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Abstract

The selection of fully nonlinear extended oscillating states is analyzed in the context of one-dimensional nonlinear evolution
equations with slowly spatially varying coefficients on a doubly infinite domain. Two types of synchronized structures referred
to assteepand soft global modes are shown to exist. Steep global modes are characterized by the presence of a sharp
stationary front at a marginally absolutely unstable station and their frequency is determined by the corresponding linear
absolute frequency, as in Dee—Langer propagating fronts. Soft global modes exhibit slowly varying amplitude and wave
number over the entire domain and their frequency is determined by the application of a saddle point condition to the local
nonlinear dispersion relation. The two selection criteria are compared and shown to be mutually exclusive. The onset of global
instability first gives rise to a steep global mode via a saddle-node bifurcation as soon as local linear absolute instability is
reached somewhere in the medium. As a result, such self-sustained structures may be observed while the medium is still
globally stable in a strictly linear approximation. Soft global modes only occur further above global onset and for sufficiently
weak advection. The entire bifurcation scenario and state diagram are described in terms of three characteristic control
parameters. The complete spatial structure of nonlinear global modes is analytically obtained in the framework of WKBJ
approximations. © 2001 Elsevier Science B.V. All rights reserved.

PACS:47.20.Ft; 47.20.Ky; 47.54r; 03.40.Kf
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1. Introduction

It is now well established that spatially developing open shear flows may be divided into two classes: some flows
are very sensitive to inflow conditions and essentially behave@e amplifiersothers display intrinsic dynamics
and may be interpreted giobal oscillatorg§20-22]. The present paper is concerned with the latter class of systems
and examines in detail the synchronized self-sustained structures which they can support. In previous studies, we
have demonstrated the existence of nonlirsedir global modef33] andsteep global modg84]. The objective of
the present investigation is to analyze the bifurcation scenarios which lead from the basic state to either of these
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fully nonlinear structures as the global control parameters are varied. The analysis is carried out in the context
of one-dimensional evolution models with spatially varying coefficients in order to account for the streamwise
development of the basic state.

A variety of physical systems give rise to intrinsic self-sustained oscillations: mixing layers with strong enough
counterflow [46], low-density jets [29,44], cylinder wakes [27,38,45], wakes behind blunt-edged plates [18,19],
thin aerofoil wakes [49], Taylor—-Couette flow between concentric spheres [43], Taylor—Couette flow between
circular cylinders with throughflow [5], Rayleigh—Bénard convection with throughflow [31], baroclinically unstable
atmospheric flows [17,37], sunspot cycles [1,28], etc. Many of these flows display a spatially varying basic state,
and hence a spatial dependence of the local instability characteristics. The goal of a global analysis is to obtain
in a self-consistent manner a spatially extended structure made up of wave trains governed by the local properties
of the medium and tuned at an overall global frequesgy The unknown global frequenayy is to be derived
from a nonlinear eigenvalue problem consisting of the evolution equation and associated boundary conditions. The
associated eigenfunction yields the spatial structure of the corresponding self-sustained oscillations. The resolution
of the eigenvalue problem is typically undertaken under the hypothesis of slow spatial variations whereby the
underlying basic state evolves slowly over a typical instability length scale. In this framework, the main objective of
the global mode analysis is to derigibal frequency selection criteria from thecal dispersion relation prevailing
at each streamwise station.

Linear global mode analyses are now fairly complete. Chomaz et al. [7] demonstrated that the complex global
frequency is determined by a saddle point (equivalently a double turning point) condition applied to the local
linear dispersion relation for the linear complex Ginzburg—Landau equation with spatially varying coefficients. This
criterion had previously been discovered and implemented by Soward and Jones [43] to describe oscillating states in
Taylor—Couette flow between concentric spheres. According to Monkewitz et al. [30], the same criterion also holds
for the Navier—Stokes equations linearized about an arbitrary slowly varying basic flow. More recently, Le Dizés
et al. [25] reexamined the case of the spatially varying linear complex Ginzburg—Landau equation and demonstrated
the existence of another family of linear global modes with two simple turning points. The causal nature of these
linear global modes has been established for the same model by Hunt and Crighton [23]: the exact linear impulse
response does converge, for large time, to the most unstable linear global mode. The validity of the linear saddle
point criterion has been fully confirmed in the direct numerical simulations of the Karman vortex street behind a
blunt-edged plate by Hammond and Redekopp [19].

Paradoxically, the weakly nonlinear extension of these concepts is fraught with difficulties, as emphasized by
Chomaz et al. [6] and Le Dizeés et al. [24]: the Landau constant pertaining to the Hopf bifurcation near global mode
onset does not display a well-defined sign as the WKBJ spatial inhomogeneity parameter is decreased. Furthermore,
the weakly nonlinear formulation is only valid in an exponentially small vicinity of threshold.

To obviate such weakly nonlinear studies, it appears natural to resort to a fully nonlinear approach where
fluctuations are of order unity. Such a line of thought has been consistently pursued since the early 1990s in
the framework of nonlinear Ginzburg—Landau type models. The classical absolute/convective instability concepts
introduced in a linear context by Bers [3] and Briggs [4] have been generalized to the fully nonlinear regime by
Chomaz [8]. The absolute/convective nature of the nonlinear dynamics is then directly related to the propaga-
tion direction of the front separating the basic state from the bifurcated state [16,39-41]. The properties of fully
nonlinear global modes on a semi-infinite domain governed by Ginzburg—Landau type equations with constant
coefficients have been thoroughly studied by Couairon and Chomaz [10,12,13]. In this case, a nonlinear global
mode is obtained when an upstream travelling front is halted in its motion by the upstream boundary point. This
event occurs whenever the medium is nonlinearly absolutely unstable in the sense of Chomaz [8]. The reader
is referred to Chomaz and Couairon [9] and Tobias et al. [47] for a corresponding analysis of the finite interval
problem.
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Corresponding fully nonlinear analyses have been performed for the complex Ginzburg—Landau equation with
spatially varying coefficients in infinite medi@wo varieties of nonlinear global modes have been identified. Soft
global modes, obtained by Pier and Huerre [33], obey a saddle point frequency selection criterion applied to the local
nonlinear dispersion relation. This criterion is formally analogous to its linear counterpart. The associated spatial
eigenfunction structure displays smoothly varying amplitude and wave number over the entire domain. By contrast,
according to the preliminary results reported by Pier et al. [34], steep global modes are governed by a marginal
linear instability criterion: the steep global frequency is imposed by the real absolute frequency [3] prevailing at the
transition station between local linear convective and absolute instability. This criterion is akin to the linear front
velocity selection principle put forward by Dee and Langer [16]: for a wide class of systems, the speed of the front
separating the basic state from the bifurcated state is such that in the co-moving frame the medium is marginally
linearly absolutely unstable. The steep global spatial structure displays a stationary sharp front at the transition
station with a sudden jump in wave number. In all other regions, the amplitude and wave number are slowly varying.
Similar steep self-sustained structures have been numerically identified and analytically determined in amplitude
evolution models pertaining to solar and stellar magnetic activity cycles by Bassom et al. [1] and Meunier et al.
[28]. The properties of nonlinear global modes governed by the real Ginzburg—Landau equation in a semi-infinite
domain with combined distributed spatial inhomogeneity have been obtained by Couairon [11] and Couairon and
Chomaz [14]. Predicted scaling laws for the amplitude and position of the maximum very favorably compare with
experimental and numerical observations of bluff-body wakes.

The purpose of the present study is two-fold: first, we wish to map out the domains of existence of soft or steep
global modes in an appropriate control parameter space and to characterize the associated bifurcations. Secondly, we
present the detailed asymptotic structure of the various layers and regions which make up their spatial distribution.

Consider a system governed by a one-dimensional nonlinear partial differential equation that is first-order in time
of the form

oY

¥=~7:(3x§x)[1/f]7 1)
wherex andr represent space and time coordinates, respectivelyXanslow space variable to be defined shortly.
The basic state is assumed tope= 0, and the function/ (x, t) represents the fluctuations riding on the basic
state. In regions of finite amplitudeé, is governed by the full nonlinear operatér In small amplitude regiongy
is a perturbation governed by Eq. (1) linearized around the basic state, i.e.,

4

S = L X[ @

A crucial assumption of the present investigation is the slow spatial development of the medium as exemplified by
the introduction of the slow spatial variah}ein the operatorsF and £. The weak non-uniformity hypothesis is
fulfilled if the ratioe = A /L between the typical instability length scalend the inhomogeneity length scdleés

small. As a result of this scale separation, the weak variations of the medium instability properties may be described
through the slow variable

X =ex with e € 1. 3

If the slow space variabl is frozen, system (1) becomes a PDExirand¢ with constant coefficients which
captures the local properties prevailing at that stakom order to construct a global mode it is necessary to “piece
together” local wave trains at differeit by explicitly accounting for the weak coupling between local and global
properties via relation (3).

The outline of this paper is as follows. The essential concepts necessary to carry out this study are introduced
in Sections 2 and 3. Local instability properties whéfds frozen are summarized in Section 2. Emphasis is
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given to the relationship between causality and the spatial response to a localized harmonic forcing (Section 2.3).
In this framework, stationary fronts are shown to naturally arise as the limiting spatial response of the system in
the absence of forcing when the medium is marginally absolutely unstable (Section 2.4). Variations of the local
instability properties over the entidé-domain are analyzed in Section 3. More specifically, the distribution over

X of linear spatial branches (Section 3.2) and nonlinear spatial branches (Section 3.3) is investigated as the global
frequency is varied.

Section 4 is concerned with the determination of the leading-order approximation to the global frequency and
spatial distribution of fully nonlinear synchronized states governed by (1). It contains the essential results concerning
the structure of steep global modes (Section 4.2), the nature of their bifurcation from the basic state (Sections 4.3—4.5),
the structure of soft global modes (Section 4.6), and finally the respective domains of existence of steep and soft
global modes (Sections 4.7 and 4.8) in control parameter space.

Section 5 is devoted to the complete higher-order asymptotic analysis of the various regions and layers which
make up the spatial structure of global modes (cf. Fig. 15). Higher-order corrections to the global frequencies are
then obtained. The results are derived in the general context of system (1) by following a methodology analogous
to that previously used by Bassom et al. [1] and Pier and Huerre [33].

All the results in principle apply to any nonlinear system governed by an equation of the form (1). However,
in order to obtain explicit results and to validate them by direct numerical simulations, we repeatedly use as an
illustrative example the complex Ginzburg—Landau (CGL) equation

Y a1 a2y
ad

i = (wo(X) + }wkk(X)ko(X)Z) ¥+ io(Xko(X) 5= — Zo(X)—5 + v (XY %y 4
t 2 x 2 ox
for a complex functiony (x, r). For convenience, the CGL equation is written here as derived from the Taylor
expansion of the dispersion relation aroudX) in the same manner as [20]. The precise meaning of all the
quantities appearing in (4) is discussed in detail in Section 2. The compldspendent coefficientsg(X) and

ko(X) denote the usual local absolute frequency and wave number, respectivelyywtie is the second derivative

of the linear dispersion relation with respect to the wave nurhb®&he complex Landau “constant(X) is chosen

so that nonlinearities are stabilizing everywhere (supercritical bifurcation)yi(&) = Im y(X) < 0 for all X.

In the entire paper, the field (x, r) is assumed to be advected in the positivdirection everywhere to mimic

the dynamics of open flows. As demonstrated in Section 4.8, this assumption is equivalgntdtp < O for

all X. Thus, the increasing and decreasinglirections will be referred to as “downstream” and “upstream”,
respectively. The Ginzburg—Landau model (4) has been shown to successfully describe a large range of pattern
formation phenomena [15,26,32]. Here this idealized representation of spatially developing flows is invoked as a
specific example. Similar conclusions may be shown to hold for real flows governed by the Navier—Stokes equations
[35,36].

2. Local instability properties

Under the assumption that the governing equation only depends on space through the slow ¥aliatdé
characteristics of the medium are recovered by freeXirig (1) and studying the corresponding strictly uniform
medium. In the sequel, “local” always refers to properties of spatially uniform systems obtained by extending the
medium at a specific downstream statiBrtowardsx = too. At this local level of analysisX andx are then
considered to be independent: the fast compoxésitnvolved in spatial differentiation whereasplays the part
of an independent control parameter. The rigorous asymptotic analysis re-establishing the link betneErvia
(3) in terms of WKBJ approximations [2] is postponed to Section 5.
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In this section, the properties of infinite spatially uniform media governed by an equation of the form

oy
5 = T @O0l ®)
t
are reviewed. The results are applicable to any nonlinear opefatad = F(d,; Xo) derived from (1) for some
fixed locationX = Xo. Explicit forms are obtained for the uniform CGL equation
Y 15 oy 1ty 2
i— = —wkkk iwkkko— — =Wkk—> . 6
o <wo+ 5 ki o) ¥+ oo - = ok Y IVITY (6)
The linear properties dictating the dynamics of small amplitude perturbations are routinely obtained. The main
assumption used throughout the study is that (5) admits a continuous family of nonlinear travelling waves. This is
guaranteed as long as the nonlinearities are supercritically stabilizing, as demonstrated below.
Small amplitude perturbations are governed by the counterpart of (5) linearized afosr@)
oy
5 = L@, (7)
t
Any perturbation is a superposition of elementary waV#$ " where the complex wave numbeand frequency
o satisfy the linear dispersion relation

o= 2' (k) =iLik). (8)
For Eqg. (6), it takes the simple form
w = wo + sk — ko)?, 9)

where it is assumed thaiw i = Im wxk < 0 in order to enforce causality (see Section 2.3).
Dispersion relation (8) governs all linear properties of the system. Three situations are of particular interest: the
temporal evolution problem, the impulse response, and the spatial response problem.

2.1. Temporal evolution and nonlinear dispersion relation

A spatially harmonic perturbatiop (x, t = 0) = A €4 c.c. of real wave numbet and small amplitudel < 1
initially evolves according to the linear dispersion relation (8). Its linear temporal growth rﬁte&i};z Im 2' (k).
Two typical variations ofs2] and £2/ with k are sketched by solid lines in Fig. 1. Whenewef(k) > 0, the
wave is temporally amplified and eventually governed by the full nonlinear equation (5). Assume that stabilizing
nonlinearities lead to a fully nonlinear travelling wave of the form

Y(x, 1) = ¥ (kx— wt; k), (10)

wherew is a real frequency and the functi@n(@; k) is 2z periodic in6. This one-parameter family of nonlinear
solutions parameterized liyis characterized by the nonlinear dispersion relation

o= 2"%), (11)

represented by the dashed curves in Fig. 1a and c. The travelling waves (10) and dispersion relation (11) are the
nonlinear counterparts of the linear normal modé&&&”") and dispersion relation (8). Since the medium is assumed
to be supercritical, nonlinear solutio#g0; k) only exist in the unstable wave number range defineﬂ?h\]t) > 0.
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Fig. 1. Linear and nonlinear temporal branches of the CGL equation. (b), (d) Temporal grovmiﬂ {atas a function of the real wave number.
Unstable wave numbers lie in the range< k < k». (a), (c) The nonlinear temporal brangh' (k) (dashed curves) is defined in the unstable
wave number range and is connected ton}jek) curve (solid lines) at the neutrally stable boundaries whgre= 2'(k1) = 2" (k) and

wy = 2'(k2) = 2" (k). The nonlinear branch may be (a) monotonous or (c) exhibit an extremusy, at

As the boundaries of this range are approached, the linear growth rate vanishes as well as the nonlinear saturation
amplitude of¢ (6; k). In the neutrally stable limit, the nonlinear frequency equals the linear real frequency,

2" k) = 2'(k)y when 2/ (k) =0 (12)

(see Fig. 1). In weakly unstable media, the unstable wave number range is small and in general the nonlinear
frequency is a monotonous function of the wave number (Fig. 1a). Further above threshold, the unstable wave
number range increases and the nonlinear temporal br&fith) may exhibit an extremum, (Fig. 1c). As a
result, one value ab may be associated to two distinct wave numbers as further discussed in Section 2.3.

