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A new frequencyselectioncriterion valid in the fully nonlinearregimeis presentedor extended
oscillatingstatesin spatiallydevelopingmedia.The spatialstructureandfrequencyof thesemodes
aredominatedby the existenceof a sharpfront connectinginearto nonlinearregions.A newtype

of fully nonlineartime harmonicsolutionscalled steep global modes is identifiedin the contextof

the supercriticalcomplexGinzburg-Landauequationwith slowly spatially varying coefficients.A

similar formulationis likely to be applicableto fully nonlinearsynchronizedylobal oscillationsin

spatially developingfree shearflows. © 1998 American Institute of Physics.
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Spatially developingfree shearflows such as mixing
layers! wakes?? andjets® typically give riseto intrinsic self-
sustainedoscillationswhen they exhibit a sufficiently large
regionof absolutenstability > Fluctuationssaturateat a finite
amplitude in the locally unstableregions of the flow and
becometuned at an overall frequency. The intrinsic fre-
qguency andhe associatedgpatialdistribution of fluctuations
definea global mode living on the underlyingunstablebasic
flow. In the presentletter we show the existenceof fully
nonlinearglobalmodeswith a sharpstationaryfront separat-
ing linear and nonlinearregions. The complex Ginzburg-
Landau(CGL) equationis chosenasa modelof openflows
since families of linear and nonlinear wave solutions are
readily determinedanalytically. As summarizedbelow, the
study of CGL modelshasbeenfound to leadto linear fre-
quency selection criterig® that remain applicable for the
Navier-Stokes equations. The same approachis adopted
herein the fully nonlinearcontext.

In the linear approximation,global frequencyselection
in doubly infinite domains is dictated by saddle point
condition§'” imposedon the local linear dispersionrelation.
Sucha criterion predictsremarkablywell the vortex shed-
ding frequencybehindblunt edgedplates® Nonlinear exten-
sionsof theseconceptshaveonly recentlybeendeveloped,
mainly in the contextof variousone-dimensionaévolution
modelsin semi-infinite®*° or finite!! domains. The results
comparesatisfactorily with numerical simulationsand ex-
perimentsfor Taylor—Couetteflow!? and Rayleigh-Benard
convectionwith throughflow!31° Surprisingly, fully nonlin-
earsoft global modes of the CGL equationvarying smoothly
over a doubly infinite domainhave beershown* by appli-
cation of Wentzel-Kramers-Brillouin—Jeffreys (WKBJ)
theory,to satisfy a nonlinearsaddlepoint criterion which is
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formally analogoudo its linear counterpartHere we show
the existenceof a secondclass of nonlinear spatially ex-
tendedstatesin doubly infinite domains:steep global modes
with a sharpfront.

We assumethat the fluctuating complex scalar field
¥(x,t) isgovernedoy the supercriticalCGL equationwritten
as

Y 1 ) . Y
== wo(x)+§wkk(x)ko(x) 'rlf—Hwkk(x)kO(x)W
1 Py
—zonX) 5+ YUy, @

where the complex functions wg(X), wk(X), ko(X), and
v(X) solely dependon the slow spacevariable X=eX,

e<1, to accountfor theweakinhomogeneityof the medium.
The choiceof thesefunctionsandtheir meaningwill become
clearwhenwe discussthe resultinglinear and nonlineardis-
persionrelations.

In regionswherethe amplitudeof ¢ is small,its behav-
ior is governedby the linearizedcounterpartof (1). Under
the assumptiorof weakinhomogeneitylinear solutionsare
approximated at leading order by waves of the form
exp((i/e) ka(u)du—iwt). The correspondingdocal linear dis-
persion relation reads

0=0'(k,X)=wo(X)+ o X)(k—ko(X))?, 2

with associatedomplexlocal linear spatialbranches

o < [,@” @o(X)
K= (X; 0)=ko(X) = ZW' ©)
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As definedin Ref. 5, the complex absolutefrequency wg

necessarily coincides with the branch point of (3): at

w=wq both wave numberbranchesare equalto the local

absolutewave numberk,. The following basicflow struc-
tureis assumeda centralabsolutelyunstable(AU) regionof

finite extent characterizedby wq;(X)=Im wq(X)>0, sur-

rounded by convectively unstable (CU) regions with

wg;(X)<0, which in turn becomestable far downstream
(X— +00) andupstream(X— — ). In orderto enforcecau-
sality, sufficiently large wave numbersare assumedo be

dampedj.e., wy ;(X) <0 for all X. We assumea basicflow

advectiontowardsincreasingX which is readily shownto

correspondo Kq;<0. The + and — superscriptsire unam-
biguouslyassignedo the spatialbranchesxponentiallyde-
cayingtowardsX= +o andX= —o, respectively.

In unstableregionsthe CGL equationadmitslocal non-
linear traveling wave solutions of the form
=R(X)exp((/e) [*k(u)du—iwt), with real wave numberk,
real frequencyw andreal amplitudeR governedoy thelocal
nonlinear dispersion relation

0=wo(X)+ FopX)(k=Ko(X))?+ y(X)R. (4)

This complexequationwith threereal unknownscan easily
be castin the form

w=0"(k,X) (53

and
R2=R,(k,X), (5b)

wherethefunctionsQ" andR, arequadratigpolynomialsin
k with X-dependentreal coefficients. The real nonlinear
wavenumberbranchek" = (X; w) arederivedfrom (5a); the
allowedwavenumbersarethosefor which R,(k,X)>0. We
only considerCGL coefficientsfor which the finite ampli-
tudetravelingwavesare stable.

Global modesolutionsover the entire flow are obtained
by asymptoticallymatchingtogethedocal travelingwaveso-
lutions of the samefrequency.By definition, a global mode
is necessarilymadeup of the decayingk' = branchfor X—
—o and the decayingk' ™ branchfor X— 4. The fre-
guencyselectiongivesrise to a nonlineareigenvalue prob-
lem: the matchingof finite amplitudeoscillationsin a central
regionto exponentiallydecayingtails in both upstreamand
downstreamdirectionscan only be achievedfor a specific
frequency.

This problemhasbeensolvedfor purely linear global
modes in Ref. 6. In the fully nonlinearregime, soft global
modes with an overall slowly varying spatialenvelopehave
beenidentified and describedin Ref. 14; their real global
frequencyw, is obtainedat a saddlepoint (kg,X;) of the
nonlineardispersiorrelationQ" (k,X). The objectiveof this
letter is to report the existenceof a secondtype of fully
nonlinear solutions:in situationswhere soft modesfail to
exist, they arereplacedby a steep modewith a sharpfront.

The spatialstructureof a steepglobalmodeof frequency
w; is givenin Fig. 1(a). Suchasolutionis characterizedy a
sharpfront at the upstreamboundaryX; of the AU region
indicatedin gray. Associatedinear k'~ and nonlineark™*
wave numberbranchesat the frequencyw; vary along the
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FIG. 1. () Envelope|| andreal part ¢, of steepglobal modewith sharp
front at upstreamboundaryX; of AU region (in gray). (b) Corresponding
linearandnonlinearspatialbranchesn the X-k; plane.Local wavenumber
making up solutionin (a) follows pathindicatedby a thick line. The wave
numberjump at the front is indicatedby repeatedarrows.

streamwisalirection X, as shownby solid and dashedines
in the X-k, planeof Fig. 1(b). The local wave numbermak-
ing up the actual solution follows the path indicatedby a
thick line in Fig. 1(b). Exceptfor the jump at the front [re-
peatedarrowsin Fig. 1(b)] localwavenumberandamplitude
vary slowly. The nonlinearsolution prevailsin the region
X< X< X, which extendsbeyondthe AU region.

The steepglobal frequencyw; andthe front location X
are then solely determinedby applying the following crite-
rion to the local linear dispersionrelation:

wi=Q'(Kk¢, Xp), (6)
wherethe pair (k; ,Xs) satisfies

99! |

W(kf,Xf)zo and Qi(kf,Xf):O. (7)

In termsof wy(X) theseconditionsread
wi=wo(Xs) and wg;(X;)=0. )

The aboveequationsare reminiscentof the Dee-Langerse-
lection criterion'® for a propagatingfront connectingan un-
stablestatey=0 to a fully nonlinearwave patternin a ho-
mogeneousnedium undergoinga supercriticalbifurcation.
Accordingto this criterion, a stationaryfront existsin homo-
geneousnediaonly whenthe control parametersre chosen
to be exactly at the CU/AU transition.In the presentinho-
mogeneousi.e., spatially varying context,the CU/AU tran-
sition preciselyoccursat the singlelocationX; . Thefront at
this station has the overall frequencyw; and the complex
wavenumberat the decayingfront edgecoincideq Fig. 1(b)]
with the local absolute wave number k;=Kkq(X;)
=k'"*(X;,w5).

By definition of the absolutewave number,the linear
k'* brancheameetat k; for o= w; andX=X;. In a neigh-
borhoodof X;, the upstreamk'~ branch decaysowardsX
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=—om when X<X;, whereasthe downstreanspatially am-
plified k'" branchis replacedby the nonlineark™ * branch
whenX>X; . Thefront at X; exactlyconnectghelineark'~

branchin the CU region X<X; with the nonlineark™ *
branchprevailingin the AU region X>X; . Furtherdown-
streamthe nonlineark™* brancheventuallyreturnsto the
lineark'* via a neutralstability stationX, wherethe nonlin-
earamplitudevanishesgexactly asfor soft global modes-*

A front locatedat the upstreamboundaryof the AU re-
gion is a stableconfigurationdueto the following argument.
Considera small displacementrom the front equilibrium
positionat X; towardsX>X; . The front now experiences
slightly AU mediumandhencé® propagateslowly towards
its decayingedge,i.e., upstreamWhenthe front is displaced
to X<X;, it penetratesnto a CU regionandis thuspushed
downstream.In any casethe front is seento return to its
equilibrium position. The completeasymptoticrepresenta-
tion of steepglobal modesis obtainedby linear and nonlin-
ear WKBJ matchingtechniquesasin Ref. 14,

Accordingto the presenttheorythe CGL equationwith
spatially varying coefficientshasbeenshownto admit two
types of time harmonic solutions. Soft global modes are
characterizedby a nonlinear saddle point condition*
whereassteepglobalmodesdisplaya stationaryfront (6) and
(7) atthe upstreanboundaryof the AU domain.The nature
of the selectedglobal modeis determinedby formally com-
puting the respectivecharacteristidrequenciesws and w; :
in a future publicationwe will showthatthe modeof largest
frequencyis selectedand that no other global mode type
occurs.The validity of thesetheoreticalcriteriais confirmed
by spatio-temporalnumerical simulations of (1). Further-
more, accordingto the resultsof Ref. 16, one expectsthe
natureof the bifurcationto a fully nonlinearglobal modeto
be extremelysensitiveto e.

In both instancesfrequencyselectiontakesplaceat the
downstreamposition wherea — branchis linked to a +
branch:k"~ andk™* at X, for a soft global mode,k' ~ and
k"' at X; for a steepglobal mode.Thesestationseffectively
act as frequencygeneratordor the entire flow. Suchloca-
tions may be interpretedaslocal oscillatorsinducingthe up-
stream— branchandthe downstream+ branch,regardless
whetherthesebranchesarelinear or nonlinear.lt is notewor-
thy that the presentsteepfrequencyselectioncriterion (6)
and(7) demonstratesn the CGL context,the validity of the
initial resonanceprinciple postulatedby Monkewitz and
Nguyert’ to accountfor self-excited resonancesn bluff
body wakes.

An essentialdifference betweensteepand soft global
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modesis that steepglobal modesonly involve onenonlinear
spatial branchk™ *. The sharpfront allows an immediate
crossovefrom thelinear — to thenonlinear+ branch.Gen-
eralizationof the presentheoryto real flows is in progress:
In the contextof free shearflows governedby the Navier—

Stokesequationsthe local k™ * is representedby fully non-

linearsaturatedolutionson a streamwisgeriodicdomainas
obtainedin direct numericalsimulationsfor a given parallel
basicflow. To our knowledgelocal k"~ branchesfor free

shearflows have never beenidentified. It thereforeseems
likely that fully nonlinearglobal modesin wakes, jets or

shear-layersnay be describedhassteepratherthansoft global

modes.
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