ogkk(X)] < 0 for all X. According to (10) the frequency co is a simple quadratic function 
of the complex wave number k. Thus there exist for each value of the frequency two linear spatial branches 
given by 

ke" ( X, co) =-- ko(X) ± ./2o9 -- ogo( X) .  (11) 
V ogkk(X) 

Under the assumption ogkk,i(X) < 0 for all X, the square root branch in (11) can always be chosen such that 
\ 

k(+(X)  > 0 and ke - (X)  < 0 for large enough o9. The introduction of the functions ko(X) and ogo(X) may now 
be justified: at each station X, ko and o90 denote the complex absolute wave number and frequency defined by 
(OS2e/Ok)(ko, X) = O, o90 = I2e(ko, X), as extensively discussed in [11]. In other words, o90(X) is a branch point 
of the function k e (X, o9) in the complex og-plane, as clearly displayed in (11). 

Under the slowly varying medium hypothesis (e << 1) a solution of Eq. (9) with frequency co can be obtained 
in terms of WKBJ approximations [ 1 ]. The spatial behavior of the solution is described by a rapidly varying phase, 
corresponding to the local wave number, and a slowly varying envelope which, for a given value of the frequency 
co, read 

x 

-f Ce (X, o9) = A e (X, 09) exp i k e (s, o9) ds, (12) 
E 

where k e (X, oa) is one of the spatial branches (11). 
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In classical WKBJ fashion, the envelope 1 Ae(X)  is expanded in powers of E 

a e ( x )  ~ A~(X)  + EA~(X) + E2A~(X) + . . . ,  (13) 

and the spatial derivative operator is decomposed into 

Ox = ikg(X) + ~Ox. (14) 

Upon substituting (12)-(14) into the governing equation (9), one obtains 

co(A~ + ~Ael + . . . )  = i2g(kg(X) - ieOx, X)(A~ + ~A~ + . . . ) .  (15) 

Note that differentiation with respect to the fast variable, i.e., multiplication by ik e (X),  does not commute with 
the slow derivative operator Ox [14]. Thus a'-2 e (k e (X)  - ieOx) admits the expansion 

S2e (ke ( X)  - ie Ox ) = S-2 e - ie 1 e e ~(S2kOx + OxS2 k) + O(e 2) 
1 e g = a'-2 e - iE($2kg0X + ~ 2 k ~ k x ( X ) )  + O(e2). (16) 

On the r.h.s, of these equations, I2 e and its derivatives with respect to k are evaluated at ke(X) .  In Eq. (15) the 
slow derivative operator Ox only applies to the wave function, hence to k e (X),  but not to the second argument X of 
S-2e (k, X). 

At lowest order, Eq. (15) reduces to the dispersion relation (10), which yields the local wave number k e (X) in 
terms of o9, as given by (11). 

At order E, we obtain 

[oo - a'-2e(kg(X), X)]A~ = -iS2~(X) dAe i e g g 
d X  2 ~ k k ( X ) k x ( X ) A °  

with the notations 

Ol2e k e X 82a'2e S2kk(X) = ~ (k e(x), I2k e ( X ) = ~ (  ( ) , X )  and t X). 

By invoking the local dispersion relation (10), one obtains the obvious solvability condition for Ae: 

dA~ e _ 1 vt zx-a S2kk(X) a e t v a  
- -  ~ k z x , t - - - - - g ~ l x  kzx,,. 
dX 2 x 12~(X) 0 

Thus, at first order, the solution of the linearized equation reads 

(Xl / (:-mJ 1 /" - e . .  a2kk (s) 
i~CxtS)--Xg77~_ds exp ke(s)ds  , (17) ~ g ( X )  ~ A(~(X1) exp --~ J ~2 k (s) 

Xl X1 

where X1 is some arbitrarily specified reference point. 
The linear Ginzburg-Landau equation admits two spatial branches k ~ ± (X) given by (11 ); thus Eq. (17) yields two 

£ ±  £ +  
WKBa approximations ~ (X) for two linearly independent solutions of Eq. (9). Let us assume that k i (X) > 0 and 

ki e -  (X) < 0 for sufficiently large ISl (for a discussion 0fthe relationship between this assumption and causality see 

[16]). Under this assumption the WKBJ approximation ~ g -  (X) is subdominant when X -+ -o~ ,  i.e., exponentially 

1 For simplicity we no longer explicitly mention the frequency dependence; 
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small with respect to ~pe+(X); similarly the solution ~ e + ( x )  becomes subdominant for X ~ +oo. Boundary 
conditions (6) require the choice of ~ e± (X) for X ~ -t-c~. A global mode solution is thus solely composed of the 
branch k e -  for X ~ - o o  and of the branch k e+ for X -+ +c~. In the following sections a nonlinear solution is 
derived which allows a smooth crossover from one linear branch to the other as X varies from - o o  to +o0. 

