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In this paper it is shown that the two-dimensional time-periodic vortex shedding
régime observed in the cylinder wake at moderate Reynolds numbers may be inter-
preted as a nonlinear global structure and its naturally selected frequency obtained
in the framework of hydrodynamic stability theory. The frequency selection criterion
is based on the local absolute frequency curve derived from the unperturbed basic
flow fields under the assumption of slow streamwise variations. Although the latter
assumption is only approximately fulfilled in the vicinity of the obstacle, the theoreti-
cally predicted frequency is in good agreement with direct numerical simulations for
Reynolds numbers Re > 100.

1. Introduction
Strouhal (1878) appears to be the first to have studied the periodic features pro-

duced by the movement of a cylindrical body in air. Ever since, experimental frequency
measurements have been refined and the relationship between Strouhal vortex shed-
ding frequency and Reynolds number is now well established, e.g. Provansal, Mathis
& Boyer (1987), Williamson (1988), Norberg (1994), Leweke & Provansal (1995); for
a review see Williamson (1996). On the theoretical side, understanding of the spa-
tiotemporal dynamics of oscillatory flows has proceeded by successively considering
linear model equations (Chomaz, Huerre & Redekopp 1991; Le, Dizès et al. 1996),
the linearized version of the Navier–Stokes equations (Monkewitz, Huerre & Chomaz
1993), and nonlinear model equations on semi-infinite (Couairon & Chomaz 1996,
1997a, b, 1999a, b) and infinite (Pier & Huerre 1996; Pier et al. 1998; Pier, Huerre
& Chomaz 2001) domains. In the framework of the fully nonlinear Navier–Stokes
equations, the frequency selection criterion has been obtained (Pier & Huerre 2001a)
for a particular ‘synthetic’ wake: a wake with no solid obstacle and no reverse flow
region. The objective of the present analysis is to demonstrate that the same criterion
holds for natural wake flows around solid obstacles.

In the context of spatially developing flows giving rise to self-sustained oscillations,
an essential feature is the complex local absolute frequency ω0(X) (Briggs 1964; Bers
1983; Huerre & Monkewitz 1990) which depends on the streamwise X-coordinate. In
absolutely unstable (AU) regions, characterized by ω0,i(X) ≡ Imω0(X) > 0, pertur-
bations are not swept away by advection and grow in situ thus leading to non-trivial
dynamics without external input. In the past, growing evidence has been gathered to
support the existence of a relationship between the global wake frequency and the
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ω0(X) curve derived from measured or model wake profiles, e.g. Betchov & Crim-
inale (1966), Koch (1985), Triantafyllou, Triantafyllou & Chryssostomidis (1986),
Monkewitz & Nguyen (1987), Monkewitz (1988), Hannemann & Oertel (1989), Kar-
niadakis & Triantafyllou (1989); for a review see Huerre & Monkewitz (1990) and
Huerre & Rossi (1998). Different resonance principles have been conjectured: Koch
(1985) proposed a feedback mechanism associated with the real absolute frequency
ωac

0 ≡ ω0(X
ac) prevailing at the downstream boundary Xac of the AU region. Monke-

witz & Nguyen (1987) considered an initial resonance principle where the real global
frequency ωca

0 ≡ ω0(X
ca) is provided by the upstream transition station Xca from

convective to absolute instability.
According to the first theoretically consistent criterion established in a strictly linear

setting by Chomaz et al. (1991), Monkewitz et al. (1993) and Le Dizès et al. (1996),
the complex global frequency ω`

s is given by a saddle-point condition

ω`
s = ω0(X

`
s ) with

dω0

dX
(X`

s ) = 0, (1.1)

based on the analytic continuation of ω0(X) in the complex X-plane. This linear
criterion was shown by Hammond & Redekopp (1997) to yield a strikingly accurate
frequency prediction for the fully developed vortex street in the wake of a blunt-
edged plate. Note, however, that ω0(X) in that study is based on the time-averaged
mean flow instead of the unperturbed basic flow, thus implicitly taking into account
nonlinear effects. The performance of criterion (1.1) based on mean flows will be
discussed in the final section.

