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Spatially varying systems with a central absolutely unstable region are known to give
rise to self-sustained  nite-amplitude globally synchronized structures. The present
investigation shows how such an intrinsic behaviour may be controlled by small-
amplitude forcing applied upstream of the fully developed oscillations. This technique
allows the tuning of the entire system to any frequency in a wide range, expending
only an exponentially small power.
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1. Introduction

Self-sustained  nite-amplitude oscillations are produced in a great variety of situa-
tions, ranging from ®uid ®ows (Huerre 2000), chemical reactions (Kapral & Showal-
ter 1995) and biological processes (Winfree 1987) to solar activity cycles (Meunier
et al . 1997). Such an intrinsic behaviour is often unwanted, e.g. it induces structural
damage in ®ows around obstacles or a¬ects performance of turbocompressors. Under-
standing the mechanism responsible for these oscillations may then suggest methods
of suppressing or controlling them. In many situations, e.g. three-dimensional bound-
ary layers (Reed & Saric 1989), the naturally occurring nonlinear waves are prone
to secondary instabilities, which in turn lead to a turbulent regime. Hence, a con-
trolled modi cation of the primary nonlinear state is desirable if one wants to delay
(or possibly to enhance) the onset of turbulence. Although very e¯ cient, optimal or
robust control theory (Bewley & Liu 1998) is di¯ cult to implement, since it relies
on heavy numerical computations and on a precise knowledge of the system state.
Our objective is to devise a control strategy applicable to a broad class of systems
that takes advantage of the global instability mechanism and requires only extremely
weak localized action.

In the context of spatially varying systems, the existence of intrinsic oscillations
(Huerre & Monkewitz 1990; Pier et al . 2001) is closely related to the transition
from convective to absolute instability, as determined by the complex local absolute
frequency !0(X) (Briggs 1964; Bers 1983). In stable or convectively unstable (CU)
regions, characterized by !0;i(X) ² Im !0(X) < 0, perturbations either decay or are
swept away by advection. Convectively unstable systems thus display no intrinsic
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behaviour and essentially behave as ampli ers of external noise: without continu-
ous external input, the medium returns to its unperturbed state. By contrast, in
absolutely unstable (AU) regions where !0;i(X) > 0, perturbations grow in situ and
hence may lead to non trivial dynamics without external forcing. It has been shown
that the onset of global nonlinear oscillations in in nite systems occurs as soon as
local absolute instability is reached somewhere in the medium (Pier et al . 2001).
Other varieties of nonlinear global modes have been obtained in semi-in nite sys-
tems (Couairon & Chomaz 1996, 1997a; b, 1999), which are not discussed here.

The sensitivity of CU open ®ows to external perturbations has been well estab-
lished, e.g. for free shear layers (Ho & Huerre 1984), the Taylor{Couette ®ow with
through ®ow (Babcock et al . 1991) or the wake behind a cylinder (Le Gal & Cro-
quette 2000). In the AU regime, similar systems generally display robust natural
oscillations that are believed to be insensitive to low noise levels (Huerre 2000).
However, a variety of unstable systems, e.g. side-branching dendrites (Bouissou et
al . 1990), are known to exhibit a strong receptivity to periodic rather than random
perturbations. Similarly, by revisiting spatially developing media displaying a central
AU domain embedded in two semi-in nite at most CU regions, the present inves-
tigation shows that small-amplitude harmonic forcing can completely modify the
natural nonlinear behaviour. It should be emphasized that the aim is not to suppress
the ®uctuations but to tune them to an externally imposed frequency and thereby
also to modify the local wavelengths and amplitudes.

