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In the three-dimensional boundary layer produced by a rotating disk, the experi-
mentally well-documented sharp transition from laminar to turbulent flow is shown
to coincide with secondary absolute instability of the naturally selected primary
nonlinear crossflow vortices. Fully saturated primary finite-amplitude waves and the
associated nonlinear dispersion relation are first numerically computed using a local
parallel flow approximation. Exploiting the slow radial development of the basic
flow, the naturally selected primary self-sustained flow structure is then derived by
asymptotic analysis. In this state, outward-spiralling nonlinear vortices are initiated
at the critical radius where primary absolute instability first occurs. A subsequent
secondary stability analysis reveals that as soon as the primary nonlinear waves come
into existence they are absolutely unstable with respect to secondary perturbations.
Secondary disturbances growing in time at fixed radial locations continuously perturb
the primary vortices, thus triggering the direct route to turbulence prevailing in this
configuration.

1. Introduction
The flow due to an infinite disk rotating in otherwise still fluid has served as the

archetypal configuration for the study of three-dimensional boundary layers ever since
von Kármán (1921) obtained the basic flow as an exact similarity solution of the
Navier–Stokes equations. Interest in this flow has been renewed by Lingwood’s (1995)
discovery that it exhibits a transition from local linear convective to absolute instability
at a radius Rca which closely corresponds to the location of experimentally observed
turbulence onset (Theodorsen & Regier 1944; Gregory, Stuart & Walker 1955;
Chin & Litt 1972; Fedorov, et al. 1976; Kobayashi, Kohama & Takamadate 1980;
Malik, Wilkinson & Orszag 1981; Lingwood 1996). The present investigation, inspired
by Lingwood’s (1995) result, addresses the fully nonlinear régime. The objective is
to analyse the naturally selected finite-amplitude state and its secondary stability
properties in order to elucidate the process responsible for the sudden transition to
turbulence.

The Kármán boundary layer is a rather crude and academic representation of a
centrifugal pump, a turbomachinery rotor or even of a computer hard disk. However,
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despite its simplicity, it displays most of the features observed in situations of higher
complexity or with more elaborate geometries, e.g. with the fluid at infinity in
rigid-body rotation at the same or a different rate (Batchelor 1951; Zandbergen
& Dijkstra 1987), the flow between a stationary and a rotating disk enclosed by
a cylinder (Jarre, Le Gal & Chauve 1996a; Gauthier, Gondret & Rabaud 1999;
Schouveiler, Le Gal & Chauve 2001), and the flow in a rotor–stator annular cavity
with radial throughflow (Serre, Crespo del Arco & Bontoux 2001a; Serre et al. 2001b).
The rotating-disk problem is also closely related to the flow over a backward swept
wing (Gregory et al. 1955; Cebeci & Stewartson 1980; Bippes, Müller & Wagner 1991;
Cebeci et al. 1991; Lin & Reed 1993; Malik, Li & Chang 1996, Koch 1996), and
it is often claimed that their behaviour is governed by analogous principles. All
these types of boundary layers display similar three-dimensional velocity profiles, are
subject to inviscid crossflow instabilities and undergo transition to turbulent flow,
cf. Reed & Saric (1989). Despite intensive work and recent advances, cf. Schmid &
Henningson (2000) and Saric, Reed & White (2003), no full understanding of the
turbulent breakdown process has yet been achieved. Identification of the mechanism(s)
responsible for transition would improve the prediction methods and lead to new and
efficient control strategies, of considerable practical importance e.g. to the aeronautics
industry.

However the analogy between a rotating disk and a swept wing is not complete.
First, the rotating disk displays self-similar velocity profiles, so that only the study of
a single flow instance is required, while the swept-wing boundary layer depends on
several control parameters such as sweep angle and chordwise pressure gradient. But
the essential difference resides in the azimuthal periodicity of the disk, while the wing
lacks any periodic coordinate. Thus perturbations may be naturally recycled in the
disk flow, and this property greatly affects its long-time behaviour.

Consider the response to a brief and localized perturbation applied in a region where
the boundary layer is unstable, e.g. blowing through a small hole in the disk/wing
surface. With time, a wavepacket develops that propagates along the surface while
it grows in amplitude and size. The interplay of propagation and growth dictates
the long-time behaviour. If the wavepacket is blown away by the basic flow faster
than it expands, the flow is said to be convectively unstable and, without continuous
external input, eventually returns to its unperturbed state. If, by contrast, growth
of the wavepacket dominates over advection, the medium is said to be absolutely
unstable and perturbations grow in situ without further external forcing (Briggs 1964;
Bers 1983; Huerre & Monkewitz 1990).

In the three-dimensional boundary layer produced by a swept wing, wavepackets
may be advected along chordwise and spanwise directions: a genuine absolute
instability thus requires the disturbances to maintain themselves in both directions.
Investigations of the long-time behaviour of the impulse response in the swept-wing
problem (Lingwood 1997b; Ryzhov & Terent’ev 1998; Taylor & Peake 1998) have
revealed the possibility of a chordwise absolute instability, but no instance of spanwise
absolute instability has so far been found, i.e. perturbations grow in time at a fixed
chordwise location while they continue to be advected in the spanwise direction so
as to eventually be shed from the wing tip. These results suggest that the persistent
fluctuations over aircraft wings are triggered by continuous external disturbances
such as roughness elements on the surface or atmospheric turbulence.

