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NONLINEAR SYNCHRONIZATION IN OPEN FLOWS
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The selection criteria governing "nite-amplitude synchronized oscillating states are discussed
for model systems and real wake #ows in a domain of in"nite streamwise extent. Two types of
nonlinear global modes are possible: hat modes with overall smoothly varying amplitude and
elephant modes with a sharp front. The vortex street in wake #ows is of elephant type, as
observed in direct numerical simulations of a real spatially developing wake. Furthermore, the
elephant frequency selection criterion is in excellent agreement with the numerically determined
vortex shedding frequency. ( 2001 Academic Press
1. INTRODUCTION

A VARIETY OF OPEN FLOWS may sustain globally synchronized oscillations. Wakes behind
blu!-bodies are well known [for a review see Williamson (1996)] to undergo a transition to
a periodic vortex shedding reH gime at moderate Reynolds numbers. Experimentally and
numerically, the features of a globally synchronized vortex street are now well documented
[e.g., Provansal et al. (1987), Hammond & Redekopp (1997)]. However, the selected
frequency of the global structure has not been theoretically predicted in the framework of
hydrodynamic stability theory. The aim of the present paper is to discuss recent progress
made in the identi"cation of resonance mechanisms which are responsible for global
synchronization in spatially developing #ows. We restrict here our attention to one-
dimensional complex Ginzburg}Landau (CGL) equations with spatially varying coe$-
cients in an in"nite domain and to two-dimensional spatially developing wake #ows
governed by the Navier}Stokes (NS) equations. The paper is mainly based on the recent
dissertation of Pier (1999) and the corresponding publications by Pier & Huerre (1996),
Pier et al. (1998), Pier et al. (2001) and Pier & Huerre (2001). For a general background on
the hydrodynamic stability theory of spatially developing #ows, the reader is referred to the
review articles and tutorial presentations of Huerre & Monkewitz (1990), Huerre & Rossi
(1998) and Huerre (2000). A brief summary of relevant issues is given below.

The existence of self-sustained oscillations in shear #ows is closely related to the
transition from convective to absolute instability (Briggs 1964; Bers 1983). In convectively
unstable (CU) systems, the basic #ow carries growing perturbations away in the down-
stream direction, and the system eventually returns to its unperturbed state. Hence, if a #ow
changes from local stability to convective instability, only its transient response to perturba-
tions is a!ected. In a locally stable con"guration all perturbations are damped, whereas in
a CU basic #ow they grow in the downstream direction. In the latter con"guration,
perturbations eventually leave the domain of interest: in the long term, the #ow is globally
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stable and it may only be kept out of equilibrium if perturbations are continuously entering
the in#ow boundary. Thus, CU #ows may be interpreted as amplixers since perturbations
entering the inlet grow along the stream until they leave the system at the outlet.

In contrast, transition from convective to absolute instability drastically changes the
dynamical behaviour. In absolutely unstable (AU) systems, instabilities grow in situ and
survive for all times. A self-sustained nontrivial state may therefore be observed without
external input. Thus, as far as the long term asymptotic behaviour is concerned, transition
from local stability to convective instability proves irrelevant, whereas transition from
convective to absolute instability plays a crucial ro( le.

The above-mentioned instability properties are de"ned for in"nite and spatially
homogenous systems. Since real #ows develop in the streamwise direction, stable, CU and
AU domains may coexist as the local properties vary along the stream. Under the
assumption that the streamwise variations be small on a typical instability length scale, the
previous de"nitions still apply locally at each streamwise station. In wake #ows at
moderate Reynolds numbers, which are of particular interest to readers of this Special
Issue, the transient reH gime leads to a stationary time-periodic state; the #ow globally
behaves as an oscillator. Characteristics such as spatial structure and global frequency
become intrinsic to the #ow: They are selected in the bulk and largely independent of in#ow
conditions.

The following questions then arise. (i) Under which conditions does global instability
occur? Does global instability coincide with the onset of local absolute instability or is an
AU domain of "nite extent required? (ii) In the case of globally synchronized oscillations,
how is the global frequency determined? Which part of the #ow acts as a wave maker?
(iii) How is the global behaviour a!ected by nonlinearities? Are "nite-amplitude oscilla-
tions governed by linear or nonlinear selection criteria? What is the importance of the mean
#ow correction generated by nonlinear interactions?