4. Central  nonl inear  WKBJ regions C N L  + 

In this section a f u l l y  nonlinear solution of Eq. (4) is constructed in the central regions (CNL ±) of Fig. 1 by 
means of the nonlinear dispersion relation, for an arbitrary frequency of order unity. 

Let us first consider in the same notations as Eq. (4) the homogenous  nonlinear equation with constant  coefficients 

i Oq* = ~'-2ne ( - - i~x  ' Iqtl2) q/" at 

This equation admits nonlinear travelling wave Stokes solutions of the form 

~t (x ,  t) : R e  i(kx-wt),  (18) 

where the amplitude R, wave number k, and frequency o) are real parameters bound by the nonl inear dispersion 
relation 

o9 = $-2ne(k, R2). (19) 

This complex equation completely defines the family of solutions (18). It is also convenient to introduce a reduced 

nonl inear  dispersion relation as follows. 
Taking the imaginary part of complex equation (19) shows that the amplitude R 2 is slaved to the wave number k 

and is implicitly given by 

0 : a'2 n£ (k, R2). 

Replacing the amplitude R 2 as a function of k in the real part of (19), 

o9 = R 2 ) ,  

yields the reduced nonlinear dispersion relation in the form 

co = g2NL(k) = $2rng(k, R2(k)). 

This reduced form clearly demonstrates that Stokes travelling waves (18) indeed constitute a one-parameter family 
of finite amplitude solutions, of real parameter k. 

In the context of the complex Ginzburg-Landau model (7), the comple te  nonlinear dispersion relation reads 

o9 : ff2ng(k, R 2) --= co o q- logkk(k -- k0) 2 -k- y R  2 :- S'2g(k) + yR 2, (20) 

and the reduced dispersion relation may explicitly be determined by following the procedure outlined above. 
Extracting R 2 from the imaginary part of (20), one finds 

R 2 _  Im[S-2e (k)] 
Im[y*] ' (21) 
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Fig. 2. Nonlinear spatial branches in the X-w and k-R 2 planes. In (a) the horizontal lines o9 = consL indicate in the X--w plane the 
allowable domain, delineated by the bold critical curve, where the nonlinear dispersion relation (23) admits real solutions in the k-R 2 
plane sketched in (b). Each of the lines o9 = const, is mapped into two spatial branches (kne -- (X), T¢. 2± (X)) in the k-R 2 plane: the (+) 
branches are represented by sofid curves, the ( - )  branches by dotted curves. For frequencies such that the line o9 = const, intersects the 
boundary of the allowable domain (bold curve in (a)), the two branches in the k-R 2 plane meet at the corresponding image critical curve 
(bold curve in (b)). The subregions of the allowable domain corresponding to R 2 > 0 are delimited in (a) by the curves T~2+(X, o9) = 0 
(solid) and 5r~ 2-  (X, ~o) = 0 (dotted). 

where a • superscript denotes the complex conjugate, and by substitution into the real part of  (20), one readily 

obtains the reduced nonlinear dispersion relation 

co = ~'2NL(k ) -- Im[y*Y2e(k)] 
Im[y*] (22) 

Since (22) is quadratic in k, to each frequency co are associated, under suitable conditions, two nonlinear spatial 

branches k n~± (co), and, via (21), two amplitudes ~ 2 ±  (co). Thus the complete nonlinear dispersion relation (20) is 

seen to possess two pairs of  solutions 

(k, R 2) = (kneE(co), 7~.2±(co)). 

Such pairs of  solutions only exist if  (20) can be solved for real k and real non-negative R 2. For given coefficients 

in (20) these conditions correspond to a range of  allowable frequencies. 