In the framework of fully nonlinear amplitude evolution equations and by inves-
tigating semi-infinite domains, Couairon & Chomaz (1997a, b, 1999a, b) have derived
scaling laws that are in excellent agreement with experimental and numerical results
pertaining to the spatial structure of bluff-body wakes close to threshold. In infinite
systems, self-sustained time-periodic finite-amplitude structures have been found as
soft (‘hat’) modes (Pier & Huerre 1996) or steep (‘elephant’†) modes (Pier et al. 1998),
and the respective frequency selection criteria have been established. The analysis of
the relevant transition scenarios (Pier et al. 2001) has shown that the unperturbed
basic state always first bifurcates to an elephant structure. Moreover, hat modes may
only exist in situations of weak mean flow advection, so that they are ruled out in wake
flows. Nonlinear elephant modes are characterized by a stationary front located at
the upstream transition station Xca from local convective to absolute instability. This
front acts as a source generating a downstream-propagating nonlinear wavetrain and
effectively tuning the entire system to its frequency. The stationary front obeys the Dee
& Langer (1983) marginal stability criterion, hence the frequency of elephant modes
equals the real absolute frequency prevailing at the front location and is given by

ωca
0 = ω0(X

ca) with ω0,i(X
ca) = 0 and

dω0,i

dX
(Xca) > 0. (1.2)

Downstream of the front, a fully nonlinear wavetrain prevails that is governed by
the local nonlinear dispersion relation and follows the nonlinear wavenumber branch
of frequency ωca

0 . It should be noted that this criterion governing a fully nonlinear
global structure only involves the purely linear local absolute frequency, and that it
fully confirms the conjecture of Monkewitz & Nguyen (1987).

All theoretical analyses rely on slow streamwise variations to establish the relation-
ship between global behaviour and local characteristics. In this context, the linear (1.1)

† The choice of the terms ‘hat’ and ‘elephant’ is motivated by Pier & Huerre (2001b).
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and nonlinear (1.2) criteria yield a leading-order approximation of the respective
global frequency, and corrections of higher order in the inhomogeneity parameter are
obtained by further asymptotic analyses (Monkewitz et al. 1993; Pier et al. 2001). In
order to solve the global mode problem in the context of the fully nonlinear Navier–
Stokes equations, a ‘synthetic’ wake (Pier & Huerre 2001a) was designed that fulfils
the quasi-parallel flow assumption. In this configuration, local linear and nonlinear
dispersion relations derived from the basic flow velocity profiles predict the existence
of a nonlinear elephant mode, the global frequency and spatial structure of which are
in excellent agreement with the synchronized finite-amplitude vortex street obtained
by direct numerical simulations.

Whereas the synthetic wake was tailored to obey the assumption of slow streamwise
variations required by theory, bluff body wakes are strongly non-parallel near the
obstacle surface. Nevertheless, the present study has been undertaken, bearing in
mind that perturbation analyses often yield reasonable predictions for finite values of
the ‘small’ parameter. The results then validate a posteriori the method and assess the
utility of asymptotic analyses of quasi-parallel flows in situations of practical interest.

2. Governing equations and solution method
The following study is carried out for two-dimensional incompressible flows

governed by the Navier–Stokes equations. The Reynolds number is defined as
Re = UD/ν, where U represents the free-stream velocity, D the obstacle diameter and
ν the kinematic viscosity. Using non-dimensional variables based on D and U, the
governing momentum and continuity equations are then given by

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −∂p

∂x
+

1

Re
∆u+ fu, (2.1a)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −∂p

∂y
+

1

Re
∆v + fv, (2.1b)

∂u

∂x
+
∂v

∂y
= 0, (2.1c)

where x and y denote streamwise and cross-stream coordinates, u and v the corre-
sponding components of the velocity and p the pressure field.

For fast numerical integration, the above equations are discretized on a Cartesian
grid, and the presence of the obstacle is enforced by a penalization method similar
to that used by Angot, Bruneau & Fabrie (1999): inside the domain covered by the
cylinder (x2 + y2 6 1/4), a ‘body force’ is applied with components

fu = −u/τ and fv = −v/τ, (2.2)

where τ is a relaxation parameter. A value of τ = 0.01 was found sufficient to drive the
components of the total velocity field to negligible values, and results are not affected
when further decreasing τ. Thus, the entire domain is filled with fluid and there is no
need for body-fitted coordinates or for boundary conditions on the obstacle surface.

Spatial discretization combines finite differences with nx = nu+no+nd points in the
x-direction and ny Chebyshev collocation points in the y-direction. The streamwise
mesh is constructed with no equispaced grid points separated by δx in the obstacle
region and nu (nd) elements in the upstream (downstream) regions uniformly stretched
according to a stretching factor of κu (κd). The Chebyshev collocation points −1 6
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Figure 1. Streamwise velocity field of the basic flow around the cylinder at Re = 100. Isolines
pertain to the levels −0.1, 0.0, . . . , 1.1 (0, 1 thick lines). A reverse flow region (u < 0, shown in grey)
prevails between the obstacle and the stagnation point at xst.

ξi = − cos[iπ/(ny + 1)] 6 +1 for i = 0, . . . , ny + 1 are mapped onto the entire cross-

stream axis−∞ 6 yi 6 +∞ through the algebraic transformation y
√

2/`y = ξ/(1−ξ2),
where the parameter `y governs the distribution of collocation points on the y-axis.
Assuming that u−U, v and p vanish at y = ±∞, the computation may be restricted
to the interior collocation points associated with 1 6 i 6 ny . At the inlet the free-
stream velocity is imposed, and at the outlet non-reflecting boundary conditions (Jin
& Braza 1993) are implemented. The grid used in the present computations is defined
by ny = 55, `y = 1 and nu = 60, no = 140, nd = 300, δx = 0.01, κu = 1.10, κd = 1.02;
the total streamwise extent of the domain is then −35 < x < 195.

Time-integration of system (2.1) is performed via a fractional-step method of
second-order accuracy in time. At the intermediate time-step, the two components
of the velocity field are obtained by solving Helmholtz-type problems. A Poisson
problem then yields a correction to the pressure required to enforce divergence-free
velocity fields. A Crank–Nicholson scheme is used for the viscous terms; the advection
terms are obtained at the intermediate time-step by extrapolation based on the two
previous time-steps.

Using a Cartesian grid, the second-order y-derivative operator may be diagonalized
so that the two-dimensional Helmholtz (Poisson) problems transform into a series of
decoupled one-dimensional problems† that are efficiently solved by making use of a
generalized Thomas algorithm. Thus the required computational time only increases
linearly with the total number of grid points. Most of the results have been obtained
on a laptop computer; a typical run takes on the order of one hour.

3. Basic flow and local absolute frequency
This part of the study investigates the unperturbed basic wake flow and the

corresponding local absolute frequency curve, upon which the frequency selection
criteria are based. By definition, the basic flow is a steady solution of the Navier–
Stokes equations (2.1). This flow is unstable for Reynolds numbers beyond critical
and then impossible to observe experimentally. Following Fornberg (1985), however,
the steady solution is obtained when imposing a stabilizing symmetry condition on
the y = 0 axis and considering only the domain y > 0. Figure 1 shows the basic
streamwise velocity field around the circular cylinder at Re = 100. The near wake
displays a reverse flow region (u < 0, shown in grey) extending from the obstacle

† The author is indebted to Uwe Ehrenstein for bringing this method to his attention.
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Figure 2. Imaginary (a, c) and real (b, d ) parts of local absolute frequency for basic wake flows
obtained with Re = 20, 30, . . . , 200 (thick curves pertain to Re = 50, 100, 150, 200).

down to the stagnation point xst. The variation with Reynolds number of the reverse
flow extent is discussed below (see figure 3).

In a previous investigation (Pier & Huerre 2001a) resorting to the academic con-
figuration of a ‘synthetic’ wake with no solid boundaries, no reverse flow and no
stagnation point, the existence of a small inhomogeneity parameter ε � 1 made
possible a rigorous asymptotic analysis based on the separation of fast x and slow
X ≡ εx streamwise scales. In an attempt to prove the applicability of these results
in situations of practical interest where ε = O(1), we boldly ignore that the present
flow is non-parallel in the near-wake region and do not use the slow X-coordinate
in the rest of the paper. Local characteristics are then derived at a given stream-
wise station by freezing the x-coordinate and studying the equivalent parallel shear
flow of velocity profile U0(y) = u(x, y). Linear instability waves are governed by
the Orr–Sommerfeld equation (Drazin & Reid 1981) which yields the local linear
dispersion relation ω = Ω`(k, x) between the complex frequency ω and complex
wavenumber k at the streamwise station x under consideration. These linear eigen-
value problems in the cross-stream coordinate are solved via a Chebyshev spectral
method based on the previously introduced collocation points. The complex local
absolute frequency ω0(x) is then derived in classical fashion by applying a zero
group velocity condition on the local linear dispersion relation (Briggs 1964; Bers
1983). Figure 2 illustrates the streamwise evolution of the absolute growth rate ω0,i

and real absolute frequency ω0,r for different values of the Reynolds number in the
range 20 6 Re 6 200. Local absolute instability (ω0,i > 0) prevails downstream of
the obstacle when Re > Rea ' 25, in agreement with the findings of Monkewitz
(1988). The magnified graphs (figure 2c, d ) show that the near wake is insensitive
to changes in Re when Re > 100. It should also be noted that the local absolute
growth rate rapidly decays with decreasing x in the boundary layers along the cylinder
(−0.5 < x < 0.5) and reaches very large negative values for x < −0.5 (not shown on
graph).

The evolution with Reynolds number of the AU and reverse flow regions is shown
in figure 3. Absolute instability prevails in the interval xca < x < xac (both shades
of grey), the extent of which is seen to increase approximately linearly with Re.
Note that the maximum absolute growth rate remains almost constant for Re > 100
(see figure 2a). A comparison of the stagnation point location xst (thick solid curve
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Figure 3. Reynolds number dependence of local absolute instability and reverse flow region for
the basic flow (AU region extends over both shaded areas xca < x < xac and the stagnation point
location xst follows the thick solid curve) and the mean flow (AU region covers light grey area
x̄ca < x < x̄ac and stagnation point x̄st follows the thick dashed curve).

in figure 3) and the marginally absolutely unstable station xac shows that the AU
domain closely follows the reverse flow region, slightly extending beyond it. The
remaining elements of figure 3 pertain to the time-averaged mean flows and are
discussed below.

4. Periodic vortex shedding
Above a critical value of Reynolds number, finite-amplitude periodic vortex streets

develop in the wake of the cylinder when the entire cross-stream domain −∞ 6 y 6
+∞ is considered. Direct numerical simulations of system (2.1) are performed using
the method outlined in § 2. Simulations are started with the basic flow fields and the
instability is triggered by a small-amplitude initial impulse. After a transient growth,
nonlinearities rapidly lead to saturation of a fully developed downstream-propagating
periodic vortex street. Figure 4 shows a snapshot of the velocity fields at Re = 100 in
the central region of the computational domain. Time series are recorded at different
locations and corresponding frequency spectra computed (figure 5) to ascertain the
synchronized behaviour of the flow. Inspection of these spectra demonstrates that the
entire vortex street is tuned to a global fundamental frequency and its harmonics.
Figure 6 shows that the numerically obtained frequencies (open squares) are in good
agreement with the experimental relationship (solid curve) between Strouhal number
St = ω/2π and Reynolds number (Williamson 1988). Moreover, the critical Reynolds
number Rec for onset of periodic vortex shedding has been localized in the range
49.0 < Rec < 49.5 which nearly corresponds to the experimental threshold of 47
measured by Provansal et al. (1987). Bearing in mind that the cylindrical obstacle is
discretized on a Cartesian grid, these agreements are deemed sufficient validation of
the code for the present purpose; more accurate numerical results have been obtained
e.g. by Barkley & Henderson (1996).

The nonlinear vortex street is associated with Reynolds stresses leading to a finite
mean flow correction. The main effect of this mean flow distortion is a shortening
of the recirculation bubble, as indicated by the stagnation point location x̄st of
the time-averaged flows (thick dashed curve in figure 3). It should be noted that
the average flow is a result of the nonlinear vortex street and does not obey the
Navier–Stokes equations. For comparison, however, the local linear stability analysis
of the previous section may be repeated for the time-averaged flows. This reveals that
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Figure 4. Snapshot of (a) streamwise and (b) cross-stream velocity fields in the periodic nonlinear
vortex shedding régime at Re = 100. (a) Contour levels u = −0.2,−0.1, . . . , 1.2 (0, 1 thick lines).
(b) Contour levels v = −0.6,−0.5, . . . , 0.6 (0 thick line).
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Figure 5. Harmonic spectra of velocity time series in the vortex shedding régime at Re = 100.
(a) v-component at x = 2.2, y = 0.7. (b) u-component at x = 0.2, y = 2.1.

the reduction of the reverse flow region is associated with a similar reduction of the
absolutely unstable domain (x̄ca < x < x̄ac, lightly shaded region in figure 3). There is,
however, no feedback of the nonlinear downstream vortices in the upstream region; in
particular the neighbourhood of the upstream boundary xca = x̄ca of the AU region
is not affected by mean flow corrections.

5. Discussion of frequency selection criterion
The objective of this last section is to show that the vortex shedding régime may

be interpreted in terms of a nonlinear elephant mode, i.e. that its global frequency
is dictated by criterion (1.2). The frequency of nonlinear elephant global modes is
imposed by a sharp front located at the transition station xca from local convective to
absolute instability. The global frequency of the system then equals the real absolute
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Figure 6. Reynolds number dependence of cylinder wake characteristic frequencies. Vortex shedding
frequencies of the present simulations (open squares) closely follow the experimental Strouhal
number curve from Williamson (1988) (solid line). Theoretical elephant frequencies ωca

0 (filled
squares) approximately predict the actual vortex shedding frequencies for Re > 100. The other
characteristic frequencies ωac

0 (grey circles), ωmax
0,r (open circles) and ω`

s,r (filled circles) are unable to
account for the fully developed vortex street beyond onset at Re ' 49. Note the good performance
of ω̄`

s,r based on the mean flow (diamonds).

frequency ωca
0 prevailing at xca. For the wake flows under consideration, transition

from convective to absolute instability occurs in the boundary layer along the cylinder
near its trailing edge, as demonstrated by figure 2(c). Monitoring the corresponding
frequency ωca

0 as the Reynolds number is varied (filled squares in figure 6) shows that
this frequency plateaus at ωca

0 ' 1.2 for Re > 100. Comparison of these theoretical
predictions with the results obtained by the present simulations (open squares) or
by experiment (solid line) shows that the discrepancy is less than 10% over the
entire range 100 < Re < 200. Thus the theory is fairly successful in predicting the
actual vortex shedding frequency, considering that criterion (1.2) is a leading-order
approximation derived under the condition of slow streamwise evolution of the entire
flow. The agreement improves at higher Reynolds numbers since then the assumption
of weakly diverging flows is more closely fulfilled. Note also that perfect agreement
occurs at Re = 180, beyond which the two-dimensional vortex street undergoes a
transition to three-dimensionality (Barkley & Henderson 1996; Williamson 1996).
For Re < 100, finite non-parallel effects result in a poorer frequency prediction.
This strong non-parallelism may also account for the discrepancy between onset of
absolute instability at Re = Rea ' 25 and onset of global instability at Re = Rec ' 47.
Indeed, in the range Rea < Re < Rec the extent of the AU region is much less
than the typical vortex street wavelength and thus unable to sustain a stationary
front.

The mechanism leading to the synchronized vortex street at moderate Reynolds
numbers may be interpreted in the following way. The initial impulse triggers a
wavepacket of growing amplitude and its envelope advances against the basic flow
in the absolutely unstable region. Perturbations thus penetrate into the boundary
layer near the cylinder trailing edge. Further upstream, at the station xca of neutral
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absolute instability, a balance between upstream perturbation growth and downstream
advection is reached, and perturbations pile up at that location. Nonlinearities lead to
saturation of the fluctuating amplitude, a front is formed at xca and a fully nonlinear
wavetrain obtained in the region x > xca. Its frequency is dictated by the front and
is ωca

0 . The domain x < xca is covered by the front tail and the fluctuation amplitude
exponentially decays towards the inlet. At the marginal xca station, weakly nonlinear
fluctuations prevail (as illustrated in figure 5(b) for Re = 100 when xca = 0.2). It
should be emphasized that perturbations evolve in the infinite −∞ < x < +∞ system
and no boundary condition is imposed at the obstacle trailing edge x = 0.5. This is
in contrast with the investigations of semi-infinite domains with upstream boundary
condition by Couairon & Chomaz (1997a, b, 1999a, b). In the latter configuration,
analysis of one-dimensional model equations close to global instability yields scaling
laws that account for experimental observations remarkably well. The present study
does not rely on the assumption of near criticality, but rather on reasonably parallel
flows as obtained for Re > 100.

To fully appreciate the quality of criterion (1.2) in predicting the vortex shedding
frequency, it should be compared with the other basic flow characteristic frequencies
(round symbols on figure 6). The filled grey circles represent the real absolute fre-
quency ωac

0 prevailing at the downstream boundary xac of the AU region. Although
the location xac continuously moves downstream with increasing Reynolds number
(see figure 3a), the frequency ωac

0 is seen to remain approximately constant at 0.8.
Another characteristic frequency is derived from the location xmax where the absolute
frequency ωmax

0 ≡ ω0(x
max) with maximum absolute growth rate occurs. Its real part

ωmax
0,r is plotted by open circles in figure 6. The filled circles in figure 6 represent

ω`
s,r ≡ Reω`

s of criterion (1.1) governing spatially extended and globally synchronized
structures when the governing equations are linearized with respect to the basic flow.
The frequencies ω`

s , obtained by analytic continuation of the ω0(x) curves in the com-
plex x-plane, are found to approximately follow ωmax

0 since the complex saddle point
x`s is located near the position xmax of maximum absolute growth rate. Both ωmax

0,r and

ω`
s,r display even lower values than ωac

0 for Re > 100 and none of these frequencies
can account for the actual global frequency. This is not a surprise since they are not
derived from a nonlinear theory. In contrast, as already established by Hammond &
Redekopp (1997) in a similar configuration, the linear criterion (1.1) applied on the
mean flows obtained by averaging in time the fully nonlinear régime yields frequencies
ω̄`
s,r (diamonds in figure 6) which very closely follow the actually observed frequencies.

Unfortunately, since these frequencies are based on the fully developed vortex street,
this excellent agreement does not help identifying the mechanism that is responsible
for the vortex shedding.

To conclude, it has been shown that the vortex shedding frequency governing
bluff body wakes can be understood and predicted by local instability analyses of
the basic flow considered to be weakly diverging. Despite non-parallel effects in the
vicinity of the obstacle, reasonable agreement is obtained for Re > 100. It should
also be emphasized that the aim of the present method is to reveal the underlying
frequency selection mechanism and not to accurately estimate the global frequency:
the frequency predictions require almost the same numerical effort as the complete
simulations!

Present and past fruitful collaborations with Nigel Peake and Patrick Huerre,
suggestions and advice from Uwe Ehrenstein, John Hinch, Paul Metcalfe and Laurette
Tuckerman are gratefully acknowledged.
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