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A new frequencyselectioncriterion valid in the fully nonlinearregimeis presentedfor extended
oscillatingstatesin spatiallydevelopingmedia.Thespatialstructureandfrequencyof thesemodes
aredominatedby theexistenceof a sharpfront connectinglinear to nonlinearregions.A newtype
of fully nonlineartime harmonicsolutionscalledsteep global modes is identifiedin the contextof
the supercriticalcomplexGinzburg–Landauequationwith slowly spatiallyvarying coefficients.A
similar formulationis likely to be applicableto fully nonlinearsynchronizedglobal oscillationsin
spatiallydevelopingfree shearflows. © 1998 American Institute of Physics.
@S1070-6631~98!00410-3#

Spatially developingfree shearflows such as mixing
layers,1 wakes,2,3 andjets4 typically give riseto intrinsic self-
sustainedoscillationswhen they exhibit a sufficiently large
regionof absoluteinstability.5 Fluctuationssaturateat afinite
amplitude in the locally unstableregions of the flow and
becometuned at an overall frequency.The intrinsic fre-
quency andthe associatedspatialdistributionof fluctuations
definea global mode living on theunderlyingunstablebasic
flow. In the presentletter we show the existenceof fully
nonlinearglobalmodeswith a sharpstationaryfront separat-
ing linear and nonlinear regions.The complex Ginzburg–
Landau~CGL! equationis chosenasa modelof openflows
since families of linear and nonlinear wave solutions are
readily determinedanalytically. As summarizedbelow, the
study of CGL modelshasbeenfound to lead to linear fre-
quency selection criteria6 that remain applicable for the
Navier–Stokesequations.7 The sameapproachis adopted
herein the fully nonlinearcontext.

In the linear approximation,global frequencyselection
in doubly infinite domains is dictated by saddle point
conditions6,7 imposedon the local linear dispersionrelation.
Such a criterion predictsremarkablywell the vortex shed-
ding frequencybehindblunt edgedplates.8 Nonlinear exten-
sionsof theseconceptshaveonly recentlybeendeveloped,
mainly in the contextof variousone-dimensionalevolution
models in semi-infinite9,10 or finite11 domains. The results
comparesatisfactorily with numerical simulationsand ex-
perimentsfor Taylor–Couetteflow12 and Rayleigh–Bénard
convectionwith throughflow.13,10 Surprisingly,fully nonlin-
earsoft global modes of theCGL equationvaryingsmoothly
over a doubly infinite domainhave beenshown,14 by appli-
cation of Wentzel–Kramers–Brillouin–Jeffreys ~WKBJ!

theory,to satisfya nonlinearsaddlepoint criterion which is

formally analogousto its linear counterpart.Here we show
the existenceof a secondclass of nonlinear spatially ex-
tendedstatesin doubly infinite domains:steep global modes
with a sharpfront.

We assumethat the fluctuating complex scalar field
c(x,t) is governedby thesupercriticalCGL equationwritten
as
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where the complex functions v0(X), vkk(X), k0(X), and
g(X) solely dependon the slow spacevariable X5ex,
e!1, to accountfor theweakinhomogeneityof themedium.
Thechoiceof thesefunctionsandtheir meaningwill become
clearwhenwe discussthe resultinglinearandnonlineardis-
persionrelations.

In regionswherethe amplitudeof c is small,its behav-
ior is governedby the linearizedcounterpartof ~1!. Under
the assumptionof weak inhomogeneity,linear solutionsare
approximated at leading order by waves of the form
exp((i/e) *Xk(u)du2ivt). Thecorrespondinglocal linear dis-
persion relation reads

v5V l~k,X ![v0~X !1
1
2 vkk~X !~k2k0~X !!2, ~2!

with associatedcomplexlocal linear spatialbranches

k l6~X;v ![k0~X !6A2
v2v0~X !

vkk~X !
. ~3!
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As defined in Ref. 5, the complex absolutefrequencyv0

necessarily coincides with the branch point of ~3!: at
v5v0 both wave numberbranchesare equal to the local
absolutewave numberk0 . The following basicflow struc-
ture is assumed:a centralabsolutelyunstable~AU! regionof
finite extent characterizedby v0,i(X)[Im v0(X).0, sur-
rounded by convectively unstable ~CU! regions with
v0,i(X),0, which in turn becomestable far downstream
(X→1`) andupstream(X→2`). In orderto enforcecau-
sality, sufficiently large wave numbersare assumedto be
damped,i.e., vkk,i(X),0 for all X. We assumea basicflow
advectiontowardsincreasingX which is readily shown to
correspondto k0,i,0. The 1 and2 superscriptsareunam-
biguouslyassignedto the spatialbranchesexponentiallyde-
cayingtowardsX51` andX52`, respectively.

In unstableregionsthe CGL equationadmitslocal non-
linear traveling wave solutions of the form c
5R(X)exp((i/e) *Xk(u)du2ivt), with real wave numberk,
real frequencyv andreal amplitudeR governedby the local
nonlinear dispersion relation

v5v0~X !1
1
2 vkk~X !~k2k0~X !!2

1g~X !R2. ~4!

This complexequationwith threereal unknownscaneasily
be castin the form

v5Vnl~k,X ! ~5a!

and

R2
5R2~k,X !, ~5b!

wherethefunctionsVnl andR2 arequadraticpolynomialsin
k with X-dependentreal coefficients.The real nonlinear
wavenumberbranchesknl6(X;v) arederivedfrom ~5a!; the
allowedwavenumbersarethosefor whichR2(k,X).0. We
only considerCGL coefficientsfor which the finite ampli-
tudetravelingwavesarestable.

Global modesolutionsover the entireflow areobtained
by asymptoticallymatchingtogetherlocal travelingwaveso-
lutions of the samefrequency.By definition, a global mode
is necessarilymadeup of the decayingk l2 branchfor X→

2` and the decayingk l1 branch for X→1`. The fre-
quencyselectiongives rise to a nonlineareigenvalue prob-
lem: thematchingof finite amplitudeoscillationsin a central
region to exponentiallydecayingtails in both upstreamand
downstreamdirectionscan only be achievedfor a specific
frequency.

This problemhasbeensolved for purely linear global
modes in Ref. 6. In the fully nonlinearregime,soft global
modes with an overall slowly varying spatialenvelopehave
beenidentified and describedin Ref. 14; their real global
frequencyvs is obtainedat a saddlepoint (ks ,Xs) of the
nonlineardispersionrelationVnl(k,X). Theobjectiveof this
letter is to report the existenceof a secondtype of fully
nonlinearsolutions: in situationswhere soft modesfail to
exist, they arereplacedby a steep modewith a sharpfront.

Thespatialstructureof a steepglobalmodeof frequency
v f is givenin Fig. 1~a!. Sucha solutionis characterizedby a
sharpfront at the upstreamboundaryX f of the AU region
indicatedin gray. Associatedlinear k l6 and nonlinearknl6

wave numberbranchesat the frequencyv f vary along the

streamwisedirectionX, as shownby solid anddashedlines
in the X-kr planeof Fig. 1~b!. The local wavenumbermak-
ing up the actual solution follows the path indicatedby a
thick line in Fig. 1~b!. Exceptfor the jump at the front @re-
peatedarrowsin Fig. 1~b!# local wavenumberandamplitude
vary slowly. The nonlinearsolution prevails in the region
X f,X,X2 which extendsbeyondthe AU region.

The steepglobal frequencyv f andthe front locationX f

are then solely determinedby applying the following crite-
rion to the local linear dispersionrelation:

v f5V l~k f ,X f !, ~6!

wherethe pair (k f ,X f) satisfies

]V l

]k
~k f ,X f !50 and V i

l~k f ,X f !50. ~7!

In termsof v0(X) theseconditionsread

v f5v0~X f ! and v0,i~X f !50. ~8!

The aboveequationsarereminiscentof the Dee–Langerse-
lection criterion15 for a propagatingfront connectingan un-
stablestatec50 to a fully nonlinearwavepatternin a ho-
mogeneousmedium undergoinga supercriticalbifurcation.
Accordingto this criterion,a stationaryfront existsin homo-
geneousmediaonly whenthe control parametersarechosen
to be exactly at the CU/AU transition.In the presentinho-
mogeneous,i.e., spatiallyvarying context,the CU/AU tran-
sition preciselyoccursat thesinglelocationX f . Thefront at
this station has the overall frequencyv f and the complex
wavenumberat thedecayingfront edgecoincides@Fig. 1~b!#
with the local absolute wave number k f5k0(X f)
5k l6(X f ,v f).

By definition of the absolutewave number,the linear
k l6 branchesmeetat k f for v5v f andX5X f . In a neigh-
borhoodof X f , the upstreamk l2 branch decaystowardsX

FIG. 1. ~a! Envelopeucu andreal part cr of steepglobal modewith sharp
front at upstreamboundaryX f of AU region ~in gray!. ~b! Corresponding
linearandnonlinearspatialbranchesin theX-kr plane.Local wavenumber
makingup solution in ~a! follows path indicatedby a thick line. The wave
numberjump at the front is indicatedby repeatedarrows.
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52` when X,X f , whereasthe downstreamspatially am-
plified k l1 branchis replacedby the nonlinearknl1 branch
whenX.X f . Thefront at X f exactlyconnectsthe lineark l2

branch in the CU region X,X f with the nonlinear knl 1

branchprevailing in the AU region X.X f . Furtherdown-
streamthe nonlinearknl1 brancheventuallyreturnsto the
lineark l1 via a neutralstability stationX2 wherethenonlin-
earamplitudevanishes,exactlyasfor soft global modes.14

A front locatedat the upstreamboundaryof the AU re-
gion is a stableconfigurationdueto the following argument.
Considera small displacementfrom the front equilibrium
positionat X f towardsX.X f . The front now experiencesa
slightly AU mediumandhence15 propagatesslowly towards
its decayingedge,i.e., upstream.Whenthefront is displaced
to X,X f , it penetratesinto a CU regionandis thuspushed
downstream.In any casethe front is seento return to its
equilibrium position. The completeasymptoticrepresenta-
tion of steepglobal modesis obtainedby linear andnonlin-
earWKBJ matchingtechniquesasin Ref. 14.

According to the presenttheory the CGL equationwith
spatially varying coefficientshasbeenshownto admit two
types of time harmonic solutions. Soft global modes are
characterizedby a nonlinear saddle point condition,14

whereassteepglobalmodesdisplaya stationaryfront ~6! and
~7! at theupstreamboundaryof theAU domain.Thenature
of the selectedglobal modeis determinedby formally com-
puting the respectivecharacteristicfrequenciesvs and v f :
in a futurepublicationwe will showthat themodeof largest
frequencyis selectedand that no other global mode type
occurs.The validity of thesetheoreticalcriteria is confirmed
by spatio-temporalnumerical simulations of ~1!. Further-
more, accordingto the resultsof Ref. 16, one expectsthe
natureof the bifurcationto a fully nonlinearglobal modeto
be extremelysensitiveto e.

In both instances,frequencyselectiontakesplaceat the
downstreamposition where a 2 branch is linked to a 1

branch:knl2 andknl1 at Xs for a soft global mode,k l2 and
knl1 at X f for a steepglobalmode.Thesestationseffectively
act as frequencygeneratorsfor the entire flow. Such loca-
tionsmaybe interpretedaslocal oscillatorsinducingtheup-
stream2 branchand the downstream1 branch,regardless
whetherthesebranchesarelinearor nonlinear.It is notewor-
thy that the presentsteepfrequencyselectioncriterion ~6!
and~7! demonstrates,in theCGL context,thevalidity of the
initial resonanceprinciple postulatedby Monkewitz and
Nguyen17 to account for self-excited resonancesin bluff
body wakes.

An essentialdifference betweensteepand soft global

modesis thatsteepglobalmodesonly involve onenonlinear
spatial branchknl1. The sharp front allows an immediate
crossoverfrom thelinear2 to thenonlinear1 branch.Gen-
eralizationof the presenttheoryto real flows is in progress:
In the contextof free shearflows governedby the Navier–
Stokesequations,the local knl1 is representedby fully non-
linearsaturatedsolutionson a streamwiseperiodicdomainas
obtainedin direct numericalsimulationsfor a given parallel
basicflow. To our knowledgelocal knl2 branchesfor free
shearflows have never been identified. It thereforeseems
likely that fully nonlinear global modesin wakes, jets or
shear-layersmaybedescribedassteepratherthansoft global
modes.
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