In general, the function¥ as well as2" cannot be calculated analytically. They are obtained by performing a
numerical simulation in a spatially periodic interval of wavelength 2[35,36]. In the particular case of the CGL
equation (6), nonlinear solutions are explicitly obtained as finite amplitude harmonic waves,

¥ (x, 1) = R(k) explilkx— 2" (k)r]},
with

Im(y*$2' (k))
Im p*

Im(£2' (k))

, R2(k) =
(k) m

2" (k) = ,

where the superscriptdenotes the complex conjugate. Recall that the condition of stabilizing nonlinearities implies
¥ < 0.

2.2. Impulse response and absolute instability

Unstable systems may be further characterized by studying their response to an impulsive localized perturbation
[3,4,20—-22]: in an unstable medium, at least one growing wave packet develops from the impulse location. If the
growing wave packet moves away from its source and eventually leaves the medium unperturbed, the instability
is said to beconvectivelf, by contrast, the instability grows in place and invades the system both upstream and
downstream, the instability is said to &bsolute The convective or absolute nature of the instability depends on the
absolute frequencyg associated with the absolute wave numhgdefined by a zero group velocity condition as

de!
wo = £2'(ko), 5 ko) =0. (13)
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The medium is absolutely unstable (AU ; > 0, convectively unstable (CU) ifo; < 0. The form (6) in which
the CGL equation has been cast explicitly puts forward its dependenog amdkg.

2.3. Spatial response and causality

Consider the response of the medium to a localized time-harmonic excitation. The response to a forcing of real
frequencyws and amplitudeds, switched on at = 0, is governed by the signaling problem
oy

5 = FOIIW] + A0 H (1) e 4 cc (14)

with H denoting the Heaviside unit step function antthe Dirac delta function.

For small amplitude forcing4s <« 1), the response in the neighborhood of the forcing location is governed by
the linear spatial problem witlt replaced byZ in (14). Switching on the forcing at = 0 produces a transient
wave packet together with the steady-state response at the forcing frequency. Whenever the medium is stable or
convectively unstable, transients decay or move away out of the system, and the longtime response is established
at the forcing frequency. When the medium is absolutely unstable, switch-on transients overwhelm the response at
the forcing frequency and the signaling problem (14) is ill-posed [3,4]. Hence, we only consider the spatial problem
(14) for at most CU systems. The steady-state linear response is made up of normal f§d&8 satisfying
wf = 2'(k). For a giverws, this linear dispersion relation in general admits several soluﬁh(@f) indexed by
m, the number of which very much depends on the particular forsa'of).

Causality requires thai = O for all + < 0. Using a residue calculation in the compleyplane to solve (14)
with F replaced by, and assuming that temporal growth rates are bounded{(ﬁiﬁa@(), k real} finite), it is readily
shown [3,4,20] that the spatial branclia,%,seither pertain to the downstream £ 0) or to the upstreanx(< 0) re-
sponse to forcing. The downstream (upstream) branches are denafgdkly ). For a given real forcing frequency
the distribution of the spatial branchkﬁ(w) into + or — branches is derived, according to classical arguments
[3,4], from an examination of the complete linear dispersion rela@¢k) in the entire complex-plane. In the
sequel, spatial branches are said to be cadgalcausal- branches according to whether they prevail downstream
(x > 0) or upstreamx < 0) of the forcing location. Hence, causality always refers to the spatial response to a
localized harmonic forcing.

For simplicity assume tha®' (k) exhibits a single second-order branch paigtwith only two spatial branches
k't andk'~, as in the case of the CGL dispersion relation (9) where

K@) = ko £ 22720 (15)
wkk

The spatial growth rate of the response depend&q‘ ea Im k'. The downstream response decays for frequencies
such thaf<i|+(w) > 0; upstream decay occurs whléﬁ(w) < 0. This is always the case for stable media (Fig. 2a).
Whenever a linear spatiéll (w) branch is amplified, nonlinear terms have to be taken into account at some distance
from the source, however small the forcing amplitude. When the response reaches finite amplitude, nonlinear
saturation prevents further amplification and leads to a nonlinear travelling wave at the excitation frequency for
some real wave numbgf! (Fig. 2b). Since the nonlinear wave train is asymptotically reached far downstream of the
source, it is denoted &8'+ (w). This nonlinear wave train would also be obtained in a temporal evolution problem
at the same wave number. Thus, the forcing frequemcgnd the nonlinear response wave numbét again

satisfy the nonlinear dispersion relation (11). Hence, nonlinear spatial bratithes) may formally be obtained

by solving (11) for a given frequency. Following the convention of the “front community” [42], the superse¢ripts
and— in this formal definition are assigned according to the sign of the “nonlinear group velosty/dk. In
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Fig. 2. Response to time harmonic forcing applied at 0. (a) Upstream and downstream decaying response in a stable or CU medium. (b)
Linearly amplified downstream response and nonlinearly saturated solution in a CU medium. (c) Stationary front in a marginally absolutely
unstable medium. Note that slope discontinuity at the forcing location has vanished. Dashed lines indicate exponentially growing branches in
the linear approximation.

the situation of Fig. 1a, onl§"* (w) exists forw1 < w < wo, whereas both nonlinear spatial branches appear for

the situation in Fig. 1ck"*(w) for w, < @ < wy andk"~(w) for w, < w < w1. These definitions "+ (w)

andk"~ (w) branches apply to CU as well as AU systems. We stress, however, that only those branches accessible
via a spatial response problem in a CU medium have causal meaning. In particular, due to the choice of a basic
advection towards = +oo, only the downstream response may be spatially amplified, and'theo) branch is

never accessible via a forcing problem.

2.4. Stationary fronts as spatial response without forcing

Many studies [16,39-42] have been devoted to the derivation of selection criteria for propagating fronts connecting
an unstabley = 0 state to a fully nonlinear saturated state in a uniform medium. In situations where the front velocity
is linearly selected [16,40], the front moves towards its decaying edge in AU media, towards its finite-amplitude
edge in CU media. A stationary front is then precisely obtained when the medium is exactly at the CU/AU transition.
The same stationary front solution may be recovered in the context of the spatial response to time-harmonic forcing
as discussed below.

Consider the signaling problem (14) in a uniform medium

W _ @ X)) + A (x)H (r) e\ 16
Py s f8(x)H (1) e”' ! +c.c., (16)
where the frozen slow scal€ has been explicitly introduced as an external control parameter. Let us examine
how the response to a localized forcing of frequeagwaries with the parametef which controls the instability
properties of the medium. Assume that the medium is stable or Cl far X®@ and marginally AU atX = X2,
i.e,woi(X) < 0forX < X@andw§® = wo(X®) real. Letk§® = ko(X°®) denote the complex absolute wave
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number at the CU/AU transition. Since basic advection is assumed to be in the p:asxiilii\m:tion,kgfi1 < 0,as
shown in Section 4.8.

Let us use as an illustrative example the CGL equation (4) with forcing as in (16). Upon making use of the
associated linear dispersion relatiegt given by (9) and invoking continuity of the solution at= 0, the exact
longtime linear response is obtained as

2A;  expli[k"*F (X, wf)x — wit]}

YD =0 KX o — K- (X on T OC 17

The "+ and &' * branches naturally pertain to the regions- 0 andx < 0, respectively. In order to obtain a
normalized response such that mat0, r)| = «, the forcing amplitude is adjusted to the level

Af(X, of) = JaowX)[KT (X, o) — K (X, op)]. (18)

If « « 1, the linear response is guaranteed to remain valid in a neighborhaoe-d@f even though the response
may reach a finite amplitude further downstream.

If the medium is stable for larg& < O, both upstream and downstream parts of the response decay, i.e.,
k™ (X, wr) > 0andkl = (X, wr) < OforlargeX < O (cf. Fig. 2a). As the control parametgrand forcing frequency
wt are varied continuously to approach the lirkit?, »g? the downstream respongk is eventually amplified,
whereas the upstream brangh still decays (Fig. 2b). Indeed, by definition of? (see also (15)) both spatial
branches meet & = X“®andw; = og? i.e.,

kl+(Xca’ wga) — klf(Xca, wga) — kga.

Sincekgf’i‘ < 0, it is therefore guaranteed tHét*(X, wf) changes sign and becomes negativéXasys) approach
(X, wg?), while ki'*(X, wr) does not. In such a regime, the downstream growing respoespl[ik'* (X, wf)x]

reaches a finite amplitude at~ In oz/ki“r > 0. At this station, the linearly growing wawé" (X, wf) gives way to

its nonlinear counterpakf"+(X, wf).

In the stable or convectively unstable reginie & X°¢®), both the spatial growth rate and wave number are
discontinuous at = 0, i.e.,k't # k'~. The forcing location is then a singular point of the total response (Fig. 2a
and b). When(X, o) — (X% cuga), the medium approaches absolute instability and both brari¢hex, wr)
andk'~ (X, wr) tend towards§?. Thus, in this process, the slope discontinuity in the response-ab smoothes
out. Moreover, according to (18), the forcing amplitutl€ X, ws) required to maintain the normalization condition
maxy (0, t)| = a vanishes. Thus, in the marginally AU regimte= X2 a smooth stationary front of frequency
wt = wg® prevails without any forcing (Fig. 2c). This front directly connects the upstream lideabranch to
the downstream nonlineaft branch. As mentioned in Section 2.3, theand— notations have causal meaning
only in CU systems. The previous argument indicates that, in a marginally AU system, the two branches on both
sides of a front are still determined by causal considerations through a continuation procedure from the CU side.
From the above discussion, a stationary front in a spatially uniform system is obtained for zero amplitude forcing
whenever the medium becomes marginally AU and the forcing frequency equals the corresponding real absolute
frequencywg?. This strategy may be implemented numerically to obtain front-like structures not only in the context
of one-dimensional evolution equations (16) but also in more complex systems, e.g., wake flows governed by the
Navier—Stokes equations [35,36].

3. Spatial variations of local instability properties

The previous results derived for spatially uniform media also yield the local linear and nonlinear instability
characteristics of weakly nonuniform media, provided that the control paraXietew be interpreted as the slow
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streamwise coordinate. The respective dispersion relations at each statad
w=2"(k, X), wandkcomplex (19)
w= 02"k, X), wandkreal (20)

The local linear dispersion relation pertains to any complex wave number whereas the local nonlinear dispersion
relation is defined only for real wave numbers associated with a positive temporal growmi' (ateX) > 0. In

strictly uniform media, linear normal modes are sought in the fgre A exp{i[k'(w)x — wf]} + c.c. In weakly
nonuniform media, such modes are replaced by

H X
¥ = A(X) exp(l- / k' (u, w) du — iwt) +c.c. (21)

As demonstrated in the classical WKBJ procedure carried out in Section 5, the local linear wave kmbey
necessarily satisfies the local linear dispersion relation (19). In strictly uniform media, nonlinear travelling waves are
sought in the form? [k (w)x — wr; k"(w)] (10). In weakly nonuniform media, such travelling waves are replaced

by slowly modulated wave packets of the form

X
Yo~ W (;/ kM (u, ) du — ot + O(X); k" (X, w), X) , (22)

where the local nonlinear wave numhlét(X, ») satisfies the nonlinear local dispersion relation (20). The slowly
varying functionsA (X) and® (X) appearing in (21) and (22), respectively, are obtained in the complete asymptotic
analysis (Section 5).

The objective of this section is then to study the changing topology of linear corpémd nonlinear reat"
spatial branches as the global real frequency is varied. The globally synchronized structures obtained in Sections 4
and 5 crucially depend on these spatial branches.

3.1. Instability domains

Let us firstintroduce the regions of local convective or absolute instability in physisplace and determine the
domain of existence of nonlinear wave traing k)-space. The local absolute frequeiagy X) and wave number
ko(X) are derived from the local linear dispersion relation (19) as in (13). The local convective or absolute nature
of the medium is determined by the signaaf; (X). In a typical situation of interest, absolute instability occurs in a
central finite domain. For definiteness, considetX) to be of the parabolic form sketched in the compleplane
in Fig. 3a:wo,i(X) is an increasing—decreasing functionofvith a single maximunewg'®™ reached ak = XM
Whenevezug?f‘x > 0, there exists a finitdU domain X°@ < X < X?°, defined as the region wheig j (X) > 0.
Its boundariest“® and X2 are the stations where the local absolute frequency isagalk= wo(X?) andwi® =
wo(X &%, respectively.
The domain of local instability, characterized by unstable real wave num‘b,k(is,X) > 0, defines theonlinear
balloonin the (X, k)-plane (Fig. 3b). In thel-direction, the balloon extends beyond the AU domain to the stations
of linear neutral stability, denote®¢ and X°. At each unstable location, the nonlinear balloon extends in the
k-direction over the local unstable wave number range. Note that, due to causality, large wave numbers are always
temporally decaying; thus, the nonlinear balloon is necessarily bounded/rdinection.
A typical system, therefore, displays the following structure: a central AU doki&éin< X < X2° of finite
extent, surrounded by two CU regiofS° < X < X“®and X® < X < X°S, which in turn are embedded in
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Fig. 3. (a) Locus of the local absolute frequengy(X) in the complex frequency plane feroo < X < +o00. The AU intervalX®® < X < x@¢
is associated witlyg i (X) > 0. (b) Nonlinear balloon of the CGL equation in thg, k)-plane defined by?i' (k, X) > 0 and bounded by the
curve of neutral stabilityzi' (k, X) = 0. In theX-direction the balloon spans the domain of local linear instabiity < X < X° and extends
beyond the AU interval.

two semi-infinite stable regions extendingXo= +oc0. As mentioned in Section 4.1, one may relax the stability
requirement ak = oo and the medium may remain CU = +o0.

3.2. Linear spatial branches

The loci of linear spatial branché$(X, ») as functions ofX is now qualitatively discussed in the complex
k-plane for different values of the complex frequencysuch an analysis will illustrate the relationship between the
behavior of linear spatial branches and the local CU/AU properties of the medium. Linear spatial bkafiches
are obtained by solving the local linear dispersion relation (19) for a given frequenaythe case of the CGL
equation (4) they read

KEX. w) = ko(X) £+ 227200 (23)
wrk(X)

In Section 2.3, the choice of the and— branches was shown to be dictated by causality for real frequencies in
stable or CU media. The fate of spatial branches in the AU ra&ff§e< X < X3 is now examined for different
frequencies in the complex-plane, as illustrated for the CGL equation in Fig. 4.