The rotating-disk boundary layer contrasts with the above scenario. Due to the
exact periodicity in the azimuthal coordinate, a mere radial absolute instability (as
theoretically established by Lingwood 1995) is a sufficient condition for disturbance
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growth at a fixed location. Indeed, a wavepacket triggered by an initial impulse and
amplifying at a constant radial position may, in the early stage of its development,
be carried around in the azimuthal direction but, in the long term, it will grow and
eventually cover the full circumferential extent of the disk. While many experimental
studies (Gregory et al. 1955; Kohama 1984; Wilkinson & Malik 1985) have focused
on perturbations that are fixed with respect to the disk, and thus certainly generated
by roughness elements, the study of the impulse response by Lingwood (1996) has
experimentally validated the above scenario of self-sustained disturbances triggered
by an initial perturbation and surviving without further external input.

The close relationship between global self-sustained oscillations and local absolute
instability has been clarified over the past decade by successively considering one-
dimensional model equations and the two-dimensional Navier–Stokes equations,
first in a linear approximation and then in a fully nonlinear framework: linear
model equations (Chomaz, Huerre & Redekopp 1991; Le Dizès et al. 1996), linear
Navier–Stokes equations (Monkewitz, Huerre & Chomaz 1993), nonlinear model
equations (Couairon & Chomaz 1996, 1997a,b, 1999a,b; Pier & Huerre 1996; Pier
et al. 1998; Pier, Huerre & Chomaz 2001), nonlinear Navier–Stokes equations (Pier
& Huerre 2001a; Pier 2002b), for a review see Huerre (2000). In the strictly linear
framework, these investigations have shown that absolute instability is only a necessary
condition for global instability and, in general, an absolutely unstable region of finite
extent is a prerequisite. By contrast, the fully nonlinear governing equations admit
self-sustained finite-amplitude solutions as soon as a point of local absolute instability
appears and in some extreme cases even without absolute instability at all (Couairon
& Chomaz 1997a). In the context of the rotating-disk flow, recent numerical (Davies
& Carpenter 2003) and theoretical (Peake & Garrett 2003) investigations have shown
that this configuration does not exhibit global instability in the linear approximation,
even though absolute instability prevails in the semi-infinite region beyond a critical
radius. These results suggest that only a nonlinear approach can possibly account for
the self-sustained behaviour of the rotating-disk flow.

In situations where finite-amplitude waves develop, either as a naturally selected
global mode or by continuous external forcing, the question arises of whether
this primary nonlinear state is stable with respect to secondary disturbances. The
techniques to carry out local secondary stability analyses are now well-established
(Herbert 1988): the most common is to derive a Floquet system of linear differential
equations with periodic coefficients after linearization of the governing equations
about the primary nonlinear waves. Such an analysis requires first computation of
the saturated primary periodic solution, e.g. in terms of a Fourier series, and then use
of this as the new basic flow, which usually results in a large Floquet eigensystem. In
view of this numerical task, when applied to three-dimensional boundary layers, most
early secondary stability analyses (Reed 1987; Fischer & Dallmann 1991; Balachandar,
Streett & Malik 1992) used the ‘shape assumption’ by which the nonlinear equilibrium
solution is replaced by the linear eigenfunction scaled to a finite amplitude. It is
only the recently available computing power that has made possible fully consistent
secondary stability analyses (Malik, Li & Chang 1994; Högberg & Henningson 1998;
Malik et al. 1999; Janke & Balakumar 2000; Koch et al. 2000; Koch 2002).

Whether or not the primary saturated wavetrain survives in the long-term is
determined by the convective or absolute nature of the secondary instability: only
absolutely unstable secondary perturbations are able to resist basic flow advection,
to grow at fixed spatial locations and to permanently destroy the underlying primary
nonlinear wave. The mathematical foundation of secondary absolute instability
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analysis has been firmly laid by Brevdo & Bridges (1996), but so far only a few
periodic flows have been found to be absolutely unstable (Brancher & Chomaz 1997;
Chomaz, Couairon & Julien 1999).

Huerre (1988) appears to be the first to have shown that secondary absolute
instability may occur prior to onset of primary absolute instability. This is particularly
relevant in the context of self-sustained oscillations, as demonstrated by Couairon &
Chomaz (1999b) in a study of the Ginzburg–Landau equation: a primary nonlinear
global mode exists whenever primary absolute instability occurs; this global mode is
dynamically unstable whenever secondary absolute instability prevails for the selected
primary nonlinear wavetrain. In familiar scenarios, primary and secondary absolute
instability thresholds are crossed successively when a control parameter is increased.
A stable global mode is then observed over a finite parameter range. Recent findings
by Le Gal et al. (2003) seem to indicate that this scenario applies to the Batchelor
flow between a rotating and a stationary disk. However, the order of thresholds may
be reversed, and then the primary nonlinear global mode is unstable as soon as it
comes into existence. In this latter situation, which is shown in the present paper to
apply to the Kármán boundary layer over a single rotating disk, the global instability
at the primary threshold leads in a single step to a disordered state.

