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Abstract 

We report novel superlattice wave patterns at the interface of a fluid layer driven vertically. These patterns are described 
most naturally in terms of two interacting hexagonal sublattices. Two frequency forcing at very large aspect ratio is utilized 
in this work. A superlattice pattern ("superlattice-I") consisting of two hexagonal lattices oriented at a relative angle of 22 c' 
is obtained with a 6 : 7 ratio of forcing frequencies. Several theoretical approaches that may be useful in understanding this 
pattern have been proposed. In another example, the waves are fully described by two superimposed hexagonal lattices with a 
wavelength ratio of ~/3, oriented at a relative angle 30 °. The time dependence of this "superlattice-II" wave pattern is unusual. 
The instantaneous patterns reveal a time-periodic stripe modulation that breaks the sixfold symmetry at any instant, but the 
stripes are absent in the time average. The instantaneous patterns are not simply amplitude modulations of the primary standing 
wave. A transition from the superlattice-II state to a 12-fold quasi-crystalline pattern is observed by changing the relative phase 
of the two forcing frequencies. Phase diagrams of the observed patterns (including superlattices, quasicrystalline patterns, 
ordinary hexagons, and squares) are obtained as a function of the amplitudes and relative phases of the driving accelerations. 
Copyright © 1998 Elsevier Science B.V. 
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1. Introduction 

Surface waves produced by the Faraday instabil- 

ity are known to give rise to many different pat- 

terns (including stripes, squares, hexagons, and even 

quasi-crystalline patterns) as a function of  driving 

frequency and amplitude, viscosity, and the driving 

waveforrn [1-4]. However, regular space-filling pat- 

terns formed as a result of  nonlinearity are even more 

diverse than the wide range reviewed by Cross and 
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Hohenberg [5]. For example, in recent optical ex- 

periments in a Kerr-like medium, phase locking of  

several wave vectors results in novel patterns with 

several unequal wave vectors [6]. In this paper we 

report novel regular patterns observed in experiments 

on surface waves generated by two frequency forc- 

ing that extend earlier systematic work limited to 

single-frequency forcing [3]. We will refer to these 

new patterns as superlattices because these are com- 

posed o f  two discrete but interacting sublattices. 

Their occurrence extends the striking variety of sym- 

metric states than can occur in nonlinear surface 

waves. 
In our earlier study hexagonal wave patterns were 

observed for low driving frequencies, for which the 
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gravitational restoring force was comparable to the 
capillary force. For high frequencies, i.e. in the capil- 
lary limit, square patterns were observed for low kine- 
matic viscosity (v < 50 cm 2 s - I ) ,  and textured stripes 

for higher viscosity. Recent theoretical work by Chen 
and Vifials [7] has explained these observations using 

quasi-potential equations derived from the underlying 

hydrodynamic equations. 
Good agreement of measured onset accelerations 

for two frequency forcing have been found with pre- 

dictions of linear stability analysis of the full hy- 
drodynamic equations [8]. Edwards and Fauve [4] 

observed 12-fold quasi-crystalline patterns using two 
frequency forcing with ratio 4 : 5. They argued that an 

even frequency perturbed by an odd frequency breaks 
the subharmonic symmetry (invariance with respect to 
translation in time by one driving period) and there- 
fore allows quadratic terms (which would otherwise 

be excluded) to appear in the amplitude equations. Sta- 
bilization of patterns such as hexagons can then occur 

by quadratic interaction as in non-Boussinesq con- 
vection. These 12-fold quasi-crystalline patterns may 

be described as two hexagonal lattices that are ori- 
ented at 30 °. A clear mechanism for their formation is 

not available, although recent work on a generalized 
Swift-Hohenberg model equation has shown 12-fold 
quasi-patterns [9]. 

In other work by Mtiller using 1 : 2 forcing, trian- 

gular and hexagonal lattices were observed; the type 
of lattice could be selected by using a third perturb- 

ing frequency [10], but no superlattices were reported. 
These experimental observations were reproduced the- 
oretically by Zhang and Vifials [11] using an exten- 

sion of their quasi-potential equations to the case of 
two frequencies. 