As a result of causality [3,4], the spatial branchES(X, ) do not cross thé,-axis in the complex-plane for
large enoughw; > 0. For such frequencies far above the absolute frequency ¢ut&)} (cf. Fig. 4a), thek'+
(k') branch is globally defined as the one located in the upper (lowerkkakne for all realX. Thek'* (X, w)
branches continuously deform asis varied. They may cross thg-axis for finite values ofxX (Fig. 4b—d), but
remain in the same hatfplane forX — +oo. Asw is kept above the curdao(X)} (denoted by > {wp(X)}), no
branch switching may occur (Fig. 4b—d) as readily seen by inspection of Eq. (23). This property yields definitions
of thek'* branches that remain uniformly valid i, for all complex frequencies > {wo(X)}, even though the
medium may be locally AU.

Wheno € {wo(X)}, sayw = wo(Xo), the twok'® branches pinch afp(Xo) for X = X (Fig. 4e illustrates the
case of particular interest whekg = X©@). For frequencies < {wo(X)} below the absolute frequency curve, the
continuousk' curves connect the upper and lower Halflanes asx is varied from—oo to +oo (Fig. 4f). Global
k'* branches can no longer be defined, but-thend— superscripts may still be assigned according to causality in
the distinctX < X°@andX > X2 regions represented by thick lines in Fig. 4. ko {wo(X)} (Fig. 4f), thek'~
branch forX < X°@is connected to the't branch in the regioix > X2, across the AU domain (part of the curve
being represented by a thin line).

These considerations apply in particular to kedFor frequencies outside thg*-wiCinterval,i.e. > {wo(X)},
the k' andk'~ branches are globally defined, although causality considerations do not apply in the central AU
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Fig. 4. (a—f) Loci of linear spatial branché& X, w) of CGL equation in the complek-plane for frequencies indicated in the complex
frequency plane on top sketch. Arrows on the curves indicate direction of incredsirgck lines pertain to the stable or CU regiaoxis< X2
andX > X2 thin lines to the central AU regiof®@ < X < X2 (a—d) For frequencies > {wo(X)}, the spatial branched®(X) remain
distinct and are located in the same Hafflane forX — +o0, but they may cross thg-axis for finite values o . As the frequency approaches
thewp(X) curve, the spatial branches move closer to each other. (e) For a frequency locatedgiXtheurve, herev = wo(X°®), pinching
occurs at the corresponding absolute wave number, hére-a?, whenX = X (f) Whenw < {wo(X)}, the continuous curves connect the
upper and lower half-planes ast — +oo. Definition ask'* branches still holds in the distinct CU domaikis< X°2andX > X2, but not

in the central AU region.
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domain. For frequencies in th&g?-winterval, i.e.» < {wo(X)}, thek'™ andk'~ branches turn one into the other
across the AU domain.

3.3. Nonlinear spatial branches

The goal of this section is to describe synthetically the qualitative properties of the nonlinear spatial branches
k" (X, w) as functions of for different values of the real frequeney Finite amplitude waves are governed by the
nonlinear dispersion relation (20). Fig. 5 illustrates its properties in the case of the CGL equation, by projecting the
surface defined as = 2" (k, X) inthe(X, k, w)-space onto théX, k)-plane. Nonlinear spatial branche¥(X, w)
for a given real frequenay are obtained as the level contou?$' (k, X) = CStindicated by long dashed lines.



B. Pier et al./ Physica D 148 (2001) 49-96 61

Kt

Kt

X

Fig. 5. Projection of the CGL nonlinear dispersion relation surface 2" (k, X) on the(X, k)-plane. Nonlinear spatial branchit (X, w)

andk™~ (X, ) represented by constant frequency level curves (dashed lines) live within the nonlinear balloon bounded by the neutral stability
boundary (thick solid line). Nonlinear spatial branches display a saddle structure and, by conk8htiandk"'~ refer to the upper and lower

regions on either side of the steepest descent curve (thick dotted line) emerging from the saddl’@'pb@h(solid dot) corresponding to

the frequencyo?'. The real partg!* of the linear spatial branches (thin solid lines) are also shown outside the nonlinear balloon for the same
frequencies as the nonlinear branches. Note their continuous connection at the neutral stability boundary.

Nonlinear wave trains only exist inside the nonlinear balloon of(#hek)-plane, defined byzi' (k, X) > 0 (see
Fig. 3b). Its neutrally stable boundary characterized’)ﬁYk, X) = 0 is represented by the thick closed curve in
Fig. 5. Since the nonlinear dispersion relatior- 2" (k, X) is always a single-valued function bfthe mapping in
the (X, k)-plane is one-to-one and all the nonlinear solutions are contained inside the neutral stability boundary. By
contrastk™ (X, w) is not ensured to be a single-valued functiomofVe have deliberately chosen a configuration
displaying this double-valuedness, which is made manifest here by the saddle point structure in the dashed contour
levels 2™ (k, X) = CSt. Following the definition adopted in Section 2.3, the nonlinear spatial branches are labeled
k" and k" according to the sign of the “nonlinear group velocitg2™ /ak. Accordingly, thek"+ and k"
domains of Fig. 5 are precisely connected via the steepest descent curve (short dashed line) emerging from the
saddle point (solid dot).

In order to emphasize the relationship between linear and nonlinear branches, the linear spatial Bfagiches
have also been displayed by thin solid lines in Fig. 5 through their reakﬁa(tx, ) atthe same frequencies. Note
that linear branches continuously connect to nonlinear branches at the neutral stability boundary. This property is
not surprising: at the neutral stability boundary in tB& k)-plane, the linear branch (X, w) is purely real and
equals its nonlinear counterpaf (X, w).

As discussed in Section 3.2 (Fig. 4), the linear spatial branches are globally defifedsld ~ for » > {wo(X)}.
While lowering the frequency, starting from large positive valueskthend/ork'~ branch may cross thg-axis in
the complex-plane (Fig. 4b—d). As this linear wave number branch moves into the opposikepiatie, it becomes
spatially amplified and gives birth to a nonlinear branch. This corresponds (Xtlg-plane to the emergence of
ak" branch connected at the boundary of the nonlinear balloorktdeanch (Fig. 5).

By further lowering the frequency, switching between the nonlinear branches may take place, as implied by the
saddle structure of the dashed curves in Fig. 5. When the frequency decreases, pinchingi&tveeett "'+ will
take place fow = ol at the saddle pointx', k') of the nonlinear dispersion relation (20) in thE, k)-plane.
Below this saddle point frequency, the nonlinear spatial branches move into the left- and right-hand sectors bounded
by the saddle point asymptotes. For a given frequency in this range, nonlinear spatial branches are indeed generated
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at the boundary of the nonlinear balloon but they fail to exist in the heart of the nonlinear region surrounding the
saddle point. This behavior is provoked by the merging"6f andk™~ on the steepest descent line (thick dotted

line of Fig. 5) and their subsequent disappearance. The implications of such a nonlinear saddle point structure on
global mode selection are profound, as discussed in Section 4.6.

4. Globally synchronized structures

Having investigated local instability properties of the spatially developing medium, we now turn to the study
of globally synchronized solutions of system (1) and associated bifurcations. Such global modes are defined as
stationary time-periodic solutions satisfying

2
W x9t+_ :w(-xst)v

@g
whereay is the global real frequency. Selection criteria for self-sustained global oscillations are derived below and
the leading-order approximations of their global frequency and spatial structure are obtained. The properties of the
medium which dictate the selected global mode type are identified and the ensuing bifurcations are analyzed as
global control parameters are varied.

4.1. Boundary conditions and nonlinear eigenvalue problem

To completely determine the global mode problem, proper boundary conditions in connection with Eq. (1) have
to be specified. Global modes are defined as intrinsic oscillations which are due to the dynamics of the central
region and not to perturbations invading the system fdom +o00. Consequently, the boundary conditions must
be causal: the solution close to the boundaries is necessarily dictated by the intrinsic oscillations occurring in the
central region. Thus, far downstream néae= +oo the solution is necessarily made up of-éranch caused by
the dynamics governing the central region upstream of it. Similarly, the solution necessarily inveivasach
towardsX = —oo. Such boundary conditions &t = +oco will be referred to as causal.

When the medium is assumed to be stable in the far downstream and upstream regions, causal boundary conditions
are equivalent with decaying ones. Indeed, in the stable regions no nonlinear solutions exist. Causality then requires
a lineark't (k') branch towardsY{ = +oco(—o00). Due to stability,ki“r >0 andki'* < 0, thus the solution
necessarily decays towarfs= +oo.

However, the medium may remain CU upXo= +oo. In such instances, decaying boundary conditions are not
necessarily fulfilled. However, causality still holds: if the solution remains fully nonlinear dowih=to+oo0, it is
there necessarily made up of ti&" branch only. Thus, proper boundary conditions for the global mode problem
do not necessarily require exponential decay, provided they satisfy causality.

Since a global mode is a solution over the enfir@xis, it necessarily connects-abranch atX = —oo to
a+ branch atX = +4o0. This crossover from- to + branches may only be achieved for specific frequencies.

The search for global modes is thus a nonlinear eigenvalue problem for the global fregefye manner in
which this crossover takes place in the central region gives rise to different types of global modes as described
below.

4.2. Steep global modes

According to Pier et al. [34], the spatial structure of steep global modes is characterized by the presence of a
sharp front at the upstream boundaf$? of the AU region. The sketch in Fig. 6a represents the envglgppand
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Fig. 6. Structure of steep global mode obtained by direct numerical simulation of CGL equation. (a) Eny¢mmpereal parts; as functions of
downstream distanc®. The sharp front located at the upstream bound&@of AU region initiates the fully nonlinear development extending
down to the neutral statioki». (b) Analytically computed linear spatial branchié$(X) of steep global frequenayg? in the complex-plane.
Pinching occurs for the absolute wave numkfgrat X = X°2. Thick lines pertain to the stable or CU regiokis< X“®andX > X2, thin lines

to the central AU regioX @ < X < X2, (c) Corresponding linedt* (solid) and nonlineat"* (dashed) spatial branches in ¥, k)-plane.
Local wave number of simulation in (a) follows path indicated by thick line. Three domains are identifigt: tranch prevails in the upstream
linear - regionX < X°@ the front atX°? is associated with a jump in wave number, and in its wakek®e branch develops in the fully
nonlinear nk domainX@ < X < X, extending towards the boundary of the nonlinear balloon (shaded}!tHeranch continuously takes
over in the linear+ region downstream of the neutral stati&p.

real party; of a steep global mode obtained by direct numerical simulation of the CGL equation (4). The length
of the computational domain i = 102. Linear and parabolic variations are, respectively, useade(X) and
0,i(X), as in Fig. 3a, so thati? = 0.4, 0§® = 0, w]'® = 0.5 and X = &L, X3 = 1LL. Other coefficients take
the constant valudg = 0.5 — 0.8i, woyk =1 —iandy = 0.1 —i.

The front at the locatiorX “@ of marginal absolute instabilityy j (X°®) = 0] is precisely of the type obtained
in Section 2.4: it oscillates at the real absolute frequengy= 0.42 ~ »§® = 0.40 and allows a crossover
between the upstreaki~— and the downstreard* branches. Indeed, in Fig. 6¢c the numerically obtained local
wave number Rg—i/y)dy/dx) represented by a thick line follows the corresponding analytically determined
kE (X, wgd) (thin solid curves) and"* (X, wg?) (thin dashed curve). The exponential decay of the upstream tail
of the front is determined by the imaginary part of the corresponding absolute wave niffbeko(X ). The
upstreamk'~ (X, wg) branch extending toward§ = —oc is precisely generated at the pinch palfit= X in
the complex-plane (Fig. 6b). As depicted in th&, k)-plane of Fig. 6¢, nonlinear travelling waves following the
k" branch prevail in the regio°® < X < X, extending down to the locatioki, where thek"* branch meets
the boundary of the nonlinear balloon in the, k)-plane. At the neutrally stable statidfy the amplitude of the
nonlinear travelling wave vanishes and the linear brai¢iix, wg) continuously takes over in the downstream
linear regionX > Xo.

The following frequency selection criterion then holds: the steep global frequgyisygiven by the real absolute
frequencywg? prevailing at the front locatiox °@ separating the CU and AU regions. In other words,

wg = wo(X®®), w0, i (X% = 0. (24)

The front atX®? effectively acts as a wave maker for the entire flow. It may be interpreted as a local oscillator
inducing the linear upstream branch and the nonlinear downstreanbranch.
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4.3. Saddle-node bifurcation to steep global modes

It should be noted that the steep global mode criterion (24) is also fulfilled by the absolute freqf&meyailing
at the downstream boundai§?° of the AU region. Thus, wheneverg* > 0, two steep global modes exist: one
of frequencywg® with a front at the upstream boundaﬁ(ya of the AU region and one of frequen@§° with a front
at its downstream bounda?° (see Fig. 3a). Wheng ™ < 0, no AU region is present and no steep global mode
exists. Thuswg"ax constitutes the global control parameter governing the existence of steep global modes. When

woi MaXis varied, transition to steep global modes occurs via a saddle-node blfurca&)@ﬁ’& 0 as demonstrated
below.

The spatial structure of a solution with a frontXt? has been detailed in the previous section. The structure
of a solution with a front atxa is similar. Indeed, both lineat'* (X, w§® branches equal§® = ko(X?9 at
X = X% Due to the assumptioky; < O, thek'~ branch is again exponentially damped while e branch is
amplified. As a result, nonlinear travelling wave%" are only present downstream of the froit & X2 and
linear damped waved — upstream of the front{ < X29). Thus, the nonlinear part of such a global mode extends
in the downstream CU region, whereas the central AU domain is covered by an exponentially decaying upstream
tail.

Let us now show that an upstream front is a stable configuration whereas a downstream front is unstable. Consider
a small displacement of the upstream front from its equilibrium locakiéhtowardsX > X° The front now
experiences a slightly AU medium, hence, according to Dee and Langer [16], the nonlinear part grows and the front
propagates towards its decaying edge, i.e., upstream. When this front is displaced towarkis?, it penetrates
into a CU region and is thus pushed downstream. In any case the front is seen to return to its equilibrium position
XCa Thus, the corresponding steep global mode is an attractor onto which direct numerical simulation converges.

On the contrary, a downstream front displaced from its equilibrium poskffowards the AU regioX < X3¢
continues to propagate upstream and completely invades the AU domain. When the front is displaced towards the
CU regionX > X2, it is swept away downstream towaris= +oo. A downstream front is therefore unstable.

Thus wheraumax > 0, a pair of steep global modes exists: the mode with a front at the upstream (resp. downstream)
boundary of the AU region is stable (resp. unstable). In the Iawﬁﬁ!x 4 0, the AU domain shrinks and the front
locations move in closer to each oth&(? 4 XM and X2 | XM, Whenwg't* = 0 both front frequenciesg®
andwf® equalwo(X™®), and both steep global modes coincide. Whgh* < O the domain is nowhere AU and
no steep global mode exists.

This behavior is typical of a saddle-node bifurcation: while decreasing the bifurcation parar@i‘?fea stable
and an unstable solution meet and disappear at the critical zs@f}’é 0. Note that in general the steep global
mode remains fully nonlinear for alig?* > 0. Indeed, for O< a)g‘f‘x « 1the extent of the convectively unstable
domain remaing (1) (in terms ofX) and so does the nonlinear region where the global mode lives.

4.4. Linear global modes

The linear global instability of the unperturbgd= 0 state has been studied by Chomaz et al. [7] and Le Dizés
et al. [25]. The instability properties were derived from an analytic continuation of the local absolute frequency
wo(X) in the complexX-plane, as summarized below.

Linear global modes are assumed to be of the fgrtn, 1) = ¢(X) e ®¢' of complex global frequencyy.

The spatial functionp is defined over the compleX-plane and the local complex wave number then satisfies the
linear dispersion relation (19) with compléx A linear global mode is entirely made up of linear spatial branches
k'*=. Due to causal boundary conditions, #le branch prevailing neak = —co must necessarily connect to the
k't branch nea’ = +oo. This can be achieved at a saddle poYrgtof the absolute frequency in the complex
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Fig. 7. Curvesvp(X; + iXj) in the complex frequency plane for different valuesXgfwhen X, varies along the entire real axis. Bold curve
pertains toX; = 0. The linear saddle point frequenq'g is obtained at a cusp of this set of curves and is seen to lie hefi% towards the
center of curvature of theg(X;) curve.

X-planel The frequency of the linear global mode is then equal to the saddle point freqmbrd}yfined by

dw
of=0o(Xy, P (XY =0, (25)
or equivalently by
252! 352!
oh= 'k Xy, -k Xy = oo (ks X9 =0, (26)

Linear global instability is determined by the signadf; = Im w}, whenw(; < 0 (respwl; > 0) the state) = 0
is linearly stable (resp. unstable).

4.5. Hysteresis

The existence of nonlinear steep global modes is determined by the &igjﬁ’bf/vhile the linear global instability
of the unperturbed staie = 0 is dictated by the sign mﬁ's,i. Itis now shown qualitatively that always'? > w's,i,
and in generabgjiax > w;i. Thus, steep global modes may exist in globally linearly stable media (situations where
a)'&i < 0 < w'?™), and the saddle-node bifurcation implies hysteretic behaviegdsis varied.

The relative position Qf)g]iax andw'&i is most conveniently illustrated in the complex frequency plane as sketched
in Fig. 7. The solid curve representg(X) for real X. The AU region corresponds to thé-interval over which
wo(X) lies in thew; > 0 half-plane. The maximum»g,‘f‘X is reached ak = XM Thus, steep global modes exist
whenever the curveg(X) crosses the rea-axis. The complex frequeney‘s is obtained at a saddle point of the
analytically continued functiotmp(X). For most situations of physical interest,; (X) is an increasing—decreasing
function on the reaK-axis, whilewq ((X) is simply a smooth function. The dashed curves of Fig. 7 represent the
loci of wo (X +iX;) for different values of(; whenX; varies along the entire real axis. The saddle point frequency
a)'s is obtained at a cusp of this set of curves and lies belowtfi& ) curve, towards its center of curvature. Thus,
it follows clearly thatw&‘f‘x > a)'&i and one recovers the well-known result that global linear instability requires an
AU region of finite extent [7,25].

In the neighborhood ab('®, the absolute frequenayo(X) may be approximated by the Taylor expansion

wo(X) ~ o™ + wox (X — X™®) + Twoxx(X — XM)? (27)

1 Only linear global modes with a double turning point are considered here. The reader is referred téd et@Iz[25] for a detailed analysis
of linear global modes with two simple turning points.
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Fig. 8. Global linear and nonlinear stability in thef?*, wox r)-plane. Global stability is governed by the signagf*. Whenwg®™ > 0, the
medium is globally nonlinearly unstable although globally linearly stable in the gray region.

with wox i = 0 andwoxxi < 0. The linear saddle point, solution of (25), is then explicitly given by

2
w 1 (w
XL = xmax_ ZOXr ) ymax 1 (@ox.)” (28)
WOXX 2 woxx
thus
1 (wox,r)?
| max X,r
Im wg = wg ZW WOXXi -

Only if dawo,r(X™®)/dX = 0, does the saddle poit, coincide withX™2 on the realX-axis and, under such a
condition,wl = wo(X™®). The difference betweanSj;"‘X andw'&i is seen to depend on the magnitudevgk r =
dwo,r (X™®)/dX and to scale a@voy.r)2. The influence of the two parametes; fx andwoy r on global linear and
nonlinear instability is illustrated in Fig. 8.

The following scenario holds as the global control paramef# is varied at a fixedooy,r setting. When
wp X < 0 (left-hand half-plane of Fig. 8), the unperturbed state is stable, no nonlinear global mode exists. When
a)g"lax > 0 while ! si <0 (shaded region of Fig. 8), a pair of steep global modes exist, one of which is stable, the
other unstable. However, the unperturbed state is still linearly globally stabig,nonlinearly unstable. Only for
a)gfiax large enough such tha.u"s,i > 0 (clear region inside parabola of Fig. 8), does the basic state become linearly
unstable. Whereas the global saddle-node bifurcation is controllefgjﬁ’ﬁ{ the extent of the hysteresis range in
a)g‘lax is governed by a second control parameter, nargy: .

4.6. Soft global modes

The existence of soft global modes has been analyzed in an earlier study [33]. Their structure is now briefly
summarized, as well as their relationship to steep global modes. The sketch in Fig. 9a represents the|énvelope
and real part/; of a soft global mode obtained by direct numerical simulation of the CGL equation (4). The length
of the computational domain 6 = 102. Linear and parabolic variations are, respectively, useade(X) and
0,i(X) 50 thatw§? = 0.5, w3° = 0.6, wf'® = 0.5 andX 2 = L, X3 = ZL. Other coefficients take the constant
valueskg = 1.0 — 0.1i, wyk = 1 — 0.5i andy =02-1I.

In contrast to steep modes, no front is present and soft modes display an overall smoothly varying envelope and
wave number (thick curve in Fig. 9¢). The connection between the upstrdalanch and the downstreasbranch
occurs here in the core of the nonlinear region, at a saddle point of the nonlinear dispersion relation (20).

2 The unperturbed state is, however, locally unstable.
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Fig. 9. Structure of soft global mode obtained by direct numerical simulation of CGL equation. (a) Overall smoothly varying €g\eloge

real party, as functions of downstream distanke(b) Analytically computed linear spatial branch&§(X) of nonlinear saddle point frequency

wg' in the complex-plane. Both linear branches cross thexis and give birth to their nonlinear counterparts at the respective neutral stations.
Thick lines pertain to the stable or CU regiokis< X®@andX > X?2¢, thin lines to the central AU regiok®@ < X < X&, (c) Corresponding
Iineark'ri (thin solid) and nonlineak™* (thin dashed) spatial branches in %, k)-plane. Pinching of nonlinear branches occursk@rat

X = XQ' in the core of the nonlinear region. Local wave number of simulation in (a) follows path indicated by thick line. Four domains are
identified: the central nonlinear-aland nk- regions prevail upstream and downstreaerQf where the nonlinear spatial branchés™ and

K"+ meet; at the upstreay, and downstreanX, boundaries of the nonlinear balloon (shaded) the nonlinear spatial branches are continuously
connected to their respective linear counterpdftsprevailing in the semi-infinite linear regions land k-, respectively.

As already discussed in Section 3.3, the nonlinear branclesX, ), formally defined as the level contours
2"k, X) = €%, may display a saddle poiik', ') in the (X, k)-plane (solid dot in Fig. 5). More precisely,
pinching of the nonlinear branches, defined by the condition

knl+(XnI wnl) _ knl—(an wnl) _ knl
’ S - ’ S - ’

then occurs at the real statioff!' for the real saddle point frequenay' of 2" such that

g oLl
ol = @M, x1), - kD x0 = % @ xy = 0 29
with the saddle condition
2
920N 5200l 520Nl
<8k8X kQ',XQ') k2 kg, X3 5x2 g, xg) > 0. (30)

Note the formal analogy of this nonlinear saddle point criterion (29) with its linear counterpart (26) which involves
in general complex values &f andX.. The upstreanh™~ (X, »2') branch and downstreaifi'"* (X, »') branch are
precisely initiated at the nonlinear saddle pd(r@i, as depicted in Fig. 9c. These nonlinear travelling waves prevail
in the rangeX; < X < X», whereX1 and X2 denote the neutrally stable stations of frequeaa@'yat the boundary

of the nonlinear balloon in theX, k)-plane. AtX;1 and X, the amplitudes of the nonlinear travelling waves
andk"*, respectively, vanish and give way to their linear counterpartaindk'*, respectively.
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For the CGL equation (4) withg(X) of the form (27), all other coefficients being kept unifornXinthe nonlinear
saddle point location is explicitly obtained as

Yiwox, r

an — Xmax+ , 31
S Im (y* woxx) (1)
Re(y* wk)
K = koy + ——Fkoj, 32
s O’r+|m()/*wk10 0,i ( )
and the soft global mode frequency reads
2 * 2
(,()2' _ (,()gjfx _ &nglax Vi (CUO*X,r) |J/ wktl g’i ) (33)
Y 2Im(y*woxx) 2y Im(y* o)

The numerically obtained global frequeney = 0.64 of Fig. 9 very favorably compares with the analytical
prediction (33) of»?' = 0.65.
Condition (30) requires thatm y*wyk) (Im y*woxx) < 0. It was shown in [33] that in situations where

Im(y*wkk) > O, (34)

the nonlinear branche$'* exist in the neighborhood oY for frequencies such that > 2. Whenw | ol the
branches pinch &' for X = X', and fore < ', they fail to be defined around?'. In the following it is always
assumed that the possible frequencies for the nonlinear spatial branches lie in the ran@@'. The opposite
situation is exactly analogous and applies whehayyk) < O.

4.7. Transition between soft and steep global modes

The selection mechanisms governing steep and soft global modes are now compared. The steep criterion (24)
only involves the boundary of the AU domain on the physialxis, regardless of the characteristics of the regions
X # X Nevertheless, a steep global mode only exists if the nonlik®ar X, wg?) branch can be followed
from X°@down to the boundary of the nonlinear balloon and if there it can be continuously connected to the linear
branchkt (X, wg?). In contrast, the soft criterion (29) involves a saddle point of the nonlinear dispersion relation.
Again, a soft global mode only exists if the nonlinear spatial branches issuing from this nonlinear pinch point may
effectively be continued via corresponding liné&F branches in the respective downstream and upstream linear
domains.

Selection of either steep or soft global modes depends not only on the local criteria (24) and (29), but also
on the necessity to enforce the boundary conditions. The key argument in the following derivation is based on a
careful monitoring of the linear wave number branches in the conipfdane and of their nonlinear counterparts
in the (X, k)-plane as the global frequency is varied. As always, the CGL equation is used to illustrate the different
scenarios. The connection between linear and nonlinear spatial branches is shown to crucially depend on the relative
magnitude of the characteristic frequencd@ andwg?. In all instances, only one global mode, steep or soft, is
capable of continuously convertit] at X = —oo to k't at X = +o0, as X is varied. The two main scenarios of
interest are illustrated in Figs. 10 and 11, respectively, as discussed below.

Since nonlinear global modes necessarily involve real frequencies, let us focus on frequencies onth&iseal
As shown in Section 3.2, for large positive or negativéhe linear spatial branches do not crossihaxis in the
complexk-plane. Since nonlinear spatial branches are assumed to e>dst>foa)’s", we start with large positive
values of the frequency.

As w is decreased, thé* (X, ») branches move in closer to each other and one or both croks&xés for finite
values ofX. A change in sign okl' signifies that the corresponding branch is spatially growing: downstream spatial
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Fig. 10. Evolution of CGL spatial branches with decreasing real frequency in a situation where the soft global mode is selected. The left sequence
illustrates the evolution of the real part of linear brancla}é’s(x, o) (solid lines) and of nonlinear branche®* (X, ») (dashed lines) in the

(X, k)-plane. Connecting points between linear and nonlinear branches are indicated with tick marks. In the right sequence, corresponding
complex lineak'* (X, w) branches are sketched in the complgx k;)-plane; superimposed on the same graphs are the oiif¥és R2) of the

nonlinear spatial branches. (a), (b) For frequencies wg' lineark'~ spatial branches successively crossihaxis in the complex-plane and

give birth to the nonlineat™* branches between the corresponding neutral stations. (c) For the nonlinear saddle point freg'uam:yinear

spatial branches pinch la,@' whenX = XQ'. This pinch point joiningk™~ andk"* branches gives rise to a soft global mode connecting the

k'~ branch nea = —oo to thek'+ branch prevailing neax = +oc. (d), (e) For frequencies < w;"‘ the nonlinear spatial branches fail to

exist in the neighborhood dt?', but lineark'* branches are still defined. (e) When= wg?, the linear branches in turn pinchlat= k§? at the

upstream boundar¥ @ of AU region. However, this pinch point is not associated with a steep global mode sinc¥'tieanch prevailing for

X > X®@is not connected to thé* branch extending t& = +oc.
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Fig. 11. Evolution of CGL spatial branches with decreasing real frequency in a situation where the steep global mode is selected. The left
sequence illustrates the evolution of the real part of linear brari¢héx, o) (solid lines) and of nonlinear branchi®* (X, ) (dashed lines)

inthe (X, k)-plane. Connecting points between linear and nonlinear branches are indicated with tick marks. In the right sequence, corresponding
complex linear'* (X, ) branches are sketched in the complex ki)-plane; superimposed on the same graphs are the cuiés R?) of

the nonlinear spatial branches. (a), (b) For frequeneies »§? linear spatial branches remain separated, nonlinear branches exist between
the corresponding neutral stations. (c) For the front frequesi€ylinear spatial branches pinch/gf whenX = X A sharp front atx®®
associated with a wave number jump frafm to K"+ then gives rise to a global mode connecting he branch nea’X = —oo to thek'*

branch prevailing neak = +oo0. (d), (e) For frequencies < wg?, branch switching betweetl™ andk'~ occurs. (€) Whem = a)g', the

nonlinear branches meet at the nonlinear saddle point IochEbMowever, this saddle point is not associated with a global mode since no
continuous connection to thé~ branch prevailing neaX = —oo exists.

growth forki'+ < 0 and upstream spatial growth Vdr_ > 0. As already mentioned (Section 2.3) a spatially growing

branchk'* gives way to its nonlinear counterpaft® as a neutrally stable station is crossed in(tkiek)-plane.
Nonlineark™ branches are by construction always real-valued. However, to illustrate their relationship with the

lineark' branches they are also represented in the comiplsianes of Figs. 10 and 11. For clarity their missing
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imaginary part is replaced by the square of the amplitude of the corresponding nonlinear solution. This avoids the
collapse of thek" branches onto thé-axis, and brings to the fore the continuity between linear and nonlinear
branches at the neutral stations whéras well as the nonlinear amplitude vanish.

In the following discussion representations in {& k;)- and the(k;, kj)-planes are always shown in parallel.
Although the+ and— superscripts may not be derived from causality considerations in the AU domain, linear as
well as nonlinear and— branches may be defined without ambiguity as long as the linear and nonlinear branches
remain distinct (cf. Sections 3.2 and 3.3).

The branch switching scenario @aglecreases depends on the relative values of the characteristic frequ@‘\cies
andwg?. The frequencyni® which corresponds to an unstable steep global mode with a front at the downstream
boundary of the AU domain does not play an essential part. For clarity assumsfthatwi® andow? > wd° If
these assumptions are not satisfied, the same selection mechanisms as discussed below prevail, although the detailed
topology of spatial branches may be different. Two possibilities now anes wg? or o < wg.

The scenario foruQ' > wg?is illustrated in the sequence of Fig. 10. Asis decreased, the two linear spatial
branches successively cross theaxis while remaining separated as depicted in Fig. 10a and b. Each crossing
gives birth to a corresponding nonlinear branch connected to its linear counterpart at the neutrally stable locations
wherek' is real. Both linear and nonlinear and— branches are well identified and separated. Whenoy', the
nonlinear branches gradually approach each othera)F.eer' (Fig. 10c), thek"*+ branch meets the"~ branch
at k_L]' for X = XQ' as determined by (29). This is the soft global mode configuration, where the nonlinear saddle
point atx2' connects the nonline&f'~ (X, ') in the regionX < X' to the nonlineak™* (X, ) in the region
X > XQ'. Further outward, the nonlineaP'* branches give way to their respective linear countergéftsit the
locations of their respective neutral growth. When decreasing the global frequency towahmg', the nonlinear
branches fail to exist in the neighborhoodxg' (Fig. 10d). Asw reachesoi? (Fig. 10e), linear spatial branches do
pinch atX = X°@ but the nonlinear spatial brang¢A* prevailing around(©2 cannot be continued far downstream
towards thet'+ branch extending down t§ = +oo; there is no global mode of frequeney’.

The scenario fang? > a)’s" is sketched in the sequence of Fig. 11 «fdecreases, the first characteristic frequency
encountered is nowg?. Wheno | »§? (Fig. 11a—c), the linear branches approach and pinéffdor X = X2
determined by (29). Sinc%f’} < 0, the relevant branches in a neighborhood6t arek'~ andk"+. A front of
frequencywg? at X“@ allows a discontinuous jump in wave number fratn (x°a, wgd) = kg2 to khi+(xca wgd).

This front performs the connection betweerand+ branches necessary to obtain a steep global mode: further
downstream, the amplitude of the nonliné8# branch vanishes at a neutrally stable station and there the kittear
branch takes over t§ = +oco. Note that thex'*t (X, wg?) branch necessarily crosses theaxis; thek'~ (X, gd)

branch however may or may not cross. kor= o§?, the nonlinear branches, if they both exist, do not meet.
Decreasing furthes towardSwQ' (Fig. 11d and e), the nonlinear branches in turn approach and pinah:to&)g'.
However, sinces < w§? the lineark'* branches have undergone branch switching.fer w$2. As can be seen

in Fig. 11e, the nonlinear branches issuing®t X' cannot be continued towards thle branch neaX = —oc.

In this situation, due to global considerations, no soft mode exists, although the local criterion (29) may be satisfied.

This completes the discussion of the global mode selection mechanism: the type of selected global mode depends
on the relative values of the linear pinchpoint frequeafyand nonlinear pinchpoint frequenq’g'. If

a)Q' < w3,
linear spatial branches meet first as the overall frequency is lowered: the steep criterion (24) yields a global solution
on the entireX -axis with a sharp front located &t However, if

nl

wg? < wg',
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the nonlinear saddle point is encountered first and a soft global mode with overall smoothly varying envelope and

wave number prevails. There exists also situations where the nonlinear dispersion relation displays no saddle point

in the nonlinear balloon. Then a steep mode is necessarily obtained. The preceding close inspection of spatial linear
and nonlinear branches guarantees that the selection criteria for steep and soft global modes are mutually exclusive,
and that all situations are accounted for.

According to this discussion, when a global control parameter is continuously varied, the transition mechanism
between soft and steep global modes is the following. Starting with a system where a soft mode is selected, i.e.,
whereo! > wg?, two possibilities arise if the control parameter is changed:

e The saddle point frequenay?' may equal the front frequenay§® for a critical value of the control parameter.
Beyond this valueq)g' < wg?, and a steep mode prevails. The transition to a steep mode of the same frequency
takes place when?' = wS2.

e The nonlinear saddle point may reach the boundary of the nonlinear balloon and disappear wbgbsuuga.

Then, transition to a steep mode again occurs, but in this situation the global frequency is discontinuous at

transition.

This will be fully justified in Section 4.9, where we map out the domains of existence of soft and steep global modes

in an appropriate control parameter space. To identify the relevant control parameters, a discussion of the role of

the absolute wave number is first required.

4.8. Role of the absolute wave number

The local instability properties are seen to be essentially controlled by the streamwise evolution of the absolute
frequencywo(X) and wave numbeky(X) which in principle can be varied independently. The criterion for steep
global modes (24) only depends on the local absolute frequesicy) regardless of the local absolute wave number
ko(X). The soft global mode criterion (29), however, dependéydX ) through the complete nonlinear dispersion
relation. In this section, the role of the absolute wave number is discussed by viggiigin the CGL equation,
all other coefficients remaining fixed.

From expressions (23) for the linear spati&f branches it is readily seen that a changedtx) by some
constant value, say, results in a displacement of th&F curves in the complek-plane. Under this process, the
linear pinchpoint properties are not affected. Nonlinear characteristics, however, are closely related to the crossing
of the k;-axis by thek'= branches; it follows that changeskn; strongly influence the nonlinear properties of the
medium, unlike changes &b . This calls for two distinct physical interpretationsief, andkg j, respectively.

Consider the uniform CGL equation (6) with replaced by — «;. Then, under the change of unknown function

¥(x, 1) = ¢(x, 1) €,

the original CGL equation (6) is recovered tr This shows that the only effect of a changein is a change in
wavelength; linear spatial growth or decay rates, frequencies as well as nonlinear amplitudes remain the same. A
variation ofko , results in a change of carrier wave but does not alter the linear or the nonlinear stability properties
of the system. In the spatially dependent CGL equation (4), the following change of unknown function

H X
vix,t) :¢(x,t)exp<;—f Kr(u)du)

results in modifying the local absolute wave numbetdQX) — «;(X). Any slowly modulated carrier wave defined

by the real function (X) may thus be used to transform the real part of the absolute local wave number. Under
such a transformation, the global mode selection criteria as well as the characteristic frequencies remain unaltered:
the functionkg r(X) may then be chosen arbitrarily since it does not affect the local and global dynamics.
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In order to bring to the fore the role & ; (X), it is convenient, in the remainder of this section, to setgetX)
so that the functiomy(X)ko(X) appearing in front of the advection tedy/dx in (4) is real [12]. Under such a
condition,

_ okkr(X)

ki (X)

and the CGL equation reads

CA |0)kk|2k oy <

ko,r (X) = ko,i (X)),

2

wo + Ewkkko) v+ SOk 5~ iy|v|“y. (35)

ot WKk 0, ax
The form (35) clearly indicates that the real factor

2
v = B x
oKk (X)
may be interpreted as an advection velocity. Since causality requiresghak 0, a negative (positive)g; is
readily seen to correspond to advection towa¥ds +oo (X = —o0). Thus, the sign ofg; controls the advection
direction whereas its magnitude is directly related to the advection velocity. As stated in Section 1, it is assumed
thatU (X) > 0, i.e.,kgi(X) < 0in the entire domain. The basic advection is then directed towargs+oo.

In order to further discuss the role &f; in the selection of global modes, consider, for simplicity, thatis
constant over the entire domain. A changeqn is seen to be associated with a displacement okthecurves
along thek;-axis in the complex-plane. Its effect on the nonlinear balloon and nonlinear spatial branches in the
(X, k)-plane is outlined in Fig. 12. Since the functief(X) is kept fixed, a change & ; leaves the extent of the AU

k k
(a)

et kpt

X

k k
(c)

k;"l-- k;zl

Xs:c t )énl * }(cs X ):(sc + Xinl ' )éch

Fig. 12. Evolution of CGL nonlinear balloon and spa#8 branches in theX, k)-plane as the advection towards= +oo is increased.
Vertical dashed lines indicate AU domain extending o¥éf < X < X?2° (a) Without mean advectiorkd; = 0), spatial branches display
symmetry with respect to the nonlinear saddle point wave nurki}ﬂemd the nonlinear domain exactly spans the AU regloty,= X°@ and
X3 = X, (b)—(d) With increasing downstream advectign < 0, the nonlinear balloon inflates and extends beyond the AU regin< X @
and X2 < XS, During this process the fraction of the nonlinear balloon covered by the downstPsabranches increases with respect to the
k"~ branches. Simultaneously, the nonlinear saddle mxi@'t, k;") is seen to descend to eventually leave the nonlinear balloon.
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rangeX© < X < X% unaltered, as indicated by vertical dashed lixess X“®andX = X2%in Fig. 12. Without
mean advectiorkg; = 0 (Fig. 12a), the nonlinear balloon exactly spans the AU region. In this situation, local linear
instability coincides with local absolute instabilitys¢ = X and X = X°S. Nonlinear spatial branches cover
the nonlinear balloon symmetrically with respeckte- kQ'. Fig. 12b—d is obtained for increasing negative values
of kg,i, i.e., increasing advection towards = +oo. Increasingkp,i| then shifts thec'= branches (23) towards
negativek; in the complex-plane, thereby enhancing the instability of the downstrédnbranches and reducing
the instability of the upstrearki— branches. Under such circumstances, the onset of linear instability no longer
coincides with transition to absolute instability: the nonlinear balloon inflates and extends beyond the AU range into
the CU regionsys¢ < X < X®@andX?® < X < X°S. The basic flow advection breaks th&t/k"~ symmetry,
and the part of the nonlinear balloon spanned bykftie branches increases to the detriment ofifle branches.
During this process, the nonlinear saddle point moves towards the lower neutral stability boundary and eventually
leaves the nonlinear balloon. The advection velocity, measurd@ hythus strongly affects the existence of the
nonlinear saddle point and hence the existence of smooth global modes.

In the remainder of this section, we temporarily allow advection in the positive or negative direction &g;that
may change sign. It has been shown in Section 4.2 that among the two stationary figftaad X2, only the
one located at the upstream boundary of the AU region is stable. Since flow direction is directly related to the sign
of kg j, the stable steep global mode frequenay§8for kg i < 0 andw®for kg > 0. These are indeed the fronts at
the stations of local marginal absolute instability with their nonlinear wave train covering the AU domain and their
exponentially decaying tail extending into the CU region (see also Fig. 13). The soft global mode fraqgldfmfy
been obtained in (33), and, in contrast to the steep global mode frequefft@sdwg’, it is seen to depend dn;.

In the previous section, it has been demonstrated that the global mode of largest frequency is selected; thus, the
transition scenario between steep and soft global modes as a funckignisfderived from the relative values of
wg?, w° andw'(koi), as displayed in Fig. 13. According to (33), the soft frequengyis largest forko; = O,
all other coefficients being kept fixed. Thus, soft modes prevail when advection is small emghghwga and
wQ' > w§° With increasing downstream advectidn ( < 0), the nonlinear saddle point frequenﬁy decreases.
Wheno! < wg?, the soft mode is replaced by a steep mode with a sharp front?ieft-hand side of Fig. 13).
Similarly, if ko increases from Okg; > 0), which corresponds to advection towatkis= —oo, the nonlinear

steep mode soft mode steep mode
wM < wg® w§t < w;“ L wge < w;" w;" < wg’
ko 0 kg', f ko,i

Fig. 13. Transition between steep and soft global modes as a functign of CGL equation. Black arrows indicate advection direction. For
small advection velocities§; small), the saddle point frequena;’g" is larger than the front frequencie§? andw§°, and thus a soft global

mode is selected. With increasing advection towa¥fds +oo (ko < 0), the saddle point frequenﬁgg' decreases, and, whép; < kg; the

soft mode is replaced by a steep global mode with a front at the left boundary of the AU region. Similarly, with increasing advection towards
X = —oo (ko,i > 0), the saddle point frequena;@' again decreases, andkgt = kai transition takes place to a steep global mode with a front

at the right boundary of the AU region.
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saddle point frequenay? again decreases. Whefj' < wfS the soft mode is now replaced by a steep mode with

a front atX = X2 (right-hand side of Fig. 13). Sindg; > 0, the front atXa is now the stable one: upstream

and downstream directions have been interchanged. In any case, the front location corresponds to the upstream
boundary of the AU region. The critical transition valugs < 0 andkg,fi > 0 between soft and steep global modes

are defined bywS? = »l andw3® = ), respectively.

4.9. Domains of existence in control parameter space

Now that the roles oé)gniax, wox,r andko; have been separately discussed, the domains of existence of steep and

soft global modes may be obtained in the three-dimensional space of these control parameters (Fig. 14). Consider
the CGL equation (4) withvg(X) of the form (27), all other coefficients being assumed uniford fior simplicity.
The front frequencies§? andwg®then read

20wp'#

WOXX,r 0,i
ca ac max max 5
wg, Wy = wgr — wg F wox,r (36)

WOXXi —QWOXX,i

They exist whenevepg'® > 0 and their values are seen to be effectively independeiiiof

The selected global mode type depends on the relative values of the front frequencies (36) and the nonlinear
saddle point frequenay?' (33). However, note that the nonlinear saddle point formally defined by (31) and (32)
only exists if(k2', X') lies in the nonlinear balloon, i.e., if

2@, xM > o, (37)
For the CGL equation under study, one readily obtains
|wwid? 1M y 2oy
2(Im y*wyi)?

Vi

_ ko). 38
Im J/*CUOXX ( 0,|) ( )

2
> ) (CUOX,r)2 +

2l (k. XI) = o>+ o0exi (
Whenever.Qi' (kQ', XQ') < 0, the nonlinear saddle point does not exist, and only a steep global mode is obtained.
In the control parameter space of Fig. 14, the domain where condition (37) is satisfied is located above the surface
Iabeled.(ziI %', X2 = 0. According to (38), this surface is a paraboloid entirely contained in the half-space
wg?iax > 0 and tangent to the plara%ji""X = 0 atwox,r = ko, = 0. Below this surface no soft mode may exist and
only steep modes are obtained. Above this surface, the soft global frequ&noyst be compared 5% andwf’.

We only consider situations with advection towads= +oo, i.e., the half-spacky i < 0, so that only.g? comes
into consideration for steep modes. Within the region where a nonlinear saddle point exists, transition between soft
and steep modes occurs Whﬁg‘i = wg™ This transition surface is derived from (33) and (36) and is sketched in
Fig. 14. Itis seen to meet the surfa@®(k2', X1') = 0 along a curve in the plarig ; = 0. As may be inferred from
these critical surfaces, the parameter space is divided into four regions (Fig. 14):
e (a) Below the global thresholdqg";"‘x < 0, no front and no saddle point exists, the unperturbed gtate 0
remains stable.
o (b) Whenwf® > 0 ands2/ k%', X2 < 0, no saddle point exists and a steep global mode prevails.
e (c) Wheng2 (k2', X1y > 0 andwl! < w3, a saddle point exists but the steep mode is selected.
o (d) Wheng2! (2!, X2) > 0 andel! > »S?, the soft mode is selected.

Thus, at global mode onseigjf‘x = 0, transition occurs always via a steep global mode except for the triply
degenerate cas%jiax = ko,i = wox,r = 0. With increasingog?iax, transition from a steep to a soft mode occurs for
finite values ofug' ™ either as soon as the nonlinear saddle point comes into existence (on the @jddtex) =
0) or when its frequency reaches the steep frequency (on the swgh@ewga).
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Fig. 14. Domains of existence of steep and soft global modes in the three-dimensional control parametesospakeg;, w&?") of CGL

equation. A nonlinear saddle point exists above the surﬂ#aﬁk“' X”') = 0. The associated frequenqz' is larger than the front frequency

w§? above the surface Iabelafg" = wg? Hence soft global modes prevail in region (d). In region (c), steep modes are selected according to

o' < 0. In region (b), no nonlinear saddle point exists and only steep modes are obtained. In region (), below global thf§$hold,

the unperturbed state is stable.

4.10. Summary of transition mechanisms

The main global mode selection mechanisms have been shown to be governed by three distinct control parameters.
The global bifurcation parameter is the maximum absolute growth rate over the entire m@?ﬁim\lonlmear
global modes exist whenever a region of absolute instability is pretsgﬁt‘@ 0). The transition to a steep global
mode occurs dlscontmuouslycag‘ax 0 through a saddle-node bifurcation. In the absence of absolute instability
(wg'™ < 0), no self-sustained global modes exist and the basic state is globally stable.

The basic state remains globally linearly stable up to a finite positive valu%”%if The hysteresis width in
a)g"lax is governed byvox r and scales a@ooyx 2. The advection parameteg ; strongly influences transition from
steep to soft nonlinear global modes. Soft modes exist for small valugs; ofvhereas for increasing upstream
or downstream advection, steep modes prevail. The main global mode properties may be inferred from the three
above-mentioned control parameters.

5. Asymptotic spatial structure of global modes

The preceding results have been derived under the assumption that the global mode is, at each station close to
the local wave train at the global frequency. This local wave train is governed by the local linear dispersion relation
(19) in regions where the amplitude is small, whereas it follows the local nonlinear dispersion relation (20) in finite
amplitude domains. These considerations, which only involve the local characteristics of the medium, yield the
leading-order WKBJ approximation to the spatial structure. Within this framework, the selection criteria for steep
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Fig. 15. Spatial structure of (a) steep and (b) soft global mod&3.quiter semi-infinite linear regions ne&r = +oo with respective linear
spatialk'* branch; (ni) central nonlinear regions of siz&(1) with respective nonlinear spatigl'* branch; (ti-) weakly nonlinear transition
layers of width©(¢/2) connecting linear and nonlinear branches of same superscript; (fl) front layer @P&iZ€') connecting the'~ and
k" branches and selecting the steep global mode; (sp) saddle point layer 6f(si#&) connecting the"* branches and selecting the soft
global mode.

and soft global modes have been identified and the leading-order steep (24) and soft (29) frequencies have been

derived.

The objective of this section is to incorporate the previous results into a consistent WKBJ approximation scheme
[2] in order to obtain higher-order correction terms, and to establish that the global mode structures outlined in
the preceding sections may effectively be constructed by matching together extended wave packets prevailing in
different regions.

The organization of the following sections is motivated by the spatial structure of both steep and soft global modes
illustrated in Fig. 15. As already discussed, global modes display nonlinear regions of finite amplitude as well as
linear regions of infinitesimal amplitude. In the outer semi-infinite linear regiansgktending towardX = +o0
(Section 5.1) the respective complex linear spatial braf€lprevails. The central nonlinear regionsflare of
finite extent, i.e., order unity measured in termsxgfand they are dominated by the respective nonlinear spatial
branchk"'+ as discussed in Section 5.2. These extended regions are connected via three types ofamesitimm
layers
o Thefront layer (fl) of size O(¢%/3) located at the upstream boundary of the steep global mode nonlinear region

connects!'~ andk"* branches (Section 5.3).

e The nonlinear saddle point layefsp) of size® (/) allows crossover between ti8* branches within the
nonlinear soft global mode region (Section 5.4).

o Weakly nonlinear transition laye(fi +) of size©(e1/?) at the downstream end of the steep global mode nonlinear
region and at both ends of the soft global mode nonlinear region connect the fully developed nonlinear branches
with their linear counterparts (Section 5.5).

Each of these regions is analyzed in turn to obtain a uniformly valid asymptotic approximation over the entire
range—oo < X < +o0. Close inspection of the front layer and the nonlinear saddle point layer yields higher-order
corrections of the steep (72) and soft (88) global frequencies, respectively. Since the width of the narrow layers is
O(€Y2) or O(¢?/3) measured in units ok, their characteristic scale is intermediate between the inhomogeneity
length scale? (1) and the instability length scatB(¢). Thus, although the medium may be considered uniform in
the transition layers, they still display many wavelengths, typic@lly—/?) or O(e~1/3).

In the preceding sections, the bifurcation study was largely based on the CGL equation (4) and a complete under-
standing of the global selection mechanisms was achieved in this context. In this section, the WKBJ approximation
scheme is presented in the more general framework of PDE (1).
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5.1. Linear WKBJ instability waves

In the semi-infinite linear regions extending towaks= +oo (1% in Fig. 15a and b), the global mode amplitude
exponentially decays on the fastscale. These regions are thus governed by the linear equation (2). Under the
slowly varying medium hypothesis (3) a solution of (2) with global frequesagymay be obtained in terms of
WKBJ approximations [2]. The spatial structure is described by a rapidly varying complex phase, accounting for
the local wavelength and spatial decay rate, and a slowly varying envelope. For a given value of the freguency
the solution reads

H X
vix, 1) = AX) exp(é/ K (u) du — iwgr> +c.c., (39)

wherek'(X) is one of the linear spatial branches associated with the frequgndihe functionsa!(X) andk! (X)
implicitly depend onwyg; for simplicity their frequency dependence is omitted.
In classical WKBJ fashion, the slowly varying envelop&X) is expanded in powers efas

A'X) ~ ALX) + eA (X)) + 2AL0) + - - (40)
Thus, spatial differentiation takes the form

X
% = [(iK'(X) + eax)A'(X)] exp< / K (u) du — ia)gt) +c.c. (41)

[
€
Upon substituting (39)—(41) into the governing equation (2) and bearing in minetiiaia,) = i £(5,), see (8),
one obtains
wg(Ah + €A + ) = Q'K (X) —iedy, X) (AL +eAl +---). (42)

Note that differentiation with respect to the fast variable, i.e., multiplicatiorktgi), does not commute with the
slow derivative operatady. The linear operator appearing in (42) admits the expansion

Q'K (X) —iedx, X) = 2'(X) = ie(2,(X)dx + 3k (X) 2y (X)) + O(€?) (43)
with the notations

QX =2'Wx).x), 2,x) = aa—slil(k'(X), X), etc
At lowest-order, Eq. (42) reduces to the linear dispersion relation (19), i.e.,

wg = 2'(K'(X), X), (44)

which yields the local wave numbgt(X) for a given frequencyy.
The ordere terms read
Il [ il dAlo ol [ |
[wg — 2' (k' (X), X)]A1(X) = —|.{2k(X)d—X - E.Qkk(X)kX(X)AO(X).
By invoking (44), one obtains the obvious solvability condition Aﬁ,r(X), namely
dAg

|
0 h ) T

2,(X)

AY(X). (45)
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Thus, the first-order asymptotic approximation to the solution of the linearized equation reads

¥ ~ Ah(X1) exp —E/Xk' (M)Q'Lk(“) du exp(i—/xkl(u)du —iw t) +c.c. (46)
0 2)5 X 2w eJx, ’ ’

where X is some arbitrarily specified reference point. In each of the semi-infinite linear regions the respective
causak' branch has to be chosett™ for X — —oo andk'* for X — +o0.

In the linear region, the nonlinear terms of (1) are seen to be exponentially smaller than the linear ones. Their
exact expressions are therefore irrelevant to this work and will not be computed here.

5.2. Nonlinear WKBJ wave trains

In the central nonlinear regions fhlin Fig. 15a and b), the solution of (1) is obtained in terms of local nonlinear
wave trains (10). An asymptotic approximation scheme for nonlinear wave trains is derived in this section, which
is formally analogous to linear WKBJ theory.

The fast oscillations of the propagating wave and its slowly varying local wave number and amplitude suggest
the following change of variables:

Vx, 1) =y(0: X),

where the real phase functiéiix, ) is 2z periodic and accounts for propagation on the fast space and time scales,
whereasX = ex allows for slow spatial modulation. Local frequency and wave number are defined as

w = —0;0, k = 0,0.

For a synchronized global solution, the frequency: wg is constant, whereas the local wave number KM (x)
depends on the slow space variable.
Upon expanding the derivative operators according to

O = K"(X)0 +€dy, O = —wgde.
the governing equation (1) is recast in the form
wgde ¥ + F(k"(X)dy + €dx; X)[¥] = 0. (47)

Again note that differentiation of (9; X) with respect to the fast variable does not commute Wjttsincek™ (X)
depends orX. Nexty is expanded according to

U~ Yot evr+ €Yt oo,

and substituted into (47).
The lowest-order ir yields the local equation

wdgyr + F(kdg; X)[¥] =0, (48)

where X acts as an external parameter. Wheris considered frozen, the family of local nonlinear wave trains
W (0; k, X) is recovered. This equation admits solutions onlyif= 2"k, X). In other words, for a global
frequencywyg, the nonlinear spatial branéf!(X) is derived from the local nonlinear dispersion relation (20) as

wg = 2" (K"(X), X), (49)
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and the leading-order solutiafy then reads
Yo =¥ (O:; K"(X), X). (50)

The function? is 2z periodic in the phase variabfewhich accounts for the fast propagation through

1 X
6 = ;/ k" (u) du — wgt 4 6o(X). (51)

The so far undetermined slowly drifting phase functigiX) obeys a solvability condition to be obtained at next
order.

The O(¢) terms in (47) require some care. For clarity of presentation, assume that spatial differentiation only
occurs in the linear operator,

F(@x: X[Y] = LOx: X)[Y] + NX)[y].
The linear terms are expanded as

LE"(X)dp +edx; X)[YoO; X) + ey (0; X) +- -]

1 dk"
+ ~ L(X)[Yo]e (E(X)[I/fl] + L'(X)[dx o] + Eﬁﬁ”(x)[aellfoo + O(e?),

where the notatior(X) is shorthand for’ (k"'(X)dy: X) and the primes denote differentiation 6d,; X) with
respect to its first argument. The nonlinear terms are expanded as

IN(X)[ol

2
o ¥1 + O(e9).

NX[Yo+ey1+---1=NX)[vo] +¢€

Thus (47) yields aO(¢),

1 dkn
L[y1] = =L (X)[0x ¥0] — EEE”(X)[B(;%], (52)

where the linear differential operataron the left-hand side is defined as

IN (X
L = wgip + £x) + XX (53)
oy
Thus, 1 satisfies a linear differential equation with resped with X-dependent coefficients. The operatois
singular since one may readily verify that

L[] =0 with ¥ = 3pW (0; k" (X), X).

Thus (52) admits solutions faf¥; only if its right-hand side satisfies a solvability condition.
Let us introduce an inner product fotr periodic functions ob defined by

1 2
(0, ¥) = /o @)y (0)do. (54)

T 2n
The adjoint operatoLT of L is then obtained via successive integration by parts through the relgtidn/) =
(LTqb, ¥), and it reads
ON (X)[o]

LT = —wgdy + L—K"(X)dy: X) + 5 (55)
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Let %T be the adjoint eigenfunction @fy. Taking the inner product of (52) WitﬁeT and substituting
axvo= 00, ¥y 4y
XVo = dx 0 dx k X

yields the following solvability condition fofp(X),

do 1 dkn
d—)?(wg, L' + Ed_x<"”9T’ 2L'W + L'We) + (W, L'y) = O. (56)

This entirely specifies the leading-order approximation to the global nonlinear solution
1 X
V(x, 1) ~ ¥ (-/ K" () du — wgt + 6o(X); k™ (X), X) , (57)
€
where the parametric dependencé&8fX) on the global frequencyy is entirely determined by (49).

5.3. Front layer

According to Section 4.2, the front of steep global modes is located at the station of local marginal absolute
instability X°@ and it is associated with a wave number jump fromitheto thek™* branch. On the slow scal,
the front discontinuously connects the linear solution (46) of wave nuilbesrevailing in the upstream domain
X < X®to the nonlinear solution (57) of wave numtét on the downstream side of the frakit> X2 In this
section, the linear solution is shown to match to the nonlinear solution through a narrow front layer (fl) as depicted
in Fig. 15a. The formulation essentially follows the same approach as in the asymptotic description of the front
boundary layer arising in nonlinear dynamo waves developed by Bassom et al. [1] and is based on linear turning
point theory [48].

The envelope of the outer linear solution is governed by the amplitude equation (45) which is singular at a turning
point Xg of the dispersion relation (44) defined by

wo(X0) = wg. (58)

Forwg = wg?, the turning point is ako = X% However, it is to be anticipated that the global frequency does not
exactly equadyg®. As outlined below, it is convenient to implement a matching procedure in the turning point region
for an arbitrary complex global frequenay. Thus, consider the linear governing equation (2) for compiex
The results of Section 5.1 pertaining to linear instability waves remain valid in the cokipbéane, provided that
2'(k, X) and hencey(X) are analytically continued for complex values¥fThen (58) associates to a frequency
wg the turning pointXo(wg) in the complexX -plane.

Expansion of the dispersion relation (44) in the neighborhood of the turning Feiyields

0= 324 ok (X) — ko)? + 2} o(X — Xo) + h.ot., (59)

wherekg is the associated absolute wave numhet= ko(Xo) and the subscript O denotes evaluatioiikat Xo).
By definition of the turning pointQ,'{,0 = 0, and under the assumption that the turning point is sinrp!‘go #0.
Thus

|
‘QX,O
|

kk,0

K (X) ~ ko £ (X — Xo)V2.
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The linear amplitude equation (45) then reduces to
ddo  Ao(X)
dx 4(X — Xo)'

HenceAg(X) ~ CSY(X — Xo)~/* asX — Xo, and the complete behavior of the outer linear solution (46) as
X — Xoreads

. [
2 —282y ¢

= (X — Xg)8 | d%or—eg) | cc. (60)

¥~ C(X — Xo) " exp

[
0
Here it is assumed that the square root branch cut is chosen so that the wave kanpevailing in the domain
X — —oois recovered.

It is seen that in the neighborhood of the turning pofi, the amplitudeAg becomes singular. Balance of
dominant terms, as shown below, yields an inner turning point region ofXiz&2). Thus, define an inner variable
X by
and expand/ as

v = A(X)ekor—eg) 4 cc. (62)
with
AX) = C¥Ao(X) + ?PAgs(X) + -1, (63)

whereAg(X) is O(€9). Spatial differentiation now becomég = ikg + 61/33)'(. In this inner transition layer, the
leading-order wave number is constant and equig tthusd; and ko now commute. The governing equation (2)
then yields

wgA(X) = 2' (ko — €335, Xo + €23X)A(X) ~ [2' (ko, Xo) + 23X 2} o — 320003 ) ]AX).
wherewg = £2'(ko, Xo). The scalingk — Xo ~ €%/3X andx ~ ¢ ~Y/3X guarantees the balance of dominant terms

at orderO(¢2/3) in the previous equation and leads to the following Airy equation for the leading-order amplitude:

d?4g - _
290 gy = X2xodo(X). (64)
Thus,Aq(X) is a linear superposition of the Airy functiods(—X) andBi(—AX) with

|
3 2%

-2
20

Upon choosing for. the solution with|ArgA| < 7/3, the Bi component exponentially grows whereas tie

component decays according to

—22% o -
X (65)
kk.0

. nd 1 ~ _1/4 2|
Ai(—LX) ~ ﬁ(_“{) exp 3




B. Pier et al./Physica D 148 (2001) 49-96 83

asX — —oo [2]. Expressing the outer solution (60) in terms of the inner varighlshows that it matches with
the inner solution (62) provided that

A(X) = CAI(—2X) + O3] (66)

with €St = €1/6((—r)~Y4/2/m)CSt.

Thus, for any frequencyy, linear instability waves are governed by the Airy equation (64) in a region of size
O(€?/3) located at the turning point of the linear local dispersion relation. The location of the turning point in the
complexX-plane depends omg. For frequenciesy = w§? + Sw, close to the marginal absolute frequency, the
turning point is located at

~xeay %0
Xo~ X"+ wO,X(Xca).
For O(e?/3) frequency correctionsw = €2/3wy,3, the inner Airy region in the compleX-plane contains in its
neighborhood the point @ on the realx-axis.
Before analyzing in more detail the properties of the Airy solutions oiXtiseale, let us turn to the front structure.
As discussed in Section 5.3, a uniform medium at the transition between convective and absolute instability admits
stationary front solutions oscillating at its real absolute frequency. Thus, the original nonlinear governing equation

(1) rewritten atX = X®@as

d
Wi Sy +F 0 XY =0, (67)
admits the front solutiow (x, 6), which is 2r periodic in the phase functioh = a)gat. Towardsx = +oo, this
solution approaches a fully nonlinear wave train of the form (50). Thus,

Wt (x, 0§ ~ WK (X 0)x — 0l k" (X ), X% as x — +oo.

Towardsx = —oo, the exponential decay rate is dictated by the absolute wave nuigiberko(X ) and the front
solution reads

Wt (x, wgt) ~ (cgt + citx) dkgx—agn 4 c.c., (68)
where the secular term is due to the double idbt= k'~ = kg? of the linear dispersion relation. In the uniform

medium, the front has no preferred location. A translatiodefonly changes the phase W*(wga)Ax in the
asymptotic behavior towards the nonlinear side +oco and leads to an additional factdfEA~ in the upstream
exponentially decaying tail.

The exponentially decaying tail (68) has to be matched with (62) in the Airy region. Due to the secular term in
(68), matching with (62) is only possible at the zeroes of the Airy function. The Airy funéti@ppearing in (66)
admits real negative zeras. Thus, the zeros aflg are located aK;j = —a;/A. In terms of the outer variablg
these occur at

~ a) a
Xi = Xo(wyg) + €2/3%; = x4 ¢2/3 (ﬂ - —’> O¥3). (69)
w0, X A
Whereas the linear WKBJ approximations as well as the turning point region may be investigated in the complex
X-plane, the front involves a nonlinear wave train and is thus necessarily restricted to tieaxial Requiring

that theith zero (69) of the Airy function is on the re&l-axis yields the frequency correction term

lwo.x|? Im A
|)\.|2 Im wo, X

w2/3 = aj
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for a zero located at

X~ xea (23 di M@ xH)
' A2 Imawox

SinceX“is the transition location from convective to absolute instabilityix is positive. Under the slightly
more restrictive assumption that3 < Arg wo x < 27/3, we are guaranteed thatmg’x)\) < 0.Inmostsituations
of physical interest, variations @l are small compared to those @f; and thus the condition on Argg x is
readily fulfilled.

So far the matching conditions yield a countable set of frequencies

lwo.x|? ImA
A2 Imwox’

2/3

wg ~ a)ga—i- €7 a;§22;3 with §22/3 = (70)

each being associated with thta zeroa; < 0 of the Airy function. The corresponding fronts are located at

—Im(wg xA)

X ~ X _ 23, x with Xp3= —— —2% =
iX2/3 2/3 P Zimawo x

(71)
SinceX»/3 > 0, higher-order global modes display a front located further downstream in the AU domain. These
situations are likely to be unstable since the exponentially decaying tail of the front partly penetrates into the AU
domain. Such a higher-order front prevailing in a slightly AU medium tends to move upstream, until it reaches the
most upstream possible station associated wgtfThus we argue, although we have not proven the result, that the
only stable global mode solution is obtained for the first zero indexathbyp to O (¢%/3), the global frequency

and the front location therefore, respectively, read

wg ~ w8a+ 62/3ao[22/3, X ~ xca_ 62/3aoX2/3 (72)
with
ap=—2.3381....

This completes the investigation of the detailed structure of the front region.
5.4. Fully nonlinear saddle point layer

The nonlinear saddle point is defined as the locai§hwhere the two nonlinear wave number branches meet.
The saddle point frequenegg" is given by the criterion (29). In the nonlinear regions surrounding the saddle location
XQ' the asymptotic approximation of the global solution is of the form (57) and the slowly drifting phase function
0o(X) is governed by the solvability condition (56).

At the saddle point, the first-order differential equation (56)d@becomes singular sinq@/T, L'Wy) =0 at
XQ' (cf. Eg. (90)). Thus, the nonlinear WKBJ approximation worked out in Section 5.2 is no longer valid in the
neighborhood oiXQ', becauseé varies there on a spatial scale which is faster thiain this section, a nonlinear
saddle point layer aXQ' is introduced, (sp) in Fig. 15b, and a second-order differential equation for the @hiase
derived after rescaling the spatial variable in the neighborhoo@bﬂ'his inner solution in the saddle point region
allows a smooth crossover between the WKBJ wave trains in both nonlinear regions.

Let us introduce an inner local space variakléen the saddle point region defined as

X = x4 2%,
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and expand/ according to
¥~ Yo+ eV Yot efn - (73)
The subsequent analysis yields the higher-order corrections to the global frequency as

1/2

wg~w2|+€ w12 +ewy+ - (74)

Replacing the spatial derivativg in the inner region bycg'a(, + 61/235(, the linear operator expandss
LN + Y205, XX+ ¥2X) = L+ eY2(L05 + XLx.o)
+3e(Lligg +2X Ly 5 + X2Lxxs) + O¥/?). (75)
Substituting the expansions (73)—(75) into the governing equation (1), one recovers at leading order
290 + L(K§'36, X0 + N (XIH [l = 0.
Thus,
Yo =Ws =W (0 +6o(X); kZ', XD, (76)

where the fast phase function in the inner saddle point layer ﬂaadtg'x — wg'z and the slow phasé(X) is a
so far an undetermined function varying on the intermediate length Zcale
The nonlinear term is expanded as

NXD + €230 [Ws + Y2910 + €91 + O] = N+ €Y2(XNx s + Ny s¥12)
+e(3X%Nxxs + XNxy.si1j2 + %Nww,slﬁlz/z + Ny.sin) + O¥/?), (77)
where
Ns=NXDWws,  Nys=ayNXD[W],  Nyxs=axN XMWy, etc

The ordefe/2 problem reads

- ddo -
Lsyr1/2 + w1/2%W s + d—f(ﬁ/s‘l’e,s + X(Lx,s¥s+ Nx,s) =0, (78)
where

LS = wglag + Es +N’w’s.
Let %TS be the adjoint eigenfunction @f, s. Eq. (78) admits solutions qufl/z if the following solvability condition
is met:
ddo .
012 Wy o) + d_)Z’(%TS’ LW+ X (W, Lx W5+ Nis) = 0.

In Section 5.4.1 below, the last two terms of this equation are shown to vanish (90) and (91). Thus, the solvability
condition requires that

w12 = 0.
There is no correction to the global frequency at okdéf and no equation fofly is obtained at this order.

3 Subscript “s” always denotes evaluatiorbat= k29y, X = X2, k = k2.
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With w12 = 0 and using (92) and (93), the general solution of the linear inhomogeneous equation (78) is obtained
as

. - dédo o
Y172 = XW¥x s+ E‘I’k,s + AX) Yy s, (79)

whereA(X) is an arbitrary real amplitude function.
At ordere, the following inhomogeneous equation it is obtained

- ~\ 2
- 1d%p 1 ( ddo
Lsyn +—?(2£/s‘1’k,s + Cg‘lfe,s) + (d_f( (Zﬁ/s‘l’ek,s + ﬁgq’%,s + Nww,s(‘lfk,s)z)

2d 2
- ddo , ,
+Xd—)~(((£x,s + Nxy,s)Wks+ Ly Wos+ LsWoxs+ Ny s s¥x.s)

1~
+§X%ﬂﬁxs+A&¢9Wx5+l&x#@+ﬂ&xs+A@wﬂwX9%

ddo - -~ N
+EA(X)(£/3W99,S + Nyy . s%.s%s) + XAX)(Lx,s + Nyx.9)W,s + Nyy.sP s¥x 5)

dA 1. -
+§£;%,S + EA(X)2/\/1,,1,,,5(11/9,5)2 + LiWx s+ w1¥s = 0. (80)

This equation admits solutions far; if the inner product of the forcing terms (everything excégt/1) with
%Ts vanishes. The different inner products are computed in Section 5.4.1. From (94)—(96), it follows that all the

terms involving the functiom (X) vanish: this function remains undetermined at this order. Using (97)—(99), the
solvability condition fordp reads

~ ~ 2 ~
d26, dé, - dé N
A—2 - (2] +20X—2 4 DX2— E — 2wy, (81)
dx? dx dx
where
W 2L s+ L1 o) y N ; (W Llws)
A = T ) B == ‘Qkk,S’ C - QKX,S’ D == QXX,S’ E - _l_—.
(Y s Yo.s) (s Y.s)
Let
o B. . Ca?_,
O(X) = exp —ZQ(aX) — ﬂX (82)
with
A2
4
S 83
* T 4c?"BD) (83)

Note thatC? — BD > 0 since(kl', x1) is a saddle point of2"(k, X). Rewriting the solvability condition (81) in
terms of® yields the parabolic cylinder equation [2]

d?e 1., 1
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where
1 1AC— B(E +2w)

V4 = = .

2 2 \/A2(C?-BD)
This solution in the inner saddle point layer needs to be matched with the wave trains (57) in the outer nonlinear
regions. In terms of the inner variahlg the phase of the outer nonlinear solutions (57) expands as

1 [X+elx 1 )
< /an K™ () du — wgt + 0o(X) = (kQ'x — wQI,) + Ekgsxz + OY?), (85)

Matching to the phaskl'x — 't + 6o(X) of the inner solution (76) wheR — +oo requires that
fo(X) ~ kY X? when X — =oo. (86)
At the saddle point, the derivative of the wave number reads

| | | |
s+ (@ - AW Ahs ¢+ /T BD
| = .
'ergk,s B

(87)

nl _
kx,s -

Using (86) with (87) in (82) shows that the functien(X) behaves asymptotically as
IneX) ~ -1x2,

whenX — +o0. The only solution of (84) satisfying this asymptotic behavior and taking only non-negative values
is obtained fon = 0 and simply reads

O(X) = exp—1X?).
Thus, the asymptotic expansion (86) is exact fotkallThen the soft global mode frequency readéi@)
wg ~ o + ewy (88)
with
w1 = %(AC— BE — /A2(C2 — BD)).
5.4.1. Computation of inner products
The values of the inner products used in the previous analysis are obtained from
2" (k, X)W + L(kdg, X)¥ + N (X)[¥] = 0. (89)

Differentiating (89) separately with respecttok andX, taking the inner product of the three results wlgx and
exploiting the fact that the derivative)!' ands2Y vanish at the saddle poitty', X2, yields

W, Ll =0, (90)
(W, Lx sWs+ Ny s) =0, (91)
LW s = —Lg¥.s, (92)
Ls¥xs=—Lx s s— Nxs. (93)

From these identities, the particular solution (79) to Eq. (78) follows.
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The ordere problem in the saddle point region specified by (80) requires to compute inner products by double
differentiation. Differentiating (89) separately with respecttg 0k and6 X, and taking the inner product of the

three results WithUQT at the saddle point, one obtains

(WGTS’ Nl//i//.s(‘l’é),s)z) =0, (94)
(W(Is’ ‘C{sl’pf%),s + Nw,s%,s%,s) =0, (95)
(WGTS’ (L:X,s + NXw,s)lI/G,S + NIﬂlﬂ,SWO,SWX,S) =0. (96)

Differentiating (89) separately with respectidig kX andXX similarly yields at the saddle point

(W, 2L W s+ LoWon s+ Nipy s(Wi9)?) = — 208 (W51 W o), 97)
W (Lxs+ Ny.9Wes+ Ly Po.s+ LoWoxs+ Ny s sWx.s) = — 20 (W o.s), (98)
(W 2(L x5+ Ny 9Wxs + Lxxss + Nyocs + Ny s(Wx5)2) = — 2 (W Wo.s). (99)

Results (94)—(99) are invoked to cast the phase evolution equation in its final form (81).

5.5. Weakly nonlinear transition layers

Frequency corrections for steep and soft global modes have been derived by performing a detailed asymptotic
analysis of the corresponding narrow transition layers where their respective frequency selection mechanism takes
place: the front layer for steep modes and the nonlinear saddle point layer for soft modes. The only type of layer
that remains to be investigated in order to obtain uniformly valid asymptotic approximations for global modes is
the weakly nonlinear transition layer. This layer applies to the downstream end of the steep mode nonlinear region
(tI+ in Fig. 15a) and to both ends of the soft mode nonlinear regianiftiFig. 15b). It should be emphasized that
these layers are slaved to the dynamics imposed by the front or the nonlinear saddle point frequency.

A smooth transition between nonlinear and linear solutions occurs at the boundary of the nonlinear balloon (Figs. 3
and 5) in the(X, k)-plane. Consider a global solution of frequergy Its local linear and nonlinear wave number
brancheg! (X, wg) andk™ (X, wg) are derived, respectively, from the cun@$(k, X) = wg and2™ (k, X) = wg.

AkM(x, wg) branch is connected at the border of the nonlinear balloon to the corresponding'l'(ﬁ@aﬁg) branch
at the particular statioX = X;(wg) for k = k;(wg) where the pairk;, X;) is defined by

wg = 2' ki, X;) = 2" (ky, X,). (100)

As demonstrated in Sections 4.2 and 4.6, a continuous transition between linear and nonlinear wave number branches
occurs at the downstream boundary of the nonlinear region of a steep global mode and at both downstream and
upstream boundaries of the nonlinear region of a soft global mode. At a downstream boundéty; thanch

prevailing in the regioiX < X; is continuously connected to thE" branch forX > X,. At an upstream boundary,
transition fromk'~ for X < X, to k"~ for X > X, occurs.

WhenX — X, from within the nonlinear region, the amplitude of the nonlinear wave train decays, nonlinearities
weaken, higher harmonics become slaved to the fundamental, and eventually a linear instability wave takes over. In
the present section, we show how the connection between linear and nonlinear solutions is achieved across a narrow
transition layer located &, .
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Let us focus on an upstream transition layer{tli.e., the solution is fully nonlinear foX > X, and decays
exponentially forX < X,;. The same analysis applies in the downstream transition layey. (he asymptotic
behavior of the nonlinear wave traidg0; k, X) is first derived agk, X) approaches the neutral stability boundary
of the nonlinear balloon (Section 5.5.1). This result is then used along the particulakPas), X) to derive
expansions for the modulus (Section 5.5.2) and phase (Section 5.5.3) of the global n¥de s This outer
expansion is shown in Section 5.5.4 to match with the inner solution prevailing in the transition layer. Finally, the
inner solution is matched in Section 5.5.5 to the outer linear WKBJ approximation prevailing in the XegioXj, .

5.5.1. Weakly nonlinear behavior

In the nonlinear balloon of theX, k)-plane characterized bsyi' (k, X) > 0, the governing equation (1) admits
local solutions of the form (50). Let us first study the behavior of the periodic funcfigfisk, X) inthe(k, X)-plane
as(k, X) approaches the boundary of the nonlinear balloon,mh(k, X) | 0.

The nonlinear operatgf[y/] in (1) is expanded in powers @f so as to read

W L@ 0T+ 3 N 60 DLV, (101)

ot r=2

where the operators are ofrth order iy . In all generality, eacV, depends o@,, but to simplify the subsequent
computations, it is assumed that thg’s do not involve spatial derivation, i.e.,

N: (0, O[Y] = N (X9 (102)

The results would remain valid for any nonlinear operator with spatial derivatives, but the notation and results
become unwieldy in more general cases. The method is easily extended to specific examples.
The 27 periodic functiond is expanded as the Fourier series

vk, X) = Zl]/(")(k, X) e, (103)
n

wherey ™™ = (¢ ™)* Due to the invariance of the governing equation under the transformatiend + CS,
w D (k, X) may be chosen to be real for ea@h X).
Substituting (102) and (103) into (101) yields the equations for the harmonic componé@nts of

o

AW, X)Wk, X) =Y NA(X) Y ek, X) vk, X) (104)
r=2 ny+-+ny=n

with the definition

AD (&, X) = n2"(k, X) — 2'(nk X).

Wheng! (k, X) | 0, the termA® (k, X) vanishes, whereas th&™ (k, X) remain finite for|n| # 1. Thus, in this
limit, the components wittn| £ 1 are slaved to the fundamental= +1 and scale as

O[Ok, X)H"] if n #0,
v (k, X) = 105
0 Ol¥WDk, Xx)?] ifn=0, (105)

whenSZiI (k, X) | 0. The dominant terms of (104) far= 2 read

AP (e, X)W (k, X) = IN2(X)[¥ P (k, X)]% + O[(w D)4, (106)
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and forn = 0,

AQ %k, X)w Ok, X) = 2iINo(X)T D (k, X)w D (k, X) + O[(wD)4. (107)
Forn = 1, Eq. (104) yields

APk, )0 Dk, X) = 2iN2(XO[¥ Pk, X)w Dk, X) + ¢ Dk, )@ Ok, X)]
+3iN3(X) T Dk, X) 2@ Pk, X) + O[(wD)d]. (108)

Substituting (106) and (107) into (108) yields the leading-order expressian‘for

0k 08 ~ 3iN3(X) — 2N2(X)2((f/(zfg’(l}<(,))()) +(2/A0k, X))’ (109)
Thus,

v Pk, X)P = 0[aP k, X)],
and

v Dk, X) = O[/ 2!k, X)]. (110)

5.5.2. Asymptotic amplitude decay of outer nonlinear wave trains

The preceding results, valid for ar, X) when Qi' (k, X) | 0 are now used to derive the asymptotic behavior
of the nonlinear wave train (57) of specific frequengyasX | X;. Let us expand the nonlinear solution (57) into
harmonic components as follows:

X
YO KX, X) = 3 (05" 00 + vy 00+ ~-)exp{in <%/ K () e — wgr>} : (111)
Then, according to (103),
1//(()”)()() — tp(l’l)(krll()()7 X) einGO(X).
From (105) and (110) witl2! (k"' (X), X) = O(X — X,), it follows that, for eact: # 0,
Wén)(x) —O[(X —X)"/?] as X | X,. -

The asymptotic behavior oﬁél)(X) for X | X, is derived from (109) as

I/I(gl) (X) ~ WO(l) ei@o(X) (X _ X[)l/z (113)
with
@
N A
5P = Xt (114)

3iN3, — 2(N2.)2(1/AP +2/40)

where subscript means evaluation & = X, andk =k, = k"(X,), and

(@h) d @ g0l
AX = —A k(X)) X .
o dX ( ( ) ) X Xl



B. Pier et al./ Physica D 148 (2001) 49-96 91

In the same fashion one obtains for the second harmonic

with, according to (106),
s _ Nor @2
Vo = 0 (20N (116)
t

In the bulk of the nonlinear region the harmonic spectrum is fully developed but towards the neutral stability
boundary the higher-order harmonics become slaved to the fundamental. Since the higher-order harmonics decay
faster than? (D as the neutral stability boundary is approached, the nonlinear solution is approximated by a purely
sinusoidal wave of vanishing amplitude. Matching to a linear solution in the regjien X, therefore becomes
possible.

5.5.3. Diverging slow phase of outer nonlinear wave trains

So far only the behavior of the amplitude Es| X; has been obtained. In this section the asymptotic behavior
of the slow phaséy(X) near the neutral stability boundary of the nonlinear region is computed.

Let us write the phase solvability condition (56) as

do, , 1 dk" . , [ dk™
0= d—}?wj, L'wy) + EEW’@T’ L'y + <t1/(;r, L (E% + wx>>. (117)
According to (103) the nonlinear solutiah admits the expansion
W (0 + 00(0): K"(X), X) =Y v " (X), X) 0 gt
n

Tedious but straightforward calculations [35] based on this Fourier expansion lead to the asymptotic behavior of
the various inner products appearing in (117). One ultimately finds that

W L) = (X — X)L (ke X0 + el 02 + O[X — X)),
W L) = (X — X)L (ks Xo) + cClP 2+ O[(X — X2,

<%T, Lk + ) = 3L Gkes X0) + ce]l¥dV 12 + 01X - X,].
Upon substituting these results into (117), the governing equation for the slow phase at the boundary of the nonlinear
region becomes

dX = 2X - X, Rel/(ik:; X))
Hence 9y diverges logarithmically as

+0[(X — X))

Bo(X) = In(X — X;) + C'+ O[X — X,], (118)

whenX | X;.

5.5.4. Inner transition layer solution
The asymptotic matching of a finite amplitude nonlinear wave train to an exponentially decaying linear solution
takes place via a narrow inner transition layeKatetween the nonlinear and linear regions.
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Define an inner variabld in the neighborhood ok, by X = X, + ¢1/2X. The outer solution obtained in the
previous section is rewritten in terms of this inner variable. The fast phasads

1 x,+el/2x 1 B
=- / K" () du — wgt = (kx — wgt) + EkQ'JXZ + O@Y?), (119)

whereas the slow phasg of Eq. (118) is expanded as

0 T2ReLl/(ik;: X;)
Thus, asX | X;, keeping only the leading-order terms in the harmohi¢s< 2 of the outer solution given by (111)
yields the following expansion:

In X + CS. (120)

- - ; ~ [IN
w ~ 61/4X1/2[l1/c§1) e|(9+90) + C.C.] + El/2X (AZZ[(lp(l))ZeZ |

t

) + 0.

(121)

A(°>

This behavior of the outer solution in terms of the inner variablsuggests to expand the harmonic components
of the inner solution as

v~ ZE”/A'(W('I)(X, X) + el/zﬁ;%(x, X) +---)e e (122)

with 1/[(0) 0 sincey @ = Oy ®|2). Each component of the inner expansion has to be matche¥ fer +oco
with the corresponding component of the outer expansion in the nonlinear region. Due to the presence of slow and
fast spatial scale¥ andx, the spatial derivative in the governing equation (1) now reéds 61/28;(.

Forn = 1, the leading-order problem reads

wgls” =L@ X)[P5"].
Hence

IO = A9 &) b, (123)
whereA )(X) is a slowly varying amplitude. Faor = 2, the leading-order problem reads

20g0” =L@ X1 = iN2, 96 05, (124)

which yields the solution
N- .
32 = | (22; [AD (X))2 Pk, (125)
At

Forn = 0, the ordee!/? problem
0= Ly X)[T1 3] + 2N2, 196" P
yields

©  2iNz;

Vi = A0 1Ag (D). (126)
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Forn = 1, the ordek /2 terms read

0 = iwgy)) + L0 X)) + [£/ (0 X)dg + XLx (0 X0]vg”
+3N3, 9P 10 + 2Na [0 05 + Iy (127)
This inhomogeneous differential equationdradmits solutions fow(l) only if the resonant part ine* of the

forcing terms vanishes. Upon using (123), (125) and (126) in (127) this leads to the solvability condition

0=L'(ik;; X )dg‘(’l)
— g t dX

. - ) = . 1 2 ey 1
+ Lx ik XN XA (%) + <3N3,, +20(Np)? (F + F)) A5 OPAG (X
t t

(128)
This amplitude equation foﬁ(l) (X) is of the form
A(()l) BN N AD 52y AD %
15 + ((ar +1a))X + (by +1bi)|Ag" (X)|9) Ay (X) =0, (129)
and its solutions are
AP(X)  expl-3(a, +ia) X2 — 3i(bi/by) N+ 26, | A5 (0)2 [ X gran? du)]’ (130)

A -
49" 0 \/ 1+ 25, 1AL 0)12fF ey

WhereA(l) (0) is the integration constant. Matching of the inner soluﬁrq(ﬁ to the outer nonlinear solutlap(l)
of (113) requires thauA(l)(X)| ~ \/}asX — +o00. This implies that

- +oo -1
1+ 2b,|A§,1)(0)|2/ e du =0, [APO))2= " /%L
0 br T

With this value for|A(1) (0)| the inner solution (130) admits fdf — +oo the asymptotic expansion

~(1y  ~ / ~ i b; ~ bi -
Aél)(X) ~ _a_rX exp= a, —a X2+ Zinx +C¥. (131)
br 2 br br

Comparison of (128) and (129) yields

(€]

. Lx (iks; X;) o . 2 (1) AXt Q=2 [ :nl Lx (iks; X1)
g = ——-—+— = —lky ,, b ib; = | —_— —lI/ ik _
ot = e X)) Ko beib = gD s = e (IR T

with [ |2 obtained in (114). Thus,

ar A (D)2 b; bi  ImL'(ik;, X;)
— = |¥,7)%, — =k —_— =
b, ~ 1Yol b, T T X b, ReLl(k, X;)
This completes the proof that the fundamental component of the outer nonlinear solution gi\_/en by Eq. (121)
completely matches the fundamental component of the inner weakly nonlinear saiﬂﬁdnél)(X) g tkix—wgh)

whereA$" (X) is given by (130).
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5.5.5. Matching to the outer linear solution
As X 1 X, the outer linear WKBJ approximation (39) reads, at leading order,

. i -
Y~ Ab(X,) e kg exp(ékl)(’,Xz) +c.c., (132)

when expressed in terms of the inner variakleUsing (130), the asymptotic behavior of the inner solution as
X — —oo yields

AP ) | ar +iaj -, i b
~ /A0 7 dkix—ogh gy T T %2 — L n2) 4 coc. 133
LY o5 - 5 m2) ¢ (139
Sincea, + ia; = —ik'X’,, both expansions (132) and (133) asymptotically match provided that

ot
Alx,) = 40O b2y,
° V2

Thus, at leading order, the weakly nonlinear inner expansion (133) exactly matches the outer linear WKBJ approx-
imation (39). In the inner transition layer the slaved higher-order harmonics seat¢hand automatically match
their slaved counterparts in the outer linear region.

6. Conclusions

It has been demonstrated that a wide class of one-dimensional nonlinear evolution equations with spatially varying
coefficients may support two types of fully nonlinear self-sustained global modes in a doubly infinite domain. Steep
global modes are triggered by the presence of a sharp stationary front located at the upstream transition point between
local convective and absolute instability. This front acts as a source and imposes its real absolute frequency to the
entire medium. Soft global modes are due to the presence of a saddle point of the local nonlinear dispersion relation
which again acts as a source and imposes its frequency to the entire medium, as given by saddle point conditions.

A necessary condition for the occurrence of either of these modes is the existence of a region of local absolute
instability. Recall that linearly unstable global modes given by a complex saddle point of the local linear dispersion
relation [7,25,30] also require a range of local absolute instability. But, this range must in general be of finite
extent whereas nonlinear global modes exist, however small the AU domain. The relationship between linear global
instability and the existence of fully nonlinear global modes is non-trivial: in the generic case, nonlinear global
instability does not coincide with linear global instability. The nature of the various global bifurcation scenarios
constitute the major result of the present investigation. Steep global modes occur right at local absolute instability
onset below the linear global instability threshold, via a saddle-node bifurcation, while the medium is still linearly
globally stable.

Soft global modes generically do not appear at local absolute instability onset but only for a sufficiently large
domain of local absolute instability. Furthermore, they are more likely to be observed in systems with weak advection.
It is essential to note that steep and soft global modes are mutually exclusive, as dictated by the relative magnitude
of their respective frequencies. The existence and selection of either kind of global modes has been confirmed by
direct numerical simulations of the CGL equation with varying coefficients for small but finite valuesfsfa
word of caution, it should be stated that soft global modes are likely to be more fragile than their steep counterparts.
They may become unstable whenever the region of local absolute instability protrudes beyond the central nonlinear
regions, in the tails of the extended wave packet. This lack of robustness is all the more acute as the WKBJ limit
€ = 0 is approached.
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In several physical systems [1,37] linear and nonlinear global instabilities have been found to occur at the
same value of the global control parameter. This peculiar feature takes place in situations where the entire spatial
dependence is accounted for in a single real spatially varying parametet(Xaywhich displays an extremum
at a real positionX™® such that ®(X™®)/dX = 0. Under these circumstances, the local linear dispersion
relation is necessarily of the for®' (k, X) = .Ql[k, R(X)] and the local absolute frequency is readily obtained
aswo(X) = wo.[R(X)]. The real stationk ™ is then simultaneously associated with a maximura®f(X) and
with a saddle poink’, of wo(X).

The analytical structure underlying the spatial distribution of steep and soft global modes has been systematically
derived in the WKBJ approximation <« 1. It has been shown that for a wide class of one-dimensional evolution
equations the various inner layers and outer regions may be matched together to arrive at a consistent description
valid over the entire spatial domain. In particular, higher-order frequency corrections have been obtained.

It should be emphasized that the different transition scenarios depend on the precise form of the linear and
nonlinear dispersion relations. Due to the humber of parameters required to specify the spatial variations of the
medium, only situations of physical significance have been presented and a comprehensive survey of all possible
configurations has not been attempted.

This study has been undertaken in order to understand the nature of synchronized structures in real slowly
varying open shear flows. In the latter framework, the local linear dispersion relation is obtained from the Rayleigh
or the Orr—Sommerfeld equation, whereas the local nonlinear dispersion relation requires the computation of finite
amplitude structures in a streamwise periodic interval. In this context, steep global modes may be constructed as
reported elsewhere [35,36].
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