As discussed above, the boundary layer over a swept wing does not display
primary absolute instability and thus does not give rise to self-sustained fluctuations.
Nonetheless, transition in that flow could be due to secondary absolute instability
of the primary waves produced by roughness elements. In recent studies, Koch
et al. (2000) and Koch (2002) have computed saturated zero-frequency crossflow
vortices and investigated their secondary stability properties ‘in order to examine
whether a change from convective to absolute instability is possible in crossflow
vortices’. However, despite the remarkable techniques deployed by these authors,
no secondary absolute instability has been found and the mechanism of laminar–
turbulent breakdown remains to be elucidated in that configuration.

In the rotating-disk flow, azimuthal periodicity appears to facilitate the occurrence
of absolute instability thus motivating the present study, a brief account of which has
been previously given in Pier (2002a). The investigation was carried out in the same
spirit as the work by Koch et al. (2000) and Koch (2002), and the outline is as follows.
The self-similar laminar basic flow is presented in § 2 and the governing equations of
the problem are given in § 3. For the sake of completeness the primary local linear
stability characteristics are briefly reviewed in § 4 although these results are already
well-established (Cebeci & Stewartson 1980; Malik et al. 1981; Malik 1986; Bassom
& Gajjar 1988; Balakumar & Malik et al. 1990; Bassom & Hall 1991; Cebeci et al.
1991; Faller 1991; Lin & Reed 1993; Malik et al. 1994; Lingwood 1995). The core
of the study is then aimed at characterizing and understanding the fully nonlinear
régime. Local properties of fully nonlinear waves are computed in § 5 as solutions of
a local nonlinear dispersion relation. Following the results of Pier et al. (2001), the
naturally selected spatially extended global solution is derived in § 6 by asymptotic
matching of these linear and nonlinear wavetrains. Finally, the stability of this self-
sustained structure with respect to secondary perturbations is investigated in § 7 and
the existence of a secondary absolute instability is established.

2. Laminar basic flow
The rotating-disk configuration calls for a formulation using cylindrical coordinates.

Throughout this investigation an inertial frame of reference is used with r , θ and z
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Figure 1. Basic flow over a rotating disk. (a) Radial rU (z) and azimuthal rV (z) velocity
profiles linearly increase with radial distance while the axial flow W (z) towards the disk
surface does not depend on radius. (b, c) Similarity profiles of radial U , azimuthal V and axial
W velocity components and pressure P .

denoting radial, azimuthal and axial coordinates respectively. The fluid in the domain
z > 0 is brought into motion by the disk rotating at constant angular frequency about
the axis r = 0 normal to the disk surface (figure 1a). The fluid near the disk acquires,
by viscous stresses, an azimuthal velocity rV (z) which linearly increases with radial
distance. This circular motion results in centrifugal forces pulling the fluid outwards.
The radial outflow rU (z) induces, by continuity, a weak axial flow component W (z)
towards the disk. This axial flow reaches a constant value far from the disk surface
and counteracts diffusion of vorticity away from the disk, thus maintaining a constant
boundary layer thickness in the entire system (Batchelor 1967).

The infinite-disk problem lacks a characteristic length scale and thus allows the
use of non-dimensional variables based on disk rotation rate, kinematic viscosity
and fluid density, so that the flow does not depend on any control parameter. The
time-independent axisymmetric basic flow is then given by von Kármán’s (1921) exact
similarity solution to the Navier–Stokes equations in cylindrical coordinates as

U(r, z) ≡


rU (z)

rV (z)
W (z)


 and P (z), (2.1)
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where rU , rV and W are the non-dimensional radial, azimuthal and axial velocity
components respectively and P is the pressure. Figure 1(b, c) displays the self-similar
components U (z), V (z) and W (z) that are governed by the set of ordinary differential
equations

U ′′ = U 2 − V 2 + U ′W, (2.2a)

V ′′ = 2UV + V ′W, (2.2b)

W ′ = −2U, (2.2c)

with the boundary conditions

U (0) = 0, V (0) = 1, W (0) = 0 and U (∞) = 0, V (∞) = 0. (2.3)

With a reference pressure at z = +∞, the associated local pressure is obtained as

P (z) = W ′(z) + (W (∞)2 − W (z)2)/2. (2.4)

3. Mathematical formulation
After separating the total instantaneous flow fields into basic and perturbation

quantities according to

U(r, z) + u(r, θ, z, t),

P (z) + p(r, θ, z, t),

}
(3.1)

the momentum and continuity equations for the perturbation may be written as

∂u
∂t

+ (u · ∇)u + Lu = −∇p + �u, (3.2a)