In a weakly inhomogenous medium where the coefficients of  the nonlinear equation are now functions of  the 

slow space variable X (Eqs. (4) and (7)), a local nonlinear dispersion relation may still be derived of  the form 

co = [2n£ (k, R 2, X )  =~ coo(X) -t- l cokk(X)(k -- k0(X))  2 q- y ( X ) R  2 = a"2£ (k, X )  -I- y ( X ) R  2, (23) 

and the corresponding local reduced nonlinear dispersion relation may be formally expressed as 

I m [ y * ( X ) ~ e ( k ,  X)] 
co = $2NL(k, X)  -~ (24) 

Im[y*(X)]  

Local  wave number and amplitude are obtained in the same way as in the homogenous case; they are real functions 

of  the frequency and the slow space variable: 

(k, R 2) = (kneE(x ,  co), "7~.2±(X, co)), (25) 

solutions of  (23) and (24). 

Let us now examine the properties of  the double-valued mapping between the X-co and k - R  2 planes defined by 

solution pairs (25). The X-co plane separates into an allowable region where two real solution pairs (25) satisfy 

the local nonlinear dispersion relation (23) and a region where no such real solutions are obtained (Fig. 2(a)). For  

given X, real wave number solutions of  the quadratic equation (24) are found to exist when co ~ + c ~ ( - e c )  if  

cokk,r -- cokk,i?/r/~ > 0 ( <  0). Let  us assume that cokk,r(X) -- COkk,i(X)yr(X)/yi(X) > 0 for all X. As co decreases 
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for a given X, the two pairs merge at a critical value of co when the discriminant of the quadratic equation (24) 
vanishes. The set of such points in the X-co plane defines the critical line (bold curve of Fig. 2(a)), i.e., the boundary 
of the allowable domain indicated by the hatched region of Fig. 2(a). Below this critical line the nonlinear dispersion 
relations (23) or (24) admit no real solutions. Each point (X, co) of the allowable domain then maps into two points 
in the k - R  2 plane (Fig. 2(b)) through the mapping functions (25). A solution of real uniform frequency is in fact 

represented in the X-co plane by a straight horizontal line co = const. As X varies for a given co, solutions of eq.(25) 
move along two distinct branches (k ne+ (X), 7~ 2+ (X)) and (k ne- (X), 7¢ 2-  (X)) in the k - R  2 plane, as indicated by 

the continuous and dashed curves in Fig. 2(b). If  the line co = const, is high enough and does not meet the critical 
line delimiting the allowable domain in the X-co plane, the two corresponding branches in the k - R  2 plane do not 
intersect; if by contrast the horizontal line co = const, is not entirely contained in the allowable hatched domain, 
spatial branches in the k - R  2 plane are not defined for the portion of the line situated outside the allowable domain. 
In fact, upon hitting the critical line in the X-co plane, (+) and ( - )  branches in the k - R  2 plane meet along the image 
of the critical line (bold curve of Fig. 2(b)) and cease to exist. 

Note also that each branch of (25) has physical meaning only if R 2 > 0. Thus the subregions of the allowable 
domain, where meaningful nonlinear solutions are obtained, are further restricted to ~ 2+ (X, co) > 0. These regions 
are located within the curves labelled ~2+  = 0 and 7"¢ 2-  = 0 in Fig. 2(a). If  one assumes 24(X) < 0 uniformly 
in X (locally supercritical behavior), the condition 7-¢24-(X, co) > 0 corresponds to linearly unstable wave numbers 
kng+(X, co), as seen by inspection of (21). Elsewhere in the X--co plane, ~2±(X,  co) < 0, nonlinear solutions 
pertaining to (-t-) or ( - )  branches do not exist and only linear solutions are allowed. 

As in the outer linear regions, the spatial distribution is taken to be a rapidly oscillating wave modulated by a 

slowly varying envelope 

x 

~ne (X) = A ng (X) exp i, f kn e (s) ds. (26) 

Upon expanding the envelope in powers of 

Ane(X) ~ a~g(X) + eASe(X) + ~2A~g(X) + . . . ,  

interpreting the spatial derivatives as 

Ox = ikng(X) + EOx, 

and substituting these expansions into Eq. (4), one readily obtains the nonlinear counterpart of (15), i.e., 

co(A~ e + eA~ e + . . . )  = X2ne(kng(x) - ieOx, IA~ e + eA~ e + ' - "  [ 2, X)(A~ e + eA~ g + ' "  "). (27) 

At lowest order, we recover the local nonlinear dispersion relation (23), i.e., 

co = ~ne (kng ( x ) ,  IA~e(S)l 2, X) ,  (28) 

which determines the local wave number k n£ (X) and the leading order amplitude I A~ e (X)[2 = 7~2(X) as functions 
of the slow space variable X for a given frequency co. Note that the phase 00 (X) of A~ e (X) is as yet undetermined. 

After expanding the operator $2 ne in powers of e in the same fashion as in (16), the e terms of (27) yield 

(co _ £2ng)A~g = • ne dA~ g i ongt.neang n£ (A 0ng*Alne + ang*ang~ang 
--l~'~k dX 2 ~kk'~X zl0  "q- $'2R2 "Xl ~x0 l~x0 ' 

where ~ne and its partial derivatives are evaluated at (kne(x),  T~2(X), X). In the following, I-2ne(x) stands for 
a'2ng(kne(X), 7~2(X), X). 
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Upon exploiting the identity co = s2ne(x), the fact that dA~e/dX = (i d00/dX + R2/2T~2)A~ e, and the real 
nature of "*oane*ane'*l +~'lane*ane'*0, we readily obtain a solvability condition for 00 (X) of the form 

d00 

dX 

R n£  * n e  _ A'2ne . n£  1 e[f2n2(X) S2k (X)] ~ 2 ( X )  1 Re[ e2(X) S-2k~(X)]k~e(X)" 
Im ne . n£ 2 [£2n2(X) S-2k (X)] ~2(X)  2 Im[S2nee2(X)*S2~e(X)] 

(29) 

Eqs. (26), (28) and (29) entirely specify the nonlinear solution at leading order. 

5. Saddle point region SP: Leading-order nonlinear frequency selection criterion 

In this section the global frequency Wg is obtained at lowest order by matching the nonlinear spatial branches 
kn~+(X) and kne-(x) .  

Solving the linear dispersion relation (10) yields the local complex wave numbers k ~:L (X, co) as functions of 
the frequency at any location. By contrast the nonlinear dispersion relation (23) admits solution pairs (k ne+ (X, co), 

2+ (X, co)) only in the allowable region of the X-co plane. MoreOver only nonlinear solutions with 7~ 2+ (X, co) > 0 
have physical meaning. 

The relationship between linear and nonlinear spatial branches as a function of frequency is illustrated in Fig. 3. 
In the X--w plane a solution of uniform frequency is represented by the line co = const. This line is mapped, in the 
complex k-plane, into two linear spatial branches k e 4-(X) defined in (11). 

Let us recall that, for large enough frequencies o) = coa (see X-co plane of Fig. 3), the linear branches do not 
cross the kr-axis in the complex k-plane as long as cokk,i(X) < 0 for all X (Fig. 3(al)), and that ke:k(X) denotes 
the linear branch located in the ki > 0 and ki < 0 half-planes, respectively. Corresponding variations of kr ~± with 
X are displayed on Fig. 3(a2). 

When the frequency is decreased to co = COb (see X-co plane of Fig. 3), the linear branches move about in the 
complex k-plane. The branch ke±(X) crosses the kr-axis (Fig. 3(bl)) whenever the frequency is such that the line 
co = Wb intersects, in the X-co plane, the region T~2±(X, co) > 0. Indeed a local solution of the nonlinear dispersion 
relation with R 2 = 0 is precisely a solution of the linear dispersion relation, and this linear solution happens to have 
a real wave number. 

Thus at locations where R 2 ----- 0, linear and nonlinear branches meet. Let us denote by kne~:(X, co) the nonlinear 
branches that match to the corresponding linear branches k e ± (X, co). In the specific case of Fig. 3(b), the line co = oro 
is partly contained within the region T~ 2-  > 0 of the X-w plane and, as a result, the nonlinear branch k ne- is seen 
to take over from kr e -  in a,finite X-subinterval. 

For frequencies such thatthe line co = coc in the X--w plane intersects both regions 7~2±(X, co) > 0, both linear 
branches cross the kr-axis (Fig. 3(cl)) and are connected to the corresponding nonlinear branches (Fig. 3(c2)). Let 
X~ (co) and X~: (co) be the locations where T~ 2± (X, co) = 0, whereby k e ~: (Xl i ,2 )  = k ne ~: (SLY,2). A nonlinear solution 

with local wave number kne±(X, co) then exists in the range X~: < X < X~:. The locations X ± depend on the 1,2 
frequency, and in Section 6 we show that, for any frequency, the linear and nonlinear solutions can be matched at all 
orders in e through transition layers centered around X~2(co). Recall that boundary conditions (6) require keeping 

only the linear branch ke±(X) in the regions X --+ -t-ec, respectively. A t the locations X{ and X + where the linear 

branches k e-  and k e+ cross the kr-axis they change over to the corresponding nonlinear branches k he- and k ne+. 
Thus the nonlinear region is delimited by X 1 (where k e-  = k he-) and X + (where k ne+ = ke+), and a continuous 
global mode solution must necessarily connect both these nonlinear branches. 

A smooth crossover between the nonlinear branches k he- and k ne+ (Fig. 3(s2)) can only be achieved for fre- 
quencies such that the line co = const, meets the critical curve limiting the allowable domain in the X-co plane. 
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ki' 
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x~  k" 
/ ] x~+ 
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I ]k~-(X) (sl) 
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k,. t kF 

Fig. 3. Relationship between linear and nonlinear spatial branches for different values of the frequency. For a large frequency coa, the 

line co = coa does not intersect the regions ~2-4- (X, co) > 0 in the X-co plane, the linear branches ke+(X) do not cross the kr-axis in the 

complex k-plane (al), and nonlinear branches do not exist; the real parts kr ~-4- (X) are represented in (a2). For COb such that the line co = Wb 

intersects the region ~ 2 - ( X ,  co) > 0 in the X-co plane, the branch ke-(X) crosses the kr-axis for X = X 1 and X = X 2 in (bl); as a 

result, the nonlinear kne-(X) exists for X 1 < X < X 2 and is connected to ker-(X) in (b2). The line co = coc intersects both regions 

~2-4- (X, co), thus both linear branches cross the kr-axis in (cl); both nonlinear branches exist in the ranges X1 ~ < X < X~:, respectively 
(c2). When the frequency equals cos such that the line co = COs is tangent to the boundary of  the allowable domain at Xs in the X-co plane, 
the nonlinear branches meet at Xs (s2), and the crossover between branches is possible; the global spatial branch selected by the global 
mode is indicated in bold in (sl,2). 
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Furthermore, the line 09 = const, has to be entirely contained within the allowable domain. Thus, the leading order 

global frequency COs is obtained by requiring that the line 09 = ogs be tangent to the al10wable domain in the X--o9 plane 
at a point Xs. Since, to each point in the allowable domain of  the X-n9 plane, correspond two pairs (k he+, ~ 2 + )  
and (k ne- ,  7-62-), the allowable domain may be considered as the superposition of two sheets, respectively, labelled 
(+)  and ( - )  which necessari lyjoin along the critical curve where (k n*+, T¢ x+) = (k he- , T~2-). A plane co = const. 

cuts the surface made up of the two sheets along two lines, one on each sheet, which correspond to the (+)  and ( - )  
spatial branches, respectively. Passing from one sheet to the other on such a line is possible only for co = ogs. The 

additional condition that the line o9 = COs be entirely contained in the allowable domain guarantees that the surface 
made up of the two sheets exhibits a saddle point when cut by the plane 09 = ogs. Thus, at leading order, the global 

frequency ogg is given by a saddle point o f  the nonlinear dispersion relation. Moreover nonlinear global modes only 

exist if the saddle point is located in a region where the wave number  ks ----- k ng+ (Xs, ogs) --- k ne-  (Xs, ogs) is linearly 
unstable, i.e., Rs 2 = R2+  (Xs, COs) = T ¢2-  (Xs, ogs) > 0. 

An explicit condition for the existence of a saddle point may be derived from the local reduced nonlinear dispersion 
relation (24) 

o9 = oNL(k ,  X).  

This relation defines a surface in (09, k, X) space which bears the same features as the complete nonlinear dispersion 
relation (23). For a given frequency 09, the spatial branches k he+ (X, o9) are obtained as the intersection of this surface 
and the plane o9 = const. The condition that the branches k he± (X) be connected, requires that the global frequency 
be given by a saddle point of  the surface o9 ----- oNE(k,  X). Thus, the global frequency COg is obtained, at leading 
order in the WKBJ approximation, for a saddle point of  the reduced nonlinear dispersion relation, i.e., 

COg ~ ogs = oNE(ks,  Xs), (30) 

where the pair (ks, Xs) satisfies 

0 0  NL 0 0  NL 
- - ( k s ,  Xs) = (ks, Xs) = 0. (31) 

Ok OX 

The additional condition 2 

( ¢-~NL -~2 NL NL 
~,r.kX,s j -- ffgkk,s~f2XX,s > 0 

guarantees that (ogs, ks, Xs) is actually a saddle point and not a local extremum. 
Criterion (30), (31) may also be expressed in terms of the complete dispersion relation (23) 

o9 = one(k ,  R 2, X). 

(32) 

Beating in mind that 

~NL(k, X) = Sere(k, R2(k, X), X), 

where R2(k, X) is implicitly defined by 

on£(k, R2(k, X),  X)  = O, 

one may relate the derivatives of  O NE to those of O ne . After elementary calculations, one finds that criterion (31) 
takes the alternate form 

n£ * n£ n~ * n~ 
Im[(Y2n2,s) Ok, s] = Im[(£2g2 s) Y2X, s] ---= O, 

2 Throughout, subscript (s) denotes evaluation at the saddle point (ks, R 2, Xs). 
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i.e., the derivatives of the complex function ~ne with respect to each of its arguments have the same phase. 

Thus the leading order global frequency COs and the associated quantities (ks, Rs 2, Xs) are equivalently determined 
by 

- -  ~2 ne Arg Y2~e.s . COs=J(ks, R ,xs) and ArgS kn s= g R2s= 

Additional condition (32) may also be expressed in terms of $2 ne after cumbersome but straightforward 
calculations. 

The essential result of this section is summarized by the saddle point conditions (30) and (31) applicable to the 
reduced nonlinear dispersion relation CO = ~('2 N L  (k, X): to leading order, the nonlinear global frequency COs satisfies 
a criterion that is formally identical to its linear counterpart (1) and (2). However it should be emphasized that 
the linear criterion involves complex values of the wave number, frequency and spatial coordinate, whereas the 
nonlinear criterion only involves purely real values for these quantities. 

It is possible to compute higher order corrections to the global frequency cog by a detailed analysis of the saddle 
point region (SP). As in the case of linear global modes with a double turning point [6,11,16,20], it is found that its 
characteristic thickness is 0(~/2).  Matching between the SP layer and the surrounding CNL ± regions leads to an 
expansion of the form 

COg '~ COs -'~- ~ COl,n, 

where the O(E) frequency correction term col,n is parametrized by a nonnegative integer n. Detailed calculations of 
this quantified set of fully nonlinear global modes are postponed to a future publication. 

6. Spatial structure of transition layers TL 1,2 

At the locations X 1 and X + where the amplitude of nonlinear WKBJ approximations vanishes, nonlinearities 
become weak, and, in the semi-infinite regions (OL ±) extending towards X = ~ : ~ ,  the solution is described by 
linear WKBJ approximations. The structure of the transition layer connecting the finite amplitude nonlinear solution 
in (CNL ±) to exponentially decaying linear solutions in (OL ±) is analyzed in this section. 

It is essential to bear in mind that this transition layer plays no role in the global frequency selection mechanism 
which solely depends on the local nonlinear dispersion relation at the saddle point Xs, in the core of the nonlinear 
region. The locations of the transition layers indeed depend on the frequency cog but the linear and nonlinear solutions 
can be matched for any frequency. For this reason matching is carried out for an arbitrary fixed real frequency o9. 

With the definitions of Section 5, the linear branch k e-  (X) meets the nonlinear branch k he- (X) at X = X 1. Let 

kl =- k e - ( X ~ )  = kne-(X~)  be the local real wave number at 3 X1. For X < X1 the global mode is approximated 
by the linear WKB3 ~e approximation (17) and for X > X1 by the nonlinear WKB3 ~pne approximation (26). None 
of these expressions are uniformly valid in a full neighborhood of X1. An inner solution must then be constructed 
in an inner layerTL 1 around X1 to allow a smooth transition between both outer WKBJ approximations. 

The form of the inner solution is obtained from the behavior of the outer solutions as X ~ X1. Near X1 the 
nonlinear solution (26) expands into 

~ne ( s )  ~ ( X - X 1 ) l / 2 ~ e i ° ° ( X l ) e i k l x e x p ( ~ k y C g . l ( X - X 1 ) 2 )  (33) 

3 For simplicity we drop from now on the superscript (-). 
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with 4 

n~ . n£ n£ * n£ Im[(~f2n2,1) $'2X,1 ] T~ 2 Im[U2k' l )  I'2X'l] and k ne 
X, 1 : n£ . n£ X, 1 = ne . n£ ' 

Im[(I2k,1) S2R2,1] Im[(12R2,1) Ok, l] 

while the linear solution displays the following asymptotic behavior: 

~e(X)  "~ A~(X1)eiklX exp ( ~-~ki, l ( X - X 1 )  2) 

with 

k £ e g X,1 = -- ~"2X,1/ ~'-2k,1" 

The expansion of  the outer solutions (33) and (35) shows that the inner solution proceeds in the form 

~(J~) ~ el/4(Ao(X) + el/ZA1/2(J~) - t - . - . )e  iklx, 

where X = (X - X1)/E 1/2 is the inner local space variable in the TL 1 layer. 

From the governing equation for the inner solution ~ in the transition layer 

09(~ 0 ._~ E1/2~1/2 _q_...) = $-2ng (k 1 _ i61/232, el/2[/~O _q_ 61/2~1/2 q_ . . .  [2, X1%- e l / 2 x )  

x ( A  0 -~- 61/2fltl/2 --~.. .) ,  

we recover at lowest order 

o) = $2n£(kl, 0, X1) = a'2e(kl, X1). 

At order E 1/2 Eq. (37) reduces to 

o n£ (09 -- ~'2f)A1/2 =--1~"2k'1 dfio+X2RzllAOl2ftO+K2~ret2AO'dx ' ' 

Bearing in mind (38), this leads to a solvability condition for -40 

1$2k , "  n£1 ~d'40 = (he.2~£. 1 ~ ,  q- S.2R ~, 1 ]~012)fi,0" 

This equation is of  the form 

dA0 
- -- ((at + iai)J( + (br + ibi)l-4012)A0, 

dX 

and admits the solution 

Ao(0) exp[1 (ar q- iai)X 2 -- li(bi/br) ln(1 - 2brl~o(0)l 2 f ~  e aru2 du)l 
,io(2) = 

~/1 -  2brIAo(O)12 f ~  earU2 du 

4 Subscript (1) always denotes evaluation at k = kl, R 2 = 0, X = X1. Note that I2p £ = K2~ because 7P~2(X1) = 0. 

(34) 

(35) 

(36) 

(37) 

(38) 

(39) 

(40) 

(41) 
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The inner solution ~ in the TL 1 layer has to be matched for _~ ~ -t-~ with the outer solutions apne and ap e in 
the CNL- and OL- regions, respectively. The square root behavior of apne in (33) requires that Ao(X)  = O(~ "1/2) 
as X --+ +cx~. This implies that 

f 2b~lAo(O)l  2 e aru2 du = 1 or [/~o(0)12 = ~ r  ---~r" 

o 

With this value for 1,40(0) 1 the inner solution (41) admits for X --+ +cx~ the asymptotic expansion 

a t -  i _ b~(ln~ const.)] A0(X) ~ e x p  ~ [ (a i  b~ar) X2 + + . 

Comparison of the coefficients in (39) and (40), and use of (34) leads to 

bi = kn e ar 7_~2 and ai - - -a t  
-bx- = x,1 br X,l" 

Thus the choice of 

.~0 (0 )=(__~r )  1/4 ei°°(xl) 
(4br) 1/2 

(42) 

completely matches, at leading order, the inner solution ~ given by (36) and (42) with the outer nonlinear solution 
apne in the limit (33). 

For this value of .40(0) the asymptotic behavior of the inner solution (41) as X --+ -cx~ is 

Ao(X)  "~ A0(0) 2_ibi/2b r exp( 1 (at + iai)X2). 

As ar + iai = ikex. 1, the inner solution ~ matches the outer linear WKBJ approximation ape given by (35) as long as 

A~(X1) = e 1/4 A0(0) 2_ibi/2b r 

This completes the proof that, for a given frequency, the linear and nonlinear WKBJ approximations can be 
matched at leading order through a transition layer of width e 1/2 (in terms of X). A similar analysis holds for the 
transition layer at X +. 

7. Conclusions and discussion 

A fully nonlinear frequency selection criterion has been derived for global modes on a doubly infinite interval, 
governed by the complex Ginzburg-Landau equation with spatially varying coefficients. 

Let o9 = ~2NL (k, X) denote the local reduced nonlinear dispersion relation obtained by eliminating the amplitude 
R 2 from the complete local nonlinear dispersion relation 09 = ~2 ne (k, R 2, X) pertaining to finite amplitude travelling 
waves. The global frequency COg on the doubly infinite interval is then, at leading order, a real saddle point COs of 
S2 NL associated with the real wave number ks and station Xs such that 

0S2 NL 0 ~  NL 
COg ~ COs = s2NL(ks, Xs) and ~ - - - ( k s ,  Xs) -- 0-------f-(ks, Xs) = 0. (43) 
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This saddle point condition is selected so as to ensure a smooth crossover between the two nonlinear spatial branches 
k n~- and k he+ present on either side of Xs. 

The nonlinear global mode spatial structure is illustrated in Fig. 1. A spatially evolving complex k e -  branch issuing 
from X = - c o  and governed by the local linear dispersion relation co = ~2e(k, X) in the O L -  region experiences 
a transition to the fully nonlinear rrgime within a layer TL 1 of thickness O(e l/a) centered around a point X~- of 
local neutral stability. In a "downstream" CNL-  region of finite extent, the wave is fully nonlinear and its real wave 
number k he- and amplitude ~ 2 -  are governed by the local nonlinear dispersion relation co = one(k,  R 2, X). As 

the wave enters the SP layer centered around Xs, it is smoothly converted into a k n~+ spatial branch since condition 
(43) is satisfied. The CNL + region mirrors, for the k he+ wave, the CNL-  region for the k n~- wave. A second 

transition layer TL 2 centered around the locally neutral station X + allows a return to a linear k e+ spatial wave in 
the OL + region, and a final exponential decay at X = +cx~. 

These results should be compared with the corresponding double turning point linear frequency selection criterion 
derived in [6,16,20]. For infinitesimal waves governed by a local linear dispersion relation co = g2 e (k, X) between 
complex wave number k and frequency co, the complex global frequency cog is given by the saddle point condition 
(1), (2), where the frequency COs, wave number ks, and spatial coordinate Xs are all complex. The linear global 
mode spatial structure is thus made up of complex k e -  and k e+ spatially evolving waves governed by the local 
linear dispersion relation o9 = I2e(k, X) in corresponding O L -  and OL + regions near X = q:~x~. The saddle point 
condition (2) ensures a smooth crossover from the k e -  to the k e+ branch in an inner region SP of thickness O(E v2) 
centered around the complex saddle point Xs. In the linear case, the TL 1'2 and CNL ± regions are naturally absent, 
but an inner SP layer structure is necessary in both linear and nonlinear studies. Indeed, both frequency selection 
criteria are formally identical. Paradoxically the nonlinear criterion involves only real variables and therefore appears 
simpler to implement, without any of the complexities associated with analytic continuation in the complex X-plane. 

According to [6,16], a necessary condition for the existence of a growing linear global mode is that the basic state 
be linearly absolutely unstable in a region of finite extent. According to the present study, a necessary condition 
for the existence of a self-sustained nonlinear gobal mode appears to be that the basic state only contain a linearly 
unstable region of finite extent corresponding to R 2± > 0. Fully nonlinear global modes of the type shown here 
may in principle occur even if the medium is only convectively unstable. 

The latter result is entirely consistent with the studies of Chomaz [4] and Couairon and Chomaz [7]. In these recent 
investigations, nonlinear global modes on the semi-infinite interval 0 < X < oo and governed by the real Ginzburg- 

Landau equation with constant coefficients and both cubic and quintic nonlinearities have been examined from the 
dynamical systems point of view. In the supercritical case (stabilizing nonlinear terms), it is found that nonlinear 
global modes may exist even if the basic state is only linearly convectively unstable. Thus, there is clearly more 
and more evidence that the relation between local linear stability properties and global modes becomes somewhat 
tenuous as the fully nonlinear rrgime is approached. 

The recent numerical simulations of wakes in shallow layers performed by Sch~ and Smith [22] underscore 
the importance of nonlinearities in the frequency selection process. When nonlinearities were turned off, the wake 
was found to oscillate at a Strouhal frequency co ~ 0.17, to be compared with cos = 0.19 resulting from the linear 
frequency selection criterion (1), (2). Upon retaining nonlinear terms, the "observed" wake frequency increased 
substantially to co ~ 0.27. The criterion proposed in the present study could possibly account for this discrepancy. 
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