2. Problem formulation

The present study is based on a general one-dimensional model equation that
accounts for the dynamics of a variety of physical systems and is tractable by ana-
lytical methods. The model (2.1) has on many occasions proven to be a convenient
test ground to recognize and study generic features that have later been identi ed
in a variety of situations. The same strategy is adopted here. We assume that the
system under consideration is described by a complex scalar  eld Á(x; t) in an in nite
one-dimensional spatially inhomogeneous domain and is governed by

@Á

@t
= ¡ i(!0(X) + 1

2
!kk(X)k0(X)2)Á + !kk(X)k0(X)

@Á

@x

+ 1
2
i!kk(X)

@2Á

@x2
¡ i ® (X)jÁj2Á + S(x; t); (2.1)

where the complex functions !0(X), k0(X), !kk(X) and ® (X) account for the local
properties of the medium and only depend on a slow space variable X = ° x. The
weak inhomogeneity parameter ° ½ 1 is de ned as the ratio of the typical instability
length-scale to the non-uniformity length-scale of the medium. The source function
S(x; t) represents an externally applied forcing, to be used below.

In the subsequent discussion, constant use is made of the local linear and nonlinear
properties of system (2.1), which are presented now. Local characteristics are derived
from (2.1) by freezing X and studying the corresponding spatially homogeneous
medium. Linear properties pertain to the dynamics of small-amplitude normal modes
of the form ei(kx¡!t), where the complex frequency ! and complex wavenumber k
satisfy the linear dispersion relation

! = « l(k; X) ² !0(X) + 1
2
!kk(X)(k ¡ k0(X))2: (2.2)
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The particular form in which the coe¯ cients of (2.1) have been cast brings to the
fore the local complex absolute frequency !0(X) associated with the local complex
absolute wavenumber k0(X) determined by a zero group velocity condition as (Briggs
1964; Bers 1983)

!0(X) = « l(k0(X); X) with
@« l

@k
(k0(X); X) = 0:

In a typical situation of interest, the local absolute growth rate !0;i(X) displays a
single maximum !m ax

0;i and the medium is stable for large jX j. The system under
consideration then exhibits an AU domain whenever !m ax

0;i > 0.
The model equation (2.1) also admits  nite-amplitude travelling waves Rei(kx¡!t),

where the real amplitude R, real frequency ! and real wavenumber k satisfy the
nonlinear dispersion relations

! = « n l(k; X) ² Im[ ® (X)? « l(k; X)]

¡ ® i(X)
; (2.3)

R2 = R(k; X)2 ² « l
i(k; X)

¡ ® i(X)
; (2.4)

with superscript ? denoting complex conjugate. Note that the condition of stabilizing
nonlinearities requires that ® i(X) < 0. At a given value of X , nonlinear wavetrains
thus exist (R2 > 0) for the range of real wavenumbers k associated with a positive
temporal growth rate « l

i(k; X) > 0, and the nonlinear amplitude R vanishes for
marginal wavenumbers associated with « l

i(k; X) = 0.

3. Signalling problem

Of particular importance to the present work is the spatial response to localized
time-harmonic forcing switched on at t = 0. This problem is governed by equation
(2.1) with the source term

S(x; t) = Af ¯ (x ¡ xf )H(t)e¡i!f t; (3.1)

where Af , Xf ² ° xf and !f represent the forcing amplitude, location and (real)
frequency, respectively, ¯ denotes the Dirac delta functiony and H the Heaviside
unit step function.

Consider the spatial response of system (2.1) in a situation where no AU region
is present, i.e. !m ax

0;i < 0. Then no self-sustained oscillations are produced and the
resulting  eld Áf(x; t) is purely due to the external forcing ( gure 1). Under the
slowly varying medium hypothesis ( ° ½ 1), the long-time response of constant fre-
quency !f is obtained in terms of Werner{Kramers{Brillouin (WKB) asymptotic
approximations (Bender & Orszag 1978) of the form

Áf = A(X; !f) exp

µ
i

°

Z X

Xf

k(u; !f) du ¡ i!f t

¶
: (3.2)

y The representation ±(x) = (1=(
p

¼¾)) exp(¡x2=¾2) with ¾ = 1=4 is used in the numerical imple-
mentation below.
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Figure 1. Envelope jÁf j and real part Re Áf of spatial response of governing equation to
time-harmonic forcing of frequency !f = 1 and amplitude Af = 10¡ 10 applied at Xf = ¡2.
Numerical simulation performed with !0 = 0:4 ¡ 0:2(1 + X 2)i, k0 = 1 ¡ 1:5i, !kk = 1 ¡ 0:5i,
® = 0:2 ¡ i and ° = 1=25. Decaying upstream response follows kl ¡ (X ; !f ) branch. Downstream
response exponentially grows according to k l+ (X ; !f ) to reach ¯nite amplitude at X n l = ¡0:6,
where the nonlinear k n l + (X ; !f ) branch takes over. Further downstream, beyond the neutral
station X n (!f ) = 2:6, the decaying kl+ (X ; !f ) prevails.

In this expression, the local wavenumber branch k(X; !f) accounts for the fast spatial
variations, whereas the amplitude function A(X ; !f ) only depends on slow space and
is obtained in classical WKB fashion as a series expansion

A(X; !f) ¹ A0(X ; !f) + ° A1(X ; !f ) + ° 2A2(X ; !f ) + ¢ ¢ ¢ : (3.3)

For reasons that become clear below, we only consider exponentially small forcing
amplitudes Af = e¬ =° with ¬ < 0. In the vicinity of the forcing location Xf , the
spatial response is then governed by linear dynamics, and the resulting complex
local wavenumber branch is obtained by solving (2.2) for ! = !f as

kl§(X ; !f) = k0(X) §

s

2
!f ¡ !0(X)

!kk(X)
: (3.4)

Causality considerations (Briggs 1964; Bers 1983) allow the unambiguous de nition
of the square-root branches in (3.4) such that the kl+ (kl¡) spatial branch pertains
to the downstream X > Xf (upstream X < Xf) side of the forcing location. Upon
substituting (3.4) with (3.2) into the governing equation (2.1), a solvability condition
governing the leading-order amplitude is derived as

dA0

dX
= ¡ 1

2

dkl§=dX

kl§(X; !f) ¡ k0(X)
A0(X ; !f): (3.5)
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Invoking continuity of the response at X = Xf , the exact long-time linear response
is then obtained to leading order as

A0(X; !f) = AfCf exp

µZ X

Xf

¡ 1

2

dkl§=du

kl§(u; !f) ¡ k0(u)
du

¶
; (3.6)

with

Af = exp
¬

°
and Cf =

2

!kk(Xf)[kl+ (Xf ; !f) ¡ kl¡(Xf ; !f)]
: (3.7)

The modulus jÁf j of the forced response (3.2) in the linear regions is then derived to
leading order as

log jÁf j ¹ 1

°

µ
¬ ¡

Z X

Xf

kl§
i (u; !f) du

¶
: (3.8)

In stable or at most CU regions, the upstream spatial response decays for all fre-
quencies, kl¡

i (X; !) < 0. The linear approximation then applies to the entire region
¡ 1 < X < Xf upstream of the forcing location. For forcing applied at a CU loca-
tion, there exists a range of frequencies associated with downstream growth, i.e. such
that kl+

i (Xf ; !f ) < 0. The downstream spatial response then exponentially grows to
reach  nite amplitude levels. Nonlinear saturation prevents further growth and leads
to a nonlinear wavetrain at the forcing frequency. The nonlinear saturation station
X n l where the modulus jÁf j takes O(1) values depends on the forcing amplitude and
is determined by (3.8) as Z Xnl

Xf

kl+
i (u; !f ) du = ¬ : (3.9)

Thus, the downstream linear kl+ (X ; !f) spatial branch prevails in the interval
Xf < X < X n l, which is of  nite extent in terms of the slow variable X only for
an exponentially weak forcing amplitude Af = e¡j¬ j=° with j ¬ j = O( ° 0).

Downstream of X n l, the spatial response is made up of a  nite-amplitude saturated
wavetrain of frequency !f governed by the local nonlinear dispersion relations (2.3),
(2.4). The local wavenumber in (3.2) then follows the real spatial branch k n l+ (X; !f)
obtained by solving (2.3) for the prescribed forcing frequency ! = !f . In the nonlinear
regime, the modulus of the leading-order amplitude (3.3) is determined by (2.4) as

jA0(X; !f)j = R(k n l+ (X; !f); X); (3.10)

whereas its phase is governed by a solvability condition at higher order. A detailed
discussion of the relationship between nonlinear spatial response and causality as
well as a full derivation of nonlinear WKB approximations can be found in Pier et
al . (2001).

The nonlinear wavetrain of local wavenumber k n l+ (X; !f) prevails in the inter-
val X n l < X < X n (!f ) beyond which the spatial response exponentially decays. The
transition station X n (!f) from a nonlinear to a linear regime is characterized by the
neutral stability condition « l

i(k
n l+ (X n ; !f); X n ) = 0. The amplitude of the nonlin-

ear travelling wave vanishes there, and the complex branch kl+ (X ; !f) continuously
takes over in the downstream linear region X > X n (!f). It should be noted that for
a given forcing frequency the onset station of nonlinearities X n l also depends on the
forcing amplitude whereas the neutral station X n does not.
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Figure 2. Envelope jÁe j and real part Re Áe of the self-sustained structure illustrated by the
numerical simulation of unforced governing equation with !0 = 0:4+ 0:3(1 ¡X 2)i, k0 = 1 ¡1:5i,
!kk = 1 ¡ 0:5i, ® = 0:2 ¡ i and ° = 1=25. Central AU domain X ca = ¡1 < X < X ac = 1
is shaded. The front of frequency !ca

0 = 0:4 at X ca generates the upstream linear k l ¡ (X ; !ca
0 )

branch and the downstream nonlinear k n l + (X ; !ca
0 ) branch. Further downstream, beyond the

neutral station X n (!ca
0 ) = 2:8, the exponentially decaying kl+ (X ; !ca

0 ) prevails.

4. Self-sustained oscillations

Before applying the above results to control media displaying a central AU region,
their self-sustained behaviour is summarized. Consider a situation where !m ax

0;i > 0,
associated with an AU interval Xca < X < Xac. Then a fully nonlinear temporally
periodic state is reached without external input (Pier et al . 2001). At !m ax

0;i = 0, onset
of a self-sustained state occurs via a saddle-node bifurcation; for moderate values of
!m ax

0;i > 0 an `elephant’ or `steep’ nonlinear structure (Pier & Huerre 2001) is selected
( gure 2), characterized by a sharp (Dee & Langer 1983) front at the upstream
boundary Xca of the AU domain. This front of real frequency !ca

0 ² !0(Xca) acts
as a wavemaker, hence tuning the entire system to a single frequency. The entire
 eld Áe(x; t) may then be interpreted as the spatial response to this front. Indeed, in
the upstream linear region X < Xca, the complex  eld Áe(x; t) follows the complex
spatial kl¡(X ; !ca

0 ) branch and its modulus exponentially decays according to

log jÁej ¹ ¡ 1

°

Z X

Xca

kl¡
i (u; !ca

0 ) du: (4.1)

The region Xca < X < X n (!ca
0 ) is made up of  nite-amplitude waves following the

nonlinear k n l+ (X ; !ca
0 ) branch. Beyond the neutrally stable station X n (!ca

0 ), the
decaying linear kl+ (X ; !ca

0 ) branch prevails. Further above onset of a nonlinear self-
sustained state, i.e. for larger values of !m ax

0;i , `steep’ modes may give way to `soft’
modes (Pier et al . 2001; Pier & Huerre 2001); their control is not discussed here.

We emphasize the important fact that the fully nonlinear self-sustained structure
is determined by a purely linear criterion, based only on the local absolute frequency
curve !0(X). The front is of `pulled’ (Ebert & van Saarloos 2000) type and its

Proc. R. Soc. Lond. A (2003)
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Figure 3. Map of regions tuned to forcing frequency !f (shaded) or to intrinsic frequency !ca
0 as a

function of the forcing amplitude Af = e ¬ = ° while forcing frequency !f and location Xf are kept
constant. Below the control threshold ¬ < ¬ c , the forcing frequency !f prevails in the region
Xf < X < X b , whereas the self-sustained structure of frequency !ca

0 survives in X > X b . For
¬ > ¬ c , the forced response supersedes the intrinsic oscillations in the entire system. At each
¬ , the dominant component of the total ¯eld Á follows the spatial linear or nonlinear branches
indicated in the corresponding regions.

dynamics is determined by the decaying tail: the front envelope is stationary in time
if the front location is precisely at the CU{AU transition station Xca. Note also
that the region X > Xac downstream of the AU domain is slaved to the wavemaker
prevailing at Xca and does not play an active part in the dynamics. The result
that self-sustained nonlinear oscillations are triggered by a stationary front at Xca

suggests that this intrinsic behaviour may be modi ed by perturbing the front.

5. Control

Consider now applying to the intrinsic nonlinear structure a forcing of frequency !f

and small amplitude Af = e¬ =° localized at Xf in the CU region, Xf < Xca. For small
forcing amplitudes, both the spatial response of frequency !f and the self-sustained
mode of frequency !ca

0 are governed by linear dynamics in the neighbourhood of Xf .
The resulting  eld in the linear region is then obtained as a superposition Á = Áf + Áe

of the forced response of frequency !f and the natural oscillations of frequency !ca
0 .

At a given location, the dominant component in the total  eld depends on the relative
modulus of Áf (3.8) and Áe (4.1).

In the interval Xf < X < Xca, the local spatial growth rates of Áf and Áe are
respectively given by ¡ kl+

i (X; !f) and ¡ kl¡
i (X; !ca

0 ). From (3.4) and causality it is
seen that always kl+

i (X ; !) > kl¡
i (X; !); hence the result

kl+
i (X; !f) > kl¡

i (X ; !ca
0 ) (5.1)

holds for forcing frequencies !f su¯ ciently close to the natural frequency !ca
0 . A

comprehensive survey of all possible con gurations of equation (2.1) has not been
attempted, but inequality (5.1) was found to hold for all forcing frequencies associ-
ated with downstream growth. The result (5.1) means that from the forcing location
Xf towards the front location Xca the modulus of the natural oscillations jÁej grows
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Figure 4. Control of self-sustained structure by localized harmonic forcing. Spatio-temporal
greylevel representation of Re Á(x; t). Parameter settings are as in ¯gure 2, and for t < 0 the
system is in a state of natural oscillations tuned to !ca

0 = 0:4 with a front at Xca = ¡1. Forcing
of frequency !f = 1 is applied at Xf = ¡2 and switched on at t = 0 with di® erent ampli-
tudes Af . (a) With Af = 10¡ 12 , external forcing is unable to perturb nonlinear self-sustained
structure. (b) With Af = 10¡ 11 , spatial response reaches ¯nite amplitude precisely at the front
location X n l = X ca and continuous competition between both frequencies takes place. (c) With
Af = 10¡ 10 , spatial response achieves nonlinear regime at X n l = ¡1:1 upstream of X ca and
rapidly replaces the natural oscillations.

faster than the forced response jÁf j. The regions dominated by either the forcing fre-
quency !f or the natural frequency !ca

0 may then be monitored for di¬erent values
of the forcing amplitude e¬ =° while keeping the forcing location and frequency at
prescribed values ( gure 3).
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For extremely weak forcing ¬ < ¬ 0 with

¬ 0 ²
Z Xca

Xf

kl¡
i (u; !ca

0 ) du < 0; (5.2)

the forced response is dominated by the intrinsic oscillations at the very forcing
location. Due to the di¬erent spatial growth rates (5.1), the self-sustained mode of
frequency !ca

0 then prevails over the forced response in the entire system.
For higher forcing amplitudes ¬ > ¬ 0, the response Áf dominates Áe at the forcing

location Xf . However, since jÁej grows faster than jÁf j with increasing X , the forc-
ing frequency !f only prevails in the interval Xf < X < X b extending towards the
location X b , where both components display a similar modulus and beyond which
Áe prevails. The boundary X b between the regions tuned to the forcing frequency !f

or to the natural frequency !ca
0 is thus determined as

Z Xb

Xf

kl+
i (u; !f ) du ¡

Z Xca

Xb

kl¡
i (u; !ca

0 ) du = ¬ : (5.3)

With increasing forcing level, the region dominated by !f grows in size and the
boundary X b eventually reaches the front location Xca. This occurs at the critical
forcing amplitude, ¬ c, given by

¬ c ²
Z Xca

Xf

kl+
i (u; !f) du: (5.4)

For forcing levels in the range ¬ 0 < ¬ < ¬ c, the response of frequency !f does not
achieve O(1) amplitudes at the front location Xca and is thus unable to perturb the
nonlinear self-sustained waves of frequency !ca

0 prevailing for X > Xca ( gure 4a).
For ¬ = ¬ c, however, the forced response reaches  nite amplitude precisely at Xca

and competes with the stationary front of the intrinsic nonlinear structure. Numerical
simulations performed in this situation ( gure 4b) reveal that the forced response is
then able to continually perturb the natural oscillations and the system does not
converge to an equilibrium state tuned at a single frequency.

For slightly stronger forcing, ¬ > ¬ c, the response at frequency !f reaches non-
linear saturation upstream of the front, i.e. X n l < Xca. In this regime ( gure 4c),
the intrinsic oscillations at !ca

0 are completely suppressed and replaced by the forced
response in the entire domain. For still higher forcing amplitudes, the system remains
tuned at !f , and its spatial structure does not evolve except that the nonlinear sat-
uration station X n l moves upstream towards Xf (cf.  gure 3).

This behaviour may be interpreted as the result of two competing sources of di¬er-
ent frequencies at di¬erent locations: the self-sustained !ca

0 -front at Xca responsible
for the natural nonlinear structure and the external !f -forcing at Xf . In the absence
of external forcing, the front at Xca acts as a cornerstone upon which the global
structure is based; this front dictates its frequency to the entire system and gener-
ates the downstream developing nonlinear wavetrain covering the AU region. When
forcing is applied at Xf , the intrinsic wavemaker at Xca survives only if the upstream
decaying front tail experiences an unperturbed medium. As soon as the front is over-
whelmed by a  nite-amplitude wave, the source of the `steep’ mode is suppressed and
so is the entire self-sustained structure. The underlying AU region then plays no role
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in the dynamics, since it is e¬ectively masked by an externally imposed nonlinear
wavetrain. Thus, the oscillator-type behaviour of AU domains appears to be robust
with respect to external forcing only if the strength of the forcing does not exceed
an exponentially small level.

E¬ective control of the central AU domain requires that the forcing loca-
tion and frequency are chosen so as to produce a downstream growing response,
i.e. kl+

i (Xf ; !f) < 0. This condition of downstream growth is ful lled for a range of
frequencies !f when forcing is applied at a position Xf in the CU domain. Moreover,
tuning to a single frequency can only be achieved when this forcing frequency pro-
duces nonlinear waves that are stable with respect to secondary perturbations. The
precise range of possible control frequencies depends on the particular parameter
settings of (2.1). In typical con gurations, control of the system at twice or half the
natural frequency is readily obtained.

In summary, an externally imposed nonlinear wave at the transition station from
local convective to absolute instability entirely suppresses the intrinsic behaviour.
Self-sustained oscillations may thus be controlled and tuned to a prescribed fre-
quency, chosen such as to avoid damaging resonances or to improve performance of
the system under consideration. Due to exponential growth of the forced response in
the CU region, only an exponentially small forcing amplitude, and hence controller
power, is required to achieve this result.

Enlightening and fruitful collaboration with Nigel Peake is gratefully acknowledged.
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