∇ · u = 0, (3.2b)

with the boundary conditions

u = 0, ∂zp = ∂zzw at z = 0,

u = 0, p = 0 at z = +∞,

and the notation

u ≡


u

v

w


 , ∇p ≡


 ∂rp

(∂θp)/r

∂zp


 ,

(u · ∇)u ≡
(

u
∂

∂r
+

1

r
v

∂

∂θ
+ w

∂

∂z

)
u +

1

r


−v2

uv

0


 ,

Lu ≡
(

rU
∂

∂r
+ V

∂

∂θ
+ W

∂

∂z

)
u +


rU ′w

rV ′w
W ′w


 +


Uu − 2V v

Uv + 2V u

0


 ,

�u ≡
(

∂2

∂r2
+

1

r2

∂2

∂θ2
+

∂2

∂z2

)
u +

1

r

∂u
∂r

+
1

r2


−u − 2∂θv

−v + 2∂θu

0


 ,

∇ · u ≡ ∂u

∂r
+

1

r
u +

1

r

∂v

∂θ
+

∂w

∂z
.



Crossflow vortices and transition in the rotating-disk boundary layer 321

The boundary layer thickness is constant in the entire system, of order unity
in non-dimensional coordinates, while the non-axial velocity components linearly
increase with radius. Hence when investigating features far from the disk axis and
near a given radial location R � 1, the assumption of slow radial development is
appropriate. Local properties for r � R are then derived by freezing the variable r

which appears in the coefficients of the governing equations above and studying the
corresponding three-dimensional flow

U(z; R) ≡


RU (z)

RV (z)
W (z)


 . (3.3)

This is the parallel-flow assumption: equations (3.2) with the variable r replaced by
the prescribed value of R are homogenous in both θ and r and will be referred to
as the local governing equations. Local linear and nonlinear characteristics are derived
from these equations; the link between local properties and global behaviour will
be re-established in § 6. Under the parallel-flow assumption, the value of R appears
as a control parameter rather than a variable in the equations. It determines the
magnitude of the basic flow velocity components (3.3) and thus plays the role of an
effective local Reynolds number.

4. Primary linear instability properties
Under the parallel-flow assumption both r and θ are homogenous directions;

infinitesimally small velocity and pressure disturbances prevailing at a given location R

may thus be written in normal-mode form as

u(r, θ, z, t) = ul(z; α, β; R) exp i(αr + βθ − ωt),

p(r, θ, z, t) = pl(z; α, β; R) exp i(αr + βθ − ωt),

}
(4.1)

where α is a complex radial wavenumber, β an integer azimuthal mode number,
ω a complex angular frequency and ul , pl the associated complex velocity and
pressure components. After substitution of (4.1) into the linearized version of the
local governing equations (3.2), dropping the (u · ∇)u term and replacing r by R in
the coefficients, an eigenvalue problem in the axial direction yields the local linear
dispersion relation

ω = Ωl(α, β; R) (4.2)

together with the eigenfunctions ul(z; α, β; R) and pl(z; α, β; R).

4.1. Numerical solution procedure

The differential eigenproblem in the axial coordinate z is solved via a Chebyshev
collocation method (Canuto, Hussaini & Quarteroni 1988). The collocation points
−1 � ξi ≡ − cos(iπ/Nz) � 1 for 0 � i � Nz are mapped onto the semi-infinite domain
0 � z � +∞ through the transformations

z = a	

1 + ξ ′

1 − ξ ′ and ξ ′ = b	 ξ + (1 − b	)(ξ
3 + c	(1 − ξ 2)). (4.3)

The parameters a	 > 0, 0 < b	 � 1 and 0 � c	 � 1 determine the distribution
of the collocation points on the z-axis: with c	 = 0, half of the points are located
in the interval 0 � z � a	, while the remaining points are stretched towards z = +∞
with an algebraically decreasing density; the parameters b	 and c	 allow refined
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Figure 2. Local primary linear dispersion relation. Isocontours of the temporal growth rate
Ωl

i in (α, β)-planes for R = 300, . . . , 600. Ωl
i = 0 thick curves, Ωl
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control of the distribution, smaller values of b	 resulting in a better resolution of the
region corresponding to ξ = 0. A similar mapping has been used by Balachandar
et al. (1992).

The numerical discretization yields a large number of spurious eigenvalues and
eigenfunctions. The physically relevant solutions are identified by inspection of the
eigenfunctions, which are required not to vary with increasing resolution. Extensive
resolution tests have revealed that remapping the collocation points via (4.3) with
a	 = 2, b	 = 0.6 and c	 = 0.5 is the most appropriate choice for the various numerical
procedures implemented in the present investigation. Unless otherwise stated, these
parameters are used throughout the rest of the paper. In general Nz = 40 collocation
points are found to very accurately resolve the eigenfunctions. Due to the spectral
accuracy of this method, a lower resolution of Nz = 30 still yields quite reliable
results and has been used in situations where Nz = 40 would require prohibitively
long computational time. Various resolution tests are reported in the Appendix.

4.2. Linear dispersion relation

Temporal growth rates of the local linear dispersion relation are given in figure 2.
Two types of modes are identified: the region of main interest is centred around finite
values of β and corresponds to an inviscid instability, also known as branch 1, caused



Crossflow vortices and transition in the rotating-disk boundary layer 323

by inflection points in the basic velocity profiles. The maximum growth rate increases
with Reynolds number R and the first inviscid instability occurs for R � 284 at
α � 0.37 and β = 27. The unstable modes prevailing at small values of β , also known
as branch 2, are due to viscosity and persist at low R. These latter modes are not
relevant to the present investigation and will not be discussed further.