In the present work we report and discuss sev- 
eral new patterns formed with even-odd forcing. We 
study two frequency ratios (6 : 7 and 4 : 5), to explore 
the formation of patterns with novel symmetries. In 
both cases, there is a prominent region of hexagons in 
parameter space. By making relatively small adjust- 
ments in the relative amplitude or phase of the forcing 
components, we find several distinct patterns that are 
described most naturally as being composed of multi- 
ple hexagonal sublattices. In these patterns, the spatial 

power spectrum contains peaks at smaller wave num- 

bers than those observed at the onset of surface waves 

(for either driving frequency). These superlattice pat- 
terns arise from an instability of the base hexagonal 
lattice that is formed at onset. Superlattice structures 

are of course common in condensed matter physics, 

but to our knowledge the term has not previously been 

applied to patterns in nonlinear systems. 

2. Experimental setup and forcing function 

The apparatus is essentially as described in [8]. The 

experimental setup consists of a 32 cm diameter cir- 

cular aluminum container filed with silicone oil to a 
height of 3 mm. This material gives stable behavior 

over many weeks, and is available over a wide range 
of kinematic viscosity, though the present work is lim- 

ited mainly to v = 20-50 cm 2 s - I  because of the large 

number of other parameters that need to be varied. The 
fluid depth is generally greater than the viscous pene- 
tration depth at the typical fluid oscillation frequency. 

The container is rigidly attached to a Vibration Test 
Systems electromagnetic shaker that is capable of ap- 

plying peak forces of 2200 N. 

The forcing waveform that controls the acceleration 
of the container is described by 

a( t )  = a[cos(x) cos(no9t) 

+ sin(x) cos(mogt + 0)], (1) 

where, o9 = 2rrf ,  n and m are integers, 1 I f  is the 
overall period T of the driving, and X is used to 
control the relative amplitudes. By measuring the ac- 
tual acceleration and using feedback, the acceleration 

is forced to follow Eq. (1) to within about 1%. We 
generally choose n to be even and m to be odd so 

that nonlinear interactions can occur at quadratic or- 
der, as explained in Section 1. We thoroughly explore 
two cases: (m, n) = (6,7) and (4,5), and we system- 
atically vary a, 4~, X for each case. For some pur- 
poses it is useful to define an = a cos(x) and am = 

a sin(x). 
Lighting is provided by a circular array of lights, 

and the reflected light from the fluid surface is imaged. 
Roughly speaking, nodes appear dark because light 
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is deflected away from the camera, while antinodes 

appear bright. The intensity is a (nonlinear) function 
of the surface slope, reaching a maximum at an an- 

gle (4.2 ° ) that is often small compared to the slopes 
typically present in the patterns. We typically aver- 

age over 1-2 wave periods; this causes the apparent 
wavelength to be half the actual wavelength, since 
there are two nodes (or antinodes) per period. Though 
the images are not quantitative measures of the sur- 
face height function or slope, they are useful for de- 

termining the symmetries of the patterns. In some 
cases, instantaneous images are used to determine the 

variation of the waves with time within one wave 

period. 
The patterns formed at the surface are imaged using 

a 512 x 512 pixel Dalsa variable scan CCD camera 
controlled by the same computer that generates the 

driving waveform of the shaker. The camera exposure 
times may be varied with a minimum exposure time of 
about 10 -3 s. The phase of the image acquisition with 

respect to the forcing function is adjustable by means 
of a programmable liquid crystal shutter. Pattern anal- 
ysis is implemented using Khoros image processing 

~oftware. 

3. Experimental results 

3.1. Parameter space f o r  6o9 : 7o9 forcing 

First we discuss the patterns obtained using n = 6 
and m = 7, i.e. a 6 : 7 frequency ratio. We find that in 

the capillary limit (where the capillary force dominates 
over gravitation) the pattems do not depend strongly 

on the frequency f .  Therefore, detailed studies of the 
pattems observed as a function of a, X, and ~b in Eq. (1) 
were conducted at f = 16.44Hz. The phase diagram 
of the patterns obtained as a function of the relative 

strength of acceleration is shown in Fig. l(a) for f = 
16.44 Hz, and 4~ = 20 °. The data shown in the phase 
diagram were obtained by observing the pattern after 
incrementing the acceleration a in steps 0.1 g, and X 
and ~b in steps of 5 °. 