In the following, these issues are preferentially addressed in the context of streamwise
developing #ows in an inxnite domain, whether in the form of CGL model equations or real
wakes. In the latter instance, we solely consider wakes produced by a velocity de"cit
introduced at some streamwise station and boldly set aside the wake producing body. This
assumption is in marked contrast with the recent investigations by Couairon & Chomaz
(1997, 1999a, b) of nonlinear global modes governed by one-dimensional CGL model
equations in semi-inxnite domains. In this case, global mode onset takes place whenever
a front succeeds in propagating upstream against the advecting #ow, thereby getting pinned
at the upstream boundary point. This precisely takes place when transition from convective
to absolute instability occurs at the upstream boundary. Furthermore, Couairon &
Chomaz (1999b) have derived scaling laws for the global mode characteristic length scale
and its streamwise shape near onset which are in excellent agreement with experimental and
numerical studies of vortex shedding behind blu! bodies by Goujon-Durand et al. (1994)
and Zielinska & Wesfreid (1995). Such a scenario is also supported by the direct numerical
simulations of the nonlinear impulse response in parallel wakes conducted by Delbende &
Chomaz (1998): although the impulse response is of "nite amplitude, its upstream edge is
governed by linear dynamics.

2. SCALE SEPARATION

The theoretical formulation underlying all global mode analyses, whether linear or non-
linear, essentially relies on the assumption of slow streamwise variations of instability
properties. This hypothesis is required if one is to establish a speci"c relationship between
global behaviour and local properties.
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At an intuitive level of understanding, in open systems the mean #ow introduces
a preferred streamwise direction along which the entire dynamics develops. Let x denote the
streamwise distance, increasing from the inlet to the outlet. The coordinate x appears both
as a variable in streamwise derivative operators related to the instability properties and as
a parameter to account for the streamwise evolution of the basic #ow. If j denotes a typical
instability length scale and ¸ the streamwise evolution length scale of the basic #ow, weak
inhomogeneity is characterized by the small parameter

e,
j
¸

@1. (1)

Under assumption (1), the parametric streamwise dependence of the dynamics only occurs
through the slow coordinate X"ex. At leading order, the slow parameter X may be
considered independent of the fast variable x. Local instability characteristics are then
retrieved by freezing X in the governing equations and studying the equivalent homogenous
system in the in"nite domain !R(x(#R. Hence the fast evolving local dynamics is
slaved to the slow evolution of the basic #ow. This technique is fully justi"ed by resorting to
the method of multiple scales (Crighton & Gaster 1976; Bender & Orszag 1978).

3. MODEL FLOWS AND REAL FLOWS

The global behaviour of spatially developing #ows has typically been studied in the context
of the one-dimensional CGL model or the complete two-dimensional Navier}Stokes (NS)
equations.

The spatially inhomogenous Ginzburg}Landau evolution equation for a complex "eld
t(x, t) may conveniently be written as
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denote the absolute frequency and wavenumber, respectively, u
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second derivative of the frequency with respect to wavenumber. The choice c
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ensures that nonlinearities are stabilizing everywhere. All complex coe$cients of equation
(2) depend on X"ex to enforce assumption (1) of weak spatial inhomogeneity.

For two-dimensional incompressible #ows, the total streamfunction W (x, y, t) is governed
by the nondimensional vorticity equation
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where y denotes the cross-stream coordinate and Re the Reynolds number. Real #ows ful"ll
the assumption of slow streamwise development in high Reynolds number situations, and
the inhomogeneity parameter then reads
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When e@1, the leading-order time-independent basic #ow resulting from (3) obeys the
Prandte boundary-layer equation
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where the streamwise pressure gradient dP/dX arises as an integration constant. Basic
streamwise and cross-stream velocity components are then obtained as ;(y ;X)"LW/Ly
and <(y ;X)"!eLW/LX, respectively. Decomposition of the total streamfunction into
basic "eld and "nite-amplitude perturbations according to W (x, y, t)":y

0
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t(x, y, t) yields the governing vorticity equation for t (x, y, t) as
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Although real #ows are two dimensional, there is only one slow streamwise coordinate
X that accounts for the evolution of local instability properties as described by a local
dispersion relation. The study of two-dimensional #ows is more complex since cross-stream
eigenfunctions have to be computed; however, the analysis of CGL or NS global modes
proceeds in exactly the same manner since all the fast evolving features are slaved to X.