4.3. Local absolute frequency

In the context of self-sustained fluctuations, a crucial feature is the complex absolute
frequency ω0 defined as the frequency observed at a fixed spatial location in the long-
time linear response to an initial localized impulse. For a radially localized impulse
with a given azimuthal mode number β , the local absolute frequency ω0 and associated
absolute wavenumber α0 are derived from the linear dispersion relation (4.2) by
applying the Briggs (1964) and Bers (1983) pinch-point criterion which is associated
with a vanishing radial group velocity condition:

ω0(β; R) = Ωl(α0, β; R) with
∂Ωl

∂α
(α0, β; R) = 0. (4.4)

Isolines of absolute frequency ω0,r and growth rate ω0,i in the (R, β)-plane are given
in figure 3. As already discovered by Lingwood (1995) (see also Lingwood 1997a,
p. 424 for the corrected values) transition from local convective to absolute instability
first occurs at Rca � 507.4 for β = 68 (marked by solid dots) with a marginal real
absolute frequency of ωca

0 � 50.5 and αca
0 � 0.227 − 0.122i (see also § A.1).

Computation of the neutral curve ω0,i = 0 (thick line in figure 3b) shows that each
mode number β � 51 is associated with an absolutely unstable region. The radial
extent of the absolutely unstable interval remains finite for all β; absolute instability
has been shown by Peake & Garrett (2003) to prevail for 3.8 < R/β < 38.6 in the
limit β → ∞.

5. Primary saturated crossflow vortices
Whenever infinitesimally small perturbations are amplified according to the above

linear stability results, they eventually reach finite-amplitude levels and are then
governed by the complete nonlinear equations. Several experimental studies, e.g. by
Kohama (1984), Jarre, Le Gal & Chauve (1996b), reveal a pattern of outward-
spiralling crossflow vortices before transition to a turbulent régime occurs. These
finite-amplitude spiral vortices are periodic in space and time and can be sought as
nonlinearly saturated wavetrains evolving in the three-dimensional boundary layer.

Local nonlinearly saturated waves arise naturally from a purely temporal analysis.
The initial-value problem of interest is the temporal development of a radially and
azimuthally periodic small-amplitude perturbation of the form (4.1), characterized by
real values α, evolving in the three-dimensional flow (3.3) pertaining to a prescribed
radial station R. The initial evolution is dictated by the linear temporal growth rate
Ωl

i (α, β; R). Whenever Ωl
i (α, β; R) > 0, exponential temporal growth takes place until

nonlinear effects come into play. The quadratic nonlinear terms of the Navier–Stokes
equations then promote higher spatial harmonics of the form exp in(αr+βθ) as well as
a mean flow correction. These nonlinearities are stabilizing and lead to saturation at
finite amplitude. In the absence of secondary instabilities, a fully nonlinear travelling
wave is then reached in the long-time limit with spatial periodicity imposed by the
prescribed values of α and β . The final perturbation velocity and pressure fields
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Figure 3. Primary local absolute frequency. Isolines of (a) ω0,r and (b) ω0,i in (R, β)-plane.
The solid dot marks the onset of absolute instability at Rca � 507 and β = 68 with ωca

0 � 50.5.

associated with the travelling saturated crossflow vortices are thus of the form

u(r, θ, z, t) = unl(z, αr + βθ − ωt; α, β; R),

p(r, θ, z, t) = pnl(z, αr + βθ − ωt; α, β; R),

}
(5.1)

where the functions unl and pnl are 2π-periodic in their second variable φ ≡ αr +βθ −
ωt . The real frequency ω of the saturated waves is determined by the local nonlinear
dispersion relation

ω = Ωnl(α, β; R), (5.2)
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while the wave amplitude is conveniently measured by the mean fluctuating energy
defined below in (5.5). In the present section the existence of these finite-amplitude
travelling waves is studied. Their stability with respect to secondary perturbations is
investigated in § 7.

Note that instead of using radial wavenumber α and azimuthal mode number β ,
it is sometimes appropriate to specify the crossflow vortices by the wave angle ε and
wave vector modulus a. These equivalent representations are related by

tan ε = β/Rα, α = a cos ε,

a2 = α2 + (β/R)2, β/R = a sin ε.

}
(5.3)

5.1. Numerical solution procedures

The temporal evolution of a spatially periodic perturbation of real radial
wavenumber α and azimuthal mode number β is treated by resorting to the spatial
Fourier series

u(r, θ, z, t) =
∑

n


un(z, t)

vn(z, t)
wn(z, t)


 exp in(αr + βθ),

p(r, θ, z, t) =
∑

n

pn(z, t) exp in(αr + βθ).




(5.4)

Substitution of expansions (5.4) into the local governing equations (3.2) yields an
infinite set of coupled differential equations of first order in time. These are truncated
at a finite number of harmonics |n| � Nh and the Chebyshev collocation method (4.3)
is again used in the axial direction.