A square lattice is observed when the acceler- 
ations a6 and a7 are substantially unequal. This 

observation is consistent with previous studies us- 

ing single frequency forcing at the same viscosity 
[3]. The square patterns corresponding to the even 

frequency are harmonic since the phase of the fluid 
motion has the same sign after a drive period T. 

On the other hand, the square patterns correspond- 
ing to the odd frequency are subharmonic, i.e. they 
change sign after one drive period and will have 

the same sign only after two periods. (However, the 
subharmonic pattern does recur at a shorter time in- 

terval 2T /7 .  The use of the term subharmonic refers 

to the phase of the pattern after one drive period 

T.) 
More complex patterns are obtained when both 

components are comparable. In this situation, 
hexagons are formed at onset, as shown in Fig. 1. This 
transition is subcritical, since hysteresis is observed at 
onset. Because of the observation of hysteresis and the 
role played by the odd frequency 7o9, these hexagons 
are thought to arise from quadratic interactions in 

the amplitude equations [4]. They arise from a fun- 
damentally different mechanism than those observed 
with single frequency forcing, where the interactions 
are at cubic order in the amplitude equations and triad 
resonances (which occur at low frequencies) are im- 
portant [3,12]. As the variable X (which specifies the 

relative strength of the two frequencies) is increased 
near onset, the wavelength changes suddenly from 
the one corresponding to the even forcing term to that 
corresponding to the odd term at a particular value 
X0 -- 61.5 ~ that is independent of 4~. This point in 
the parameter space may be regarded as a "bi-critical 

point". 
Time-dependent patterns are also visible in the 

phase diagrams. These include: transverse amplitude 
modulations (TAM), which have been predicted in 
a simpler form [13] and observed [14] previously; 
and spatiotemporal chaos (STC) similar to that which 
develops from square patterns for single frequency 

forcing [3]. 
The main features of the phase diagram are rela- 

tively independent of 4~. This is shown in the phase 
diagram near the bi-critical point for fixed Z as shown 
in Fig. 1 (b). However, the secondary instability lead- 

ing to disorder does depend significantly on 4~- 
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Fig. 1. Phase diagrams of patterns obtained for a forcing frequency ratio of 6 : 7 (see Eq. (1)). (a) The axes represent the forcing 
amplitudes a6 and a7 at the two frequencies 6 f  and 7f ,  and the phase angle ¢ is held fixed at 16 ° (v = 20 cm 2 s - t ,  16.4 Hz). (b) Phase 
variation of the patterns for fixed X = 61 °. H = hexagons; Ss = subharmonic squares; Sh = harmonic squares; SL-I = Superlattice-I 
state; TAM = transverse amplitude modulations; STC = spatiotemporal chaos. In shaded regions competition occurs. 

3.2. Superlattice-I patterns and their spectra 

A n  addit ional  instabil i ty occurs as the acceleration 

is increased in  the vicini ty of  the bi-cri t ical  point  (see 

Fig. l(a)).  We refer to the resul t ing pattern, shown 

in  Fig. 2, as a superlattice-I (SL-I) pattern (to dist in- 

guish it f rom another  case that we describe later in 

this section). This  pattern shows a t r iangular  (three- 

fold) lattice at large scales, with each lattice point  be- 

ing composed of  discrete clusters of three small  cells. 

Each of  the small  cells is approximately  the same size 

as the hexagons in the "nearby"  hexagonal  state. We 

use stroboscopic i l luminat ion  to determine that this 

pattern is harmonic  with the drive period T;  the image 

shown in  Fig. 2 has been  obtained with an exposure 

t ime equal  to the drive period. 

We compare  the two-d imens iona l  power  spectrum 

of  the SL-I  state with that of  the hexagonal  pattern in  

Fig. 3. The SL-I spectrum has the sixfold symmetry  

of  a hexagonal  lattice, but  the m i n i m u m  lattice vec- 

tor (corresponding to the inner set of  six peaks) is 

Fig. 2. Example of the superlattice-I pattern obtained for 
two-frequency forcing with ratio 6 :7  ( f  = 16.44Hz, ¢ = 20 °, 
g = 61°) • 
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Fig. 3. Two-dimensional power spectrum of the superlattice-I state (a) and hexagonal state (b). The two sets of  circles in black 
highlight the peaks corresponding to the two hexagonal lattices of  the same wave number as the onset hexagons shown in (b). 

quite different in magnitude from the wave number 

k0 that is forced directly and corresponds to the onset 
hexagons, shown in Fig. 3(b). Instead, k0 corresponds 

to the fourth circle in Fig. 3(a) that is concentric 
with the origin; these peaks have been highlighted 
artificially and are farther from the origin by a fac- 
tor v/ft. Furthermore, the 12 peaks on this circle are 

not equally spaced. They may be described as two 
sets of six peaks forming two hexagons oriented at 
an angle 2sin -] (1/2v/if) ~ 22 ° to each other. (This 

situation is quite different from the 12 peaks of the 
quasi-crystalline pattern discussed in Section 3.3. 
In that case, there are also 12 dominant peaks, but 

they are equally spaced on a circle centered at the 

origin.) 
We note that the onset wave number k0 corre- 

sponds (via the dispersion relation) to the 609 forcing. 
We propose that the SL-I pattern results from reso- 
nances involving quadratic interactions between the 
highlighted peaks on the fourth circle with wave 

number k0; such interactions are allowed for har- 
monic patterns produced by even-odd forcing, and 

they are capable of generating all of the other peaks 

in the power spectrum. The six peaks located on the 

slightly larger fifth circle have a wave number that 
approximately corresponds to the 70) term. This fre- 
quency matching may also be important in generating 

the SL-I pattern [9], but we are unable to assess its 
importance. 

3.2.1. Phenomenological description of the SL-1 state 
As we have indicated, a description of this SL-1 

state can be given in terms of two interacting hexag- 
onal lattices; we give it more explicitly here. Each 

hexagonal lattice may be specified by an instantaneous 
surface height function given (to within a constant of 
proportionality) by 

3 

Fhe×(X'  Y) = Z c o s ( k /  • r + (2) 
i= l  
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Fig. 4. Patterns formed by superposing two hexagonal lattices at an angle 0 = 2 sin-1 (1/2C'ff) ~ 22 °. The total phases defined below 
Eq. (2) are the same for both lattices. (a) A point of sixfold symmetry of the first lattice coincides with a point of triangular symmetry 
of the second lattice; this gives a pattern that closely matches the experimental SL-I pattern with overall triangular symmetry. (b) A 
point of sixfold symmetry of one lattice corresponds to a similar point of the other lattice. 

with 

kl = (1,0), k2 = ( - 1 / 2 ,  v/3/2),  

k3 = ( - 1 / 2 ,  - ~ / 2 ) ,  r = (x, y). 

We denote the arguments of  the cosine functions 

by lPi; the total phase 4~ ----- ~ ~/fi =- E / ~ i  can take 
on only two possible values: 0 (corresponding to the 

centers of  the hexagons having positive or upward dis- 

placement) and zr (corresponding to hexagons with 

centers down at the given instant). Hexagonal patterns 

have points of  sixfold symmetry where 1/t i -~- 0 ( fo r  

all i), and points of  triangular symmetry for which 

1~i = +2zr/3 (for all i) o r  1~i = - 2 z r / 3  (for all i). 

I f  a second lattice, rotated by an angle 0 = 2 • 

sin - j  (1/2C'ff) ~ 22 °, is also present, then the com- 
bined pattern is periodic because of the commensura- 
bility or resonance condition 2kll - k~ = kl -- 2k3. 
However, it is still necessary to specify the total phases 

and the relative positions of  the centers of  the hexagons 
of  the two lattices. We choose the total phases of  the 
two lattices to be the same, i.e. q0 = 4~ I = 0 (If they 

are unequal, the constructed pattern does not resemble 
the experimental pattern.) The texture also depends on 

the displacement of the second lattice with respect to 

the first one. It turns out that the pattern we observe 

is obtained if a point of  sixfold symmetry of  the first 

lattice (where all the aPi = 0) coincides with a point of 

three-fold symmetry of  the second lattice (where all 

the gti = 4-2zr/3). This pattern is shown in Fig. 4(a). 