Note that in the CGL model (2) any variations of the complex coe$cients with X may be
considered. In the hydrodynamic context (6) however, the basic #ow;(y;X) governed by (5)
is uniquely determined by the inlet velocity pro"le, say ;(y;X"0), and the streamwise
pressure distribution P (X) for X'0. In a self-consistent formulation, the velocity pro"les
;(y;X) appearing as coe$cients in (6) cannot be arbitrarily speci"ed. In the present
analysis, a co#owing wake pro"le is chosen for ;(y; X"0) and the pressure "eld P (X) is
then carefully tailored so that the essential features of experimental wake #ows are
reproduced. In this procedure, a &&synthetic wake'' is thereby generated without requiring
the presence of a solid obstacle [cf. Figure 2(a)]!

4. LINEAR RESONANCE CRITERION

In a stricly linear framework, theoretically consistent results have "rst been derived by
Chomaz et al. (1991) for the linear version of model (2) and by Monkewitz et al. (1993) for
the linear version of the vorticity equation (6). The essential physical property is the
complex local absolute frequency u

0
(X) de"ned in classical fashion (Briggs 1964; Bers 1983)

by imposing a zero group velocity condition on the local linear dispersion relation

u"X l (k,X). (7)

The form of the CGL model (2) already displays its dependence on u
0
(X), whereas for real

#ows the dispersion relation (7) is derived by solving the Orr}Sommerfeld equation applied
to the velocity pro"les ;(y;X) prevailing at each station X.

The criterion for linear global instability is then based on the variations of u
0
(X) and

states that the complex frequency ul

s
of a self-sustained linear global mode is given by the

saddle-point condition
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where it is understood that u
0
(X) has been analytically continued in the complex X-plane.

In general, the saddle point Xl

s
does not occur on the real axis, and linear global instability

characterized by Imul

s
'0 requires an AU region of xnite extent in the slow variable X.

Thus, in the linear framework, absolute instability is a prerequisite for global instability.
However, it is not a su$cient condition: Linear global modes are observed to decay in time
for AU domains of "nite but small extent in X, which may correspond to very large AU
domains in terms of x.

The typical shape of a linear CGL global mode is sketched in Figure 1(a). Note that, in
general, maximum amplitude occurs downstream of ReXl

s
.

5. NONLINEAR RESONANCE CRITERIA

A weakly nonlinear approach (Le Dizès et al. 1993) conducted close to the onset of global
instability speci"ed by Imul

s
"0 has proven that the bifurcation analysis is ill-behaved and

suggested that only a fully nonlinear theory is appropriate. In the nonlinear framework, two
types of "nite-amplitude oscillating states have been identi"ed for the inhomogenous CGL
equation in in"nite media: soft or hat (Pier & Huerre 1996) and steep or elephant (Pier et al.
1998) nonlinear global modes [cf. Figure 1(b, c)]. Their selection criteria are obtained from
the local linear and nonlinear dispersion relations, as summarized below.

The local nonlinear dispersion relation is de"ned via a temporal evolution problem in the
following way. Consider a homogenous medium obtained by freezing X at a prescribed
value. An unstable spatially periodic perturbation of real wavenumber k grows according to
X l

i
(k,X)'0 until its amplitude reaches a "nite level. Due to stabilizing nonlinearities,

a fully nonlinear wavetrain is generated with spatial periodicity imposed by the initial
wavenumber. Its frequency, measured for each k, then yields the nonlinear dispersion
relation

u"Xnl(k,X). (9)

Whereas the local linear dispersion relation (7) yields a complex frequency for any complex
wavenumber, the nonlinear dispersion relation (9) is de"ned only for real wavenumbers
k associated with a positive growth rate X l

i
(k, X)'0 and it necessarily yields real frequen-

cies. For the CGL model (2), nonlinear wave-trains are "nite-amplitude harmonic waves of
the form Re*(kx~ut) and (9) reads u"Im (c*(X) X l (k, X))/Im c*(X). Computation of (9) for
real #ows, however, requires a numerical integration as discussed by Pier & Huerre (2000).