Time-integration of the resulting system is performed via a fractional-step method of
second-order accuracy in time. At the intermediate time step, the three components
of the velocity field are obtained by solving Helmholtz-type problems. A Poisson
problem then yields a correction to the pressure required to enforce divergence-free
velocity fields. A Crank–Nicholson scheme is used for the viscous terms, the advection
terms are obtained at the intermediate time step by extrapolation based on the two
previous time steps.

When initializing the temporal integration with the linear eigenmode at small
amplitude in a configuration where Ωl

i (α, β; R) > 0, the system evolves from an initial
exponential growth phase, via a transient régime, to reach a time-periodic state
corresponding to fully saturated crossflow vortices travelling without deformation.
Measuring the frequency of this wave then yields the nonlinear dispersion
relation (5.2), while the fluctuating energy is derived from the Fourier components as

E(α, β; R) =

∫ ∞

0

dz
∑
n>0

(|un(z)|2 + |vn(z)|2 + |wn(z)|2). (5.5)

This time-marching technique fails to converge towards a periodic solution when
the primary finite-amplitude vortices are affected by secondary instabilities. In order to
capture all primary nonlinear states, whether or not they are unstable with respect to
secondary instabilities, a Newton–Raphson search procedure has been implemented
that directly solves for the saturated time-periodic waves. In this formulation, the
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periodic solution is expanded as

unl(z, αr + βθ − ωt) =
∑

n


un(z)

vn(z)
wn(z)


 exp in(αr + βθ − ωt),

pnl(z, αr + βθ − ωt) =
∑

n

pn(z) exp in(αr + βθ − ωt),




(5.6)

and substituted into the local governing equations. Truncating at a finite number
of harmonics and implementing the collocation method in the z-direction then
results in a large system of nonlinear algebraic equations relating all components
of the wave fields and the real parameters α, β , ω and R. To fix the phase of
the solution, the normalization condition Im p1(0) = 0 is used. A good initial guess
for Newton–Raphson iteration is available from the above time-marching procedure
using parameter settings that are stable with respect to secondary perturbations. In
practice, the lengthy time-marching technique is only used once; the complete set
of nonlinear waves is thereafter obtained by the much faster iteration procedure,
continuously varying the parameters.

In general, β and R are kept at fixed values, and the nonlinear dispersion
relation (5.2) is then obtained by following temporal branches, i.e. continuously
varying α and solving for the wave fields and frequency ω. A further difficulty arises
due to the existence of critical values of α where the Jacobian used in the Newton–
Raphson iteration procedure becomes singular. These singularities are associated with
turning points and the fact that (5.2) is not single-valued in a small region of the
parameter space. In order to follow solution branches past these turning points, the
usual continuation in α must be replaced by an arclength continuation (Keller 1977).
For the present purpose it is convenient to consider both α and ω as unknowns and
to complement the governing system by a parameterizing equation

Π(α, ω; s) = 0, (5.7)

where s denotes an arclength coordinate in the (α, ω)-plane. Following of the entire
solution branch is then achieved using a simplified version of the pseudo-arclength
parameterization of Keller (1977),

Π ≡ (1 − µ)[α(s) − α(s0)]
dα

ds
(s0) + µ[ω(s) − ω(s0)]

dω

ds
(s0) − (s − s0), (5.8)

where s0 denotes the arclength coordinate at the previously computed point and the
constant 0 � µ � 1 controls the relative importance given to variations in α or ω.
Note that the limiting values µ = 0 and µ = 1 yield the nonlinear temporal and
spatial branches, respectively parameterized by α and ω.

5.2. Nonlinear wave near onset of primary absolute instability

As shown below in § 6, the transition location Rca = 507.4 from convective to absolute
instability is of particular importance for the self-sustained behaviour of the rotating-
disk flow. Figure 4 illustrates the structure of the nonlinear saturated waves prevailing
near onset of absolute instability, at R = 510 and β = 68. The waves shown are 2π-
periodic in the phase variable φ ≡ αr + βθ − ωt and propagate according to a
frequency of ω = 50.5 and a radial wavenumber of α = 0.35 (see also § A.2).
A systematic study of the nonlinear dispersion relation (5.2) is postponed to the next
subsection.
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Figure 4. Structure of nonlinear saturated wave at R = 510, β = 68, α = 0.35 and ω = 50.5.
(a) Azimuthal and (b) radial velocity components. (i) Isolines of perturbation velocity fields
over two wavelengths (azimuthal levels −40, . . . , −10 dashed, 0 thick, 10, . . . , 60 thin; radial
levels −10, −5 dashed, 0 thick, 5, . . . , 25 thin). (ii) Isolines of total velocity fields (azimuthal
levels 50, 100, . . . , 500; radial levels 10, 20, . . . , 110). (iii) Comparison of basic (thin lines) and
total (thick lines) velocity profiles.