Another interesting pattern is obtained by superim- 

posing either points of  hexagonal symmetry 1//i = 0, 

or points of  triangular symmetry of  different type, i.e. 

~ i  = 2zr/3 with ~i = -t-2rr/3. This pattern is shown 
in Fig. 4(b); symmetry considerations have been used 

to argue for its stability [15], but we do not observe it. 

Finally, if points on the two lattices with no rotational 

symmetry are superimposed, then stripe pattems are 
generally obtained. 

From these considerations, we learn that to form the 
observed SL-1 pattern from two hexagonal lattices, it 

is essential not only that the wave vectors of the two 
lattices be locked at the correct angle in Fourier space, 

but also that a phase-locking condition be satisfied in 

real space: the positions of  the two patterns must have 

the relationship described in the preceding paragraph. 
Note that the constructed pattern of  Fig. 4(a) closely 
resembles the experimental one even though it does 
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not contain the smaller wave vectors that are present 

in the power spectrum of the experimental image. 

These smaller wave vectors are probably a mixture 

of  (a) nonlinear interactions arising from three-wave 

resonances between the various Fourier components 

and (b) imaging nonlinearity. There is no easy way 
to determine the relative importance of  these two 

contributions. 

3.2.2. Transition to the SL-1 state 

The inner ring of  peaks in Fig. 3(a) is present in 

the SL-I state but not in the hexagon state. Therefore, 

we use the strength of  these peaks to follow the tran- 

sition qualitatively as the acceleration is varied, while 

remaining cognizant of  the fact that imaging nonlin- 

earity can contribute significantly to their strength. We 

define a superlattice amplitude S / b y  first integrating 

the power spectrum azimuthally and then integrating 

over Ak  = 0.3 cm - l  centered at the peak correspond- 

ing to the first ring of  peaks. The variation of  SI with 

driving acceleration a is shown in Fig. 5. The contri- 

bution from the background noise has been subtracted. 

The transition appears to be continuous, and could be 

a transcritical bifurcation. Visually the domains of  the 

SL-I state spread with increasing acceleration until 

they gradually cover the entire container. However, it 

is possible that the transition is actually discontinuous, 

and that the discontinuity is masked by a slightly in- 

homogeneous driving acceleration (variation 4-1.5%). 

0 . 0 0 1 5  ' ' ' I ' • ' I ' ' ' I ' ' ' I , ' ' 
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0 . 0 0 0 5  
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Fig. 5. The superlattice amplitude SI (a) (see text) as a function 
of acceleration shows a continuous transition from hexagons to 
the SL-I state ( f  = 16.44Hz, 4~ = 20 °, X = 61°) • 
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3.2.3. Defects 

The superlattice-I patterns generally show weak 

time dependence due to the presence of  defects in 

the patterns. The most prominent of these are phase 

defects that cause the "triangular" structure in the 

SL-I pattern to vary locally in orientation. A typical 

defect-free region is of  the same size as that shown 

in Fig. 2. Small domains of ordinary hexagons are 

also present with accompanying grain boundaries. We 

found that the number of  defects does not decrease 

appreciably with time. 

3.2.4. Other superpositions 

Edwards and Fauve [4] have reported quasi- 

crystalline patterns with 6 : 7  forcing frequency ratio. 

We did not observe them with 6 : 7  forcing, but our 

viscosity was significantly lower (20 cm 2 s - l  versus 

100cm 2 s -1 in their case). Given the large number of 

parameters that affect the superlattice patterns, it was 

impractical to explore the variation with viscosity in 

the present work. Earlier work in our laboratory us- 

ing single frequency forcing showed that the pattern 

symmetry depends on the viscosity [3]. 

3.3. Parameter space for  409 " 5co forcing 

Next we discuss the patterns observed with a 4 : 5  

forcing frequency ratio. The phase diagram of the pat- 

terns obtained as a function of  the two forcing ampli- 

tudes is shown in Fig. 6(a) for f = 22 Hz, and ~b = 

16 ° . As for the 6 : 7  frequency ratio, the frequency 

again is high enough that the waves are in the capil- 

lary limit. The patterns do not depend strongly on f .  

The overall structure of the phase diagram is similar 

to that observed for the 6 : 7 frequency ratio: square 
lattices when one component is much larger than the 

other, and hexagons and superlattices when both com- 

ponents are comparable. The bi-critical point is also 

at a similar location in the phase space: X0 -- 61.5° 

and is independent of  4~. As in the 6 : 7 frequency ratio 
case, the main features of the phase diagram do not 

change qualitatively with ~b except near X0- 
Quasi-crystalline patterns are observed as the 

acceleration is increased beyond onset, for X 

slightly less than X0- An example of  such a 12-fold 
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Fig. 6. Phase diagrams of patterns obtained for a forcing frequency ratio of 4:5 with f = 22 Hz. The axes are the same as in 
Fig. 1. SL-II = superlattice-II state (see text); Ss = subharmonic squares; Sh = harmonic squares; H = hexagons; Q = quasi-crystalline 
patterns; x =competition between quasi-patterns and hexagons; TAM =transverse amplitude modulations; STC = spatiotemporal 
chaos; dark shading = no stable pattern near onset; light shading = competition between neighboring states. 

quasi-crystalline pattern is shown in Fig. 7. The field 

of view is approximately 2 0 c m × 2 0 c m .  Competi- 

tion between hexagons and quasi-crystalline patterns, 

which makes them time-dependent, is observed for 

parameters between those of the pure states. An ex- 

ample of this competition is shown in Fig. 8. We 

believe that this competition is inherent and not due to 

an inhomogeneous driving force because the domains 

exchange position in time. 

We studied the transition from hexagons to quasi- 

crystalline patterns using a spectral quasi-crystalline 

amplitude So(a)  that is similar to that used for the 

SL-I state; it denotes the amplitude of the inner ring 

of peaks in the corresponding spectrum; they arise due 

to nonlinear interactions between the main spectral 

components (but are also affected by imaging nonlin- 

earity) and is shown in Fig. 9, The onset of hexagonal-  

quasi-crystal competition appears to be abrupt; this 

regime leads smoothly to the pure quasi-crystalline 

state around a / g  = 8.9. 

Fig. 7, Example of a quasi-crystalline pattern obtained at 
q~ = 16 ° ( f  = 22Hz, 4:5 frequency ratio). This pattern has 
12-fold orientational symmetry but no translational order. 
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Fig. 8. Quasi-crystalline patterns and hexagons compete on a slow timescale in the region between the pure states indicated by the 
symbol x in the phase diagram of Fig 6(a). (a,b) are separated in time by 1600 drive periods. 
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Fig. 9. The quasi-crystal spectral amplitude SQ (a) as a function 
of acceleration shows a discontinuous jump at the onset of 
the region of quasi-crystal-hexagon competition ( f  = 22 Hz, 
~b= 16, ; (=61 ' ) .  

3.4. Superlat t ice-H state 

When ~b is increased with ;( ~ 61 ° (slightly less 

than X0), the quasi-crystalline patterns are replaced 
by a superlattice structure that is quite different from 

the superlattice-I state discussed in Section 3.2. This 

superlattice-II pattern, whose stable region is shown in 

Fig. 6(b), is subharmonic with respect to f and shows 

a distinctive periodic time dependence. It was first re- 

ported by Pier in his undergraduate thesis [16]. An 

image obtained by averaging over two drive cycles is 

shown in Fig. 10 at two different scales. This pattern is 

composed of  hexagonal cells, but there is also a larger 

wavelength hexagonal lattice superimposed upon it. 

The cells in the large lattice have higher amplitude 

and hence appear darker (since more light is scattered 

away from the camera). The higher amplitude of  these 

cells was checked with a strobe light using side illu- 

mination; it is clearly real, and not a lighting artifact. 

Additional information about this pattern may be 

obtained by examining the two-dimensional power 

spectrum, which is shown in Fig. 11. The peaks cor- 

responding to the hexagonal patterns formed at onset 
are indicated by the outer ring of  six circles. The cor- 

responding wave number k0 is that obtained by using 

the dispersion relation with 2(o as the wave frequency 

(the subharmonic of  the 4(0 forcing). In addition to 

these peaks and their harmonics, a set of  six peaks oc- 
curs at smaller k. The wave number of this inner ring 

is smaller than k0 by a factor v/3. 
The experimental spectrum suggests a description 

of  the superlattice-II state in terms of  two hexagonal 
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Fig. 10. (a) Supedattice-II state obtained with 4:5 forcing frequency ratio by changing ~b to 60 °. The wave periodicity is 2T; this 
pattern was obtained by averaging the image over two drive periods ( f  = 22 Hz). (b) Pattern after magnification by a factor of 4. 
The scale is within a few percent of that used in Fig. 2. 

lattices oriented at 30 ° to each other, and with wave 
numbers having a ratio equal to x/~. (Using the in- 

ner peaks alone could reproduce all of the observed 
spectral peaks by quadratic interactions, but only at 
the cost of not including the directly forced modes in 

the description.) A simulated pattern obtained in this 
way is shown in Fig. 12. Each of the two component 
lattices has been chosen to place points of hexagonal 

symmetry at the origin so that l p i  = 0 (for all i) in the 
notation defined below Eq. (2). The result is qualita- 
tively similar to the experimental pattern of Fig. 10(a). 
In this description, we have ignored any direct forc- 
ing at the wave number corresponding to 5w, though 
it may be significant. 

The SL-II state displays additional complexity that 

is not shown by the SL-I state. An instantaneous im- 
age (exposure over 1/20 th of the drive period) reveals 
this complexity: the sixfold symmetry is broken, and 
the observed pattern depends on the instant at which 
the image is obtained. Examples of instantaneous im- 
ages obtained at four different phases (with respect to 
4~o) separated by T / 2 0  are shown in Fig. 13. A stripe 
modulation is visible that is not present in the aver- 
age images. Power spectra of these images indicate 

that the wave number of this modulation is half that 
of the onset hexagons. The stripes are not a simple 

amplitude modulation of the primary standing wave, 
since in that case they would survive in the averaged 

picture as do the subharmonic stripes observed with 
single frequency forcing [3]. The stripe modulation is 

always present; time averaging yields the hexagonal 
superlattice-II patterns shown in Fig. 10. 

The phase diagram as a function of 4~ is shown in 
Fig. 6(b). The onset acceleration for this pattem does 

not change appreciably with ~b. A disordered region 
occurs for parameters between the quasi-crystalline 
SL-II states. 

4. Discussion 

We have reported novel superlattice pattems that 
occur when Faraday waves are driven at two frequen- 
cies. They are closely related to the hexagonal state 
that occurs near onset. The superlattice-I state, shown 
in Fig. 2, is harmonic with respect to the total drive 
frequency ~o. It can be described in terms of two su- 
perimposed hexagonal lattices whose wave numbers 
are both equal to that of the onset hexagonal state, 
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Fig. 11. Two-dimensional power spectrum corresponding to Fig. 
10. The outer ring of six peaks (marked by circles) are those 
of the hexagonal pattern formed near onset. The inner ring of 
highlighted peaks are associated with the transformation of the 
hexagonal state into the superlattice state. Their wave number 
is a factor q'3 smaller than that of the onset hexagons. 

Fig. 12. Simulated SL-II superlattice pattern generated by 
adding two hexagonal lattices with a wave number ratio ~/3; 
the orientations of the lattices differ by 30 .  

but whose  wave  vectors are oriented at an angle  o f  

2 s i n - l ( l / 2 q ' 7 )  ~ 22 ° (Fig. 3). (Whi le  other  repre-  

sentations are possible,  we  bel ieve that it is impor tant  

to include at least one o f  the wave  vectors  that are 

direct ly forced.)  The  discussion o f  Sect ion  3.2 shows 

that the two lattices are phase- locked together  in real  

space so that a point  o f  s ixfold symmet ry  o f  the first 

lattice coincides  wi th  a point  o f  t r iangular  symme-  

try o f  the second lattice. The  new SL-I  state differs 

f rom the other  regular patterns, and f rom the quasi-  

crystal l ine patterns which  also have 12 pr imary  spec- 

tral peaks,  in that the overall  or ientat ional  symmet ry  

( threefold) is less than the number  o f  pr imary spectral 

components .  

This  SL-I  pattern seems to be one o f  the gener ic  

possibil i t ies that can be  expec ted  on the basis of  

symmet ry  considerat ions,  as expla ined by Si lber  

m J 

,,I ,  m 

Fig. 13. The sixfold symmetry of the SL-II averaged pattem is 
broken by the presence of a temporal modulation. Instantaneous 
images obtained with exposure times of 1/20th of the drive 
period T show a stripe modulation during the drive cycle. 
Starting times are as follows: (a) t = 6T/20, (b) t = 7T/20, 
(c) t = 8T/20, and (d) t ---- 9T/20. 
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and Proctor [17]. These authors show that a low- 

dimensional model with degenerate bifurcations can 
be constructed to reproduce the observed transition 
sequence. The transition shown by their model is 

hysteretic, whereas the experimental transition ap- 
pears to be continuous. However, in studying the SL-I 
state and the transition connecting it to the hexagonal 
state, we are limited by imaging nonlinearity and a 

slightly inhomogeneous driving acceleration. An al- 
ternate approach to understanding patterns resulting 

from forcing at two frequencies, such as the SL-I 
pattern, has been proposed by Lifshitz and Petrich 

[9]. It is based on a Swift-Hohenberg model with two 
preferred length scales and both quadratic and cubic 

nonlinear terms in the wave amplitude. The quadratic 

term includes the effect of triad interactions between 
standing waves. In this model, the selected patterns do 
more than satisfy symmetry considerations; they lead 
to a lower value of a certain Lyapunov functional. We 
are unable to test this model, but it is not inconsistent 

with what we observe. 
Using a 4~o : 5w frequency ratio, we find and char- 

acterize a second superlattice state, which we call 

superlattice-II (Fig. 10). Its time average can be rep- 
resented primarily as a combination of two hexagonal 
lattices differing in wave number by a factor V~. This 

state shows a remarkable time-dependent stripe mod- 
ulation (Fig. 13) that breaks the hexagonal symmetry 

at an instant, yet leaves this symmetry unbroken on 
average. There is at present no theory applicable to 
this state. 

The various hexagonal, quasi-crystalline, and su- 

perlattice states show additional complexity due to the 
presence of defects and competition between patterns 
that are adjacent in parameter space. Competition be- 

tween hexagonal and quasi-crystalline patterns was il- 
lustrated in Fig. 8. Using spectral methods, we find 
that the onset of this competition is abrupt. In the 
regime of hexagons near onset, hepta-penta defects 
may be formed by sudden increase of driving accel- 
eration. These generally anneal out over a very long 
time scale and a defect free pattern is usually obtained. 

A "clean" hexagonal pattern is best obtained by 
slowly increasing the acceleration near the wave onset. 
In this respect the hexagonal patterns obtained using 

two frequency forcing differ from those obtained for 
single frequency forcing, where defects, including 
:r-phase defects are more common (see [3]). No 

phase defects were observed for two frequency forc- 

ing over the range of parameters we investigated. 
The ease with which defects are eliminated may be 

related to the fact that the transition from the fiat 
state is subcritical, i.e., there is a small amount of 

hysteresis, typically about 0.1 g in the driving am- 
plitude a. This hysteresis was first discussed by 
Edwards and Fauve [4]. This situation is different 

from that of single frequency forcing, where the cou- 
pling, giving rise to hexagons, is at third order in 
the amplitudes, and both gravity and capillarity are 

significant. 
Defects are also observed in the superlattice-I state. 

These defects cause the orientations of the triangu- 
lar structures shown in Fig. 2 to vary from place to 

place. (This variation can be seen when larger areas 
are examined.) In fact we were unable to obtain a sin- 
gle superlattice-I pattern in which the whole pattern 

had the same orientation. These defects move slowly, 
and therefore the patterns are weakly time-dependent. 

On the other hand the superlattice-II patterns show 
few defects when the acceleration is increased slowly. 

Defects that do appear in the superlattice-II state can 
probably be attributed to the slightly inhomogeneous 
driving acceleration. 

It seems likely that other patterns with distinct 
symmetries can also be created using two-frequency 

forcing; because of the large number of parame- 
ters that can be varied, we have not explored all of 

the possibilities. We believe that the patterns dis- 
cussed in this paper can be used to explore the role 

of nonlinearity in stabilizing structures with dif- 
ferent symmetries that are composed of interacting 

waves. 
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