Hat global modes [Figure 1(b); Pier & Huerre 1996] have an overall smoothly varying
amplitude, and their real frequency unl

s
is selected at a saddle-point Xnl
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Elephant global modes [Figure 1(c); Pier et al. 1998] are characterized by a sharp front
governed by the Dee & Langer (1983) marginal stability criterion and located at the
upstream transition station Xca between CU and AU regions. The entire structure is tuned
to the front frequency given by the corresponding real absolute frequency

uca
0
"u

0
(Xca) with Imu

0
(Xca)"0. (11)



Figure 1. Shapes of CGL global modes. Shaded regions indicate extent of AU domain. (a) Linear global mode.
(b) Nonlinear soft global mode or hat mode. (c) Nonlinear steep global mode or elephant mode. The names &&hat''

and &&elephant'' have been chosen in reference to Saint}ExupeH ry (1946).
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The detailed analysis of the transition scenarii between the unperturbed state and either
type of nonlinear global mode reveals (Pier 1999, Pier et al. 2001) that the two nonlinear
resonance criteria (10, 11) are mutually exclusive and that the appropriate global bifurcation
parameter is the maximum absolute growth rate over the entire medium u.!9

0,i
,

maxu
0,i

(X). Nonlinear global modes exist whenever an AU region is present (u.!9
0,i

'0). At
transition (u.!9

0,i
"0) an elephant mode is always selected. Hat modes exist further above

threshold and are more readily obtained in systems where the basic advection velocity is
weak. Absolute instability is therefore a necessary and suzcient condition for the existence
of self-sustained nonlinear structures. This is in contrast with the results of Section 4: Local
absolute instability is only a necessary condition for the existence of ampli"ed linear global
modes.

6. FINITE-AMPLITUDE VORTEX STREET AS AN ELEPHANT MODE

The generalization of the above nonlinear theory to real #ows governed by the
Navier}Stokes equations has been conducted by Pier (1999) and Pier & Huerre
(2001).

In order to obtain unambiguous results that can be compared with the theory, the basic
#ow has to strictly comply with the condition of weak streamwise nonuniformity. Blu!
body wakes display a recirculation bubble near the obstacle which violates this assumption.
The &&synthetic wakes'' governed by the Prandtl boundary-layer equation (5) all avoid this
di$culty. In the example represented in Figure 2(a) for Re"100, the pressure gradient has
been selected to be mildly adverse in order to produce a central AU region (displayed in
gray), which is an essential feature of real wakes.

Direct numerical simulations of the temporal evolution of this basic #ow [see Pier &
Huerre (2001) for details] leads to a "nite-amplitude vortex shedding reH gime [Figure 2(b)]
tuned at a well-de"ned global frequency u

g
"0)186$0)002. This vortex street is made

up of wave-trains which slowly deform while travelling downstream: such structures
are locally periodic and their (x, t)-dependence solely occurs via a phase function with only
slow streamwise variations. Hence the multiple-scale formalism (Bender & Orszag 1978)
applies and the global structure may be analysed in terms of local linear and nonlinear
waves.

In the upstream domain (x(25), the basic #ow is seen to remain unperturbed: small-
amplitude wave-trains prevail in this linear region. Further downstream, nonlinear travel-
ling waves develop and completely mask the underlying basic wake #ow. In order to
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establish that the nonlinear globally synchronized state [Figure 2(b)] follows the elephant
resonance criterion (11), its numerically determined features are now compared with
predictions based on the local linear and nonlinear instability analyses of the basic #ow
[Figure 2(a)].

The computation of the local linear dispersion relation (7) via the Orr}Sommerfeld
equation reveals an AU domain extending over the streamwise interval 24(x(55 (gray
regions in Figure 2). The real absolute frequency prevailing at its upstream boundary
xca"24 reads uca

0
"0)190. The nonlinear resonance criterion (11) therefore accurately

predicts the vortex shedding frequency, unlike the linear criterion (8) which yields
ul

s
"0)143#0)008i.
The local nonlinear dispersion relation (9) is illustrated in Figure 2(c) by isofrequency

contours in the linearly unstable domain of the (X, k)-plane. These contours precisely de"ne
the nonlinear spatial branches knl (X, u) obtained by solving the nonlinear dispersion
relation (9) at a given frequency. A global mode synchronized at the frequency uca

0
is

expected to follow the spatial branch knl(X,uca
0
) represented by a thick dashed curve. The

local wave number of the numerically computed spatially developing vortex street
[Figure 2(b)] is represented by a thick solid curve in the same sketch and it is seen to closely
follow the path predicted by the elephant global mode structure.

The xnite-amplitude vortex street is thus described by a nonlinear elephant global mode. This
theory not only accurately predicts the vortex shedding frequency but also the spatial structure
of the downstream developing vortex street.

The mean-yow correction, which is absent in CGL models, is speci"c to real shear #ows.
Indeed, nonlinear quadratic interactions in the NS equations generate a time-independent
mean-#ow component as well as higher harmonics. In the fully developed vortex shedding
reH gime, the total mean #ow then results from the superposition of the basic #ow
[Figure 2(a)] and the mean-#ow correction [Figure 2(d)]. According to Figure 2(d), the
mean-#ow correction tends to "ll up the velocity de"cit in the wake. It is instructive to
compare the results of direct numerical simulations with those emerging from a temporal
evolution problem pertaining to a parallel wake frozen at a prescribed X station and
perturbed with a spatially periodic wave of wavenumber knl (X, uca

0
). Via this procedure,

a "nite-amplitude wave-train is obtained for large time, the frequency of which is precisely
uca

0
. Local mean-#ow corrections are thereby computed for each station X, which may be

pieced together to generate a spatially evolving mean correction "eld as displayed in
Figure 2(e). The agreement between direct numerical simulation [Figure 2(d)] and local
predictions [Figure 2(e)] is less satisfactory than for the unsteady part of the #ow "eld
[Figure 2(c)]. Whereas in the limit of vanishing inhomogeneity, the local analysis predicts
a mean-#ow correction of almost constant cross-stream width, the width of the mean #ow
in the direct numerical simulation is seen to increase with downstream distance. The
mean-#ow correction "eld is generated in the central shear region by nonlinear interactions
and slowly di!uses on a viscous scale into the outer cross-stream direction. This di!usion
process takes place in time [Figure 2(e)] or along the stream [Figure 2(d)], and there is no
obvious relationship between these two situations.

7. CONCLUSIONS

We are now in a position to answer the questions listed in the introductory section.

1. In a strictly linear approximation global instability in general requires an AU region of
"nite extent, whereas nonlinear global instability takes place as soon as local absolute
instability arises at some point in the yow. When nonlinearities are present, the linear
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resonance criterion (8) becomes irrelevant. It is the existence of a transition point from
convective to absolute instability which is crucial in the establishment of a self-sustained
nonlinear state.
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Note that the real cylinder wake becomes absolutely unstable at Re&25, whereas onset
of vortex shedding occurs only for Re&46. This discrepancy is presumably due to
a violation of the assumption of slow spatial development in the neighborhood of the
obstacle.

2. The complex frequency of a linear global mode [Figure 1(a)] is obtained at a saddle
point Xl

s
of u

0
(X) analytically continued in the complex X-plane see (8). Due to this

continuation procedure, no frequency generating location may be identi"ed in physical
space; note however, that the region of maximum absolute growth rate plays an essential
part. In contrast, the global frequency of nonlinear global modes [Figure 1(b, c)] is selected
at a speci"c location: either the saddle point Xnl

s
of the nonlinear dispersion relation (10) or

the upstream boundary Xca of the AU region (11). These nonlinear resonance criteria are
purely local in the sense that only the properties of the system at these stations are involved.
In the case of wake #ows, the vortex street is triggered by a front structure at Xca which acts
as a source and imposes its frequency to the entire #ow.

3. The selection mechanisms pertaining to hat and elephant nonlinear global modes are
markedly distinct. The hat frequency selection criterion (10) involves a saddle point of the
nonlinear dispersion relation (9) in the bulk of the "nite-amplitude region [Figure 1(b)].
Elephant modes [Figure 1(c)] are selected by a front located at the upstream boundary of
the AU domain; "nite amplitude wave-trains develop downstream of this location. Since the
elephant frequency selection criterion (11) only involves the linear dispersion relation, this
variety of nonlinear global mode is surprisingly governed by a local linear criterion.

Finite-amplitude vortex shedding in wakes generates a mean-#ow correction comparable
in magnitude to the basic #ow. Nonlinearities thus completely modify the underlying basic
#ow which becomes unobservable unless one arti"cially kills the perturbations by imposing
for example a symmetry condition.

The comparison between the results of direct numerical simulations and locally com-
puted nonlinear wave-trains has demonstrated the validity of a linear and nonlinear
analyses based on a scale separation assumption. The theory has led to the identi"cation of
two varieties of global modes: elephants and hats. The vortex street has been shown to be of
elephant type with a front located at the convective-absolute instability transition point
imposing its frequency to the entire #ow. There remains to determine a real #ow that
sustains a global mode of hat type. Rayleigh}BeH nard convection in the presence of
a horizontally varying temperature di!erence or Taylor}Couette #ow between rotating
coaxial cylinders with a varying gap may be good candidates for such a situation since there
is no basic advection.
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