Figure 4(i)(a, b) displays snapshots of the perturbation azimuthal v- and radial
u-velocity contours over two wavelengths in the (z, φ)-plane. The corresponding
total components RV (z) + v(z, φ) and RU (z) + u(z, φ) are shown in figure 4(ii)(a, b).
Figure 4(iii)(a, b) compares the total velocity profiles at four different phases φ = 0,
π/2, π and 3π/2 (thick lines) with the basic flow (thin lines). Also shown are cuts
of the total velocity fields at z = 1.6 (grey regions). These profiles display several
inflection points in both velocity components, most clearly at φ = 3π/2. It is thus
very likely that these saturated crossflow vortices will be unstable with respect to
secondary perturbations, as shown in § 7.

5.3. Nonlinear dispersion relation and fluctuating energy

The fluctuating energy and nonlinear frequency of waves corresponding to the critical
azimuthal wavenumber β =68 are given in figure 5. The energy E, as defined by (5.5),
of the nonlinear solution branches is shown in (a) together with isolines of the
positive linear growth rates Ωl

i . As can be seen, the nonlinear amplitude vanishes on
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Figure 5. Local nonlinear waves in the (R, α)-plane for a fixed β = 68. (a) Fluctuating energy
curves and (b) nonlinear frequency. Also shown in (a) are isolines of linear temporal growth
rate (levels 0 thick, 1, 2, 3 thin solid, 0.5, 1.5, 2.5, 3.5 thin dashed).

the neutral curve where Ωl
i = 0 while nonlinear waves with largest amplitude occur

near the lower end of the α-wavenumber range and do not coincide with the highest
linear growth rates. The frequency curves corresponding to the nonlinear dispersion
relation (5.2) are given in figure 5(b). It is towards the lower marginal curve, where
the energy sharply drops, that turning points in the dispersion relation occur. These
turning points are related to the proximity in parameter space of viscous instability
modes; however, since they are not essential in the present investigation no further
details will be given here. A similar feature has been found by Koch et al. (2000) in
the swept-plate boundary layer (see their figure 6).

Saturated waves have been systematically computed for radial locations up to R =
600. The structure of the nonlinear dispersion relation Ωnl(α, β; R) is illustrated in
figure 6 by cuts of the three-dimensional parameter space along planes of constant
azimuthal mode number.
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Figure 6. Nonlinear dispersion relation Ωnl(α, β; R). Isofrequency lines in the (R, α)-plane
for β = 120, 100, 80 and 60.

6. Self-sustained spatially extended structure
Having obtained the local linear and nonlinear waves in the boundary layer at

each radial location in the previous sections, a global solution developing over an
extended radial interval may be sought in the form of wavetrains that are slowly
modulated in the radial direction. This approach is set on firm theoretical ground
using WKBJ asymptotic techniques (Bender & Orszag 1978). Such a line of thought
has previously been fully implemented for one-dimensional model equations and the
two-dimensional Navier–Stokes equations. The generalization of this formalism to
the present three-dimensional case is obtained with no more than algebraic difficulty.
Only an outline of the method will be given here.

In the rotating-disk flow, the region of particular interest is the neighbourhood of
Rca � 507.4 where onset of absolute instability first occurs. This characteristic radius
is large compared to the boundary layer thickness, hence fulfilling the assumption of
weak radial development, or equivalently of large Reynolds number since the radius
acts as an effective local Reynolds number. It is thus legitimate to use

ε ≡ 1

Rca
� 1 (6.1)

as small parameter in the asymptotic formulation and to introduce the slow radial
coordinate

R̄ = εr. (6.2)

In this multiple-scales approach, the fast r-scale accounts for the oscillatory behaviour
of the spatially extended wavetrain, while its envelope and local structure are slowly
modulated on the R̄-scale so as to adjust to the variations of the underlying basic
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flow. This suggests the following change of variables:

u(r, θ, z, t) = u(z, φ; R̄),

p(r, θ, z, t) = p(z, φ; R̄),

}
(6.3)

with 2π-periodicity in the fast phase function φ(r, θ, t) whereas the R̄-dependence
accounts for the slow radial evolution. Local radial wavenumber, azimuthal mode
number and frequency are respectively defined as

α =
∂φ

∂r
, β =

∂φ

∂θ
, ω = −∂φ

∂t
. (6.4)

For a global solution displaying no singularities, both the frequency and azimuthal
mode number remain constant in the entire system. Indeed, any spatial variation of
either of these two quantities necessarily introduces dislocations. A smooth global
solution (6.3) is thus made up of waves that all have same global frequency ωg and
azimuthal mode number βg . The fast phase is then of the form

φ =

(
1

Rca

∫ R̄

α(ρ̄) dρ̄

)
+ βgθ − ωgt, (6.5)

where α(R̄) is an as yet undetermined slowly varying local radial wavenumber. Next
the wave fields and the derivative operators are expanded in powers of ε as

u(z, φ; R̄) = u0 + εu1 + ε2u2 + . . . ,

p(z, φ; R̄) = p0 + εp1 + ε2p2 + . . . ,

}
(6.6)

and
∂

∂r
= α(R̄)

∂

∂φ
+ ε

∂

∂R̄
,

∂

∂θ
= βg

∂

∂φ
,

∂

∂t
= −ωg

∂

∂φ
, (6.7)

and substituted into the governing equations (3.2). At leading order in the expansion
parameter ε, the derivative ∂/∂R̄ may be neglected and the slow coordinate R̄ acts
solely as an external control parameter. For each value of R̄, the global solution (6.3)
then obeys, to leading order, the local governing equations and follows, among all
possible waves, the one that matches the overall frequency ωg and mode number βg .
Note that in the previous sections, local properties have been derived with the local
Reynolds number R as control parameter. When carrying out the present asymptotic
analysis, however, it is more appropriate to rescale this parameter as R̄ = εR and to
consider that the local properties depend on R̄ instead.

Two different situations arise depending on the magnitude of the global
solution (6.3): in small-amplitude regions the global structure is described by the
linearized equations while the fully nonlinear equations prevail in regions of finite
amplitude.

Small-amplitude regions are governed by the local linear equations and the
corresponding dispersion relation (4.2). The radial wavenumber α(R̄) in the rapidly
varying phase (6.5) is then complex, accounting for both the wavelength and decay
rate in the radial direction, and obtained by solving the linear dispersion relation (4.2)
with prescribed βg and ωg . When solving (4.2) for the wavenumber α, two complex
spatial branches αl±(R̄; ωg, βg) are obtained. The separation of the spatial branches
into + and − branches is determined, according to classical arguments (Briggs 1964;
Bers 1983), by whether they correspond to a downstream or upstream spatial response
to localized harmonic forcing. As discussed below, in the present configuration the
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relevant spatial branch in the central linear region is always the αl− branch. The
global solution (6.3), (6.5) then locally follows the wave indexed by αl−(R̄), βg and R̄

within the family (4.1) of linear eigenfunctions.
In contrast, the finite-amplitude régime is governed by the local nonlinear equations

and the corresponding dispersion relation (5.2). Solving (5.2) with prescribed βg and ωg

then yields the corresponding real wavenumber branch αnl(R̄). These nonlinear spatial
branches correspond to the isofrequency lines represented in figure 6. This figure also
shows that a single nonlinear spatial branch is generally obtained; it is only for lower
frequencies than those of interest here that two αnl-branches coexist. In nonlinear
regions, the global solution then locally follows the wavetrains associated with αnl(R̄),
βg and R̄ within the familiy (5.1) of saturated crossflow vortices.

It remains to determine which global frequency ωg and mode number βg are
naturally selected in the rotating-disk flow.

As demonstrated in earlier investigations (Pier et al. (2001), spatially developing
systems display a nonlinear self-sustained state whenever a region of absolute
instability is present. These finite-amplitude solutions (also called ‘elephant’ global
modes (Pier & Huerre 2001b)) are characterized by a stationary front located at
the upstream transition from local convective to absolute instability. The selection
mechanism is the following: in the absolutely unstable region amplified perturbations
develop and their envelope advances upstream against the basic flow. At the location
of neutral absolute instability a balance between upstream perturbation growth
and downstream advection is reached and perturbations pile up at that location.
Nonlinearities lead to saturation of the fluctuating amplitude and a stationary front
is formed. This front generates a downstream-propagating fully nonlinear wavetrain
and an upstream exponentially decaying tail. It thus connects linear and nonlinear
regions, acts as a source and effectively tunes the entire system to its frequency. The
stationary front obeys the Dee & Langer (1983) marginal stability criterion, hence
the global frequency of these modes equals the real absolute frequency prevailing at
the front location.

In the present configuration, the transition radius from convective to absolute
instability depends on the azimuthal mode number β (see the neutral curve in
figure 3b). Each β � 51 is associated with an absolutely unstable region and thus
gives rise, in principle, to a self-sustained global structure displaying a front at the
corresponding marginal radius. However, it is for β = 68 that absolute instability first
occurs, at Rca � 507.4, and hence that perturbations are able to propagate inwards
closest to the disk centre. Global modes with β 	= 68 would reach finite amplitude
levels further outwards and are thus dominated by the solution with β = 68.

Assuming for now that there are no secondary instabilities, the expected self-
sustained behaviour is thus a time-harmonic solution with frequency ωg = ωca

0 � 50.5
and azimuthal mode number βg = 68. Onset of nonlinearity coincides with onset of
absolute instability and is triggered by a front at Rca . The spatial structure is the
following (figure 7): nonlinear outward-spiralling vortices of frequency ωg and mode
number βg are initiated at Rca and prevail in the outer region. They are governed
by the local nonlinear dispersion relation (5.2) and follow the associated real spatial
wavenumber branch αnl (figure 7b). The inner region r < Rca is covered by the front
tail. Since this tail is caused by the front at Rca , it decays exponentially towards
the disk centre according to the complex radial wavenumber αl− derived from the
local linear dispersion relation (4.2). Note that the front at Rca is associated with a
jump in wavenumber from the complex αl− to the real αnl . However, the fundamental
assumption of slowly varying radial change is not violated: this jump merely reflects
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Figure 7. Spatial structure of self-sustained nonlinear global solution of frequency ωca
0 � 50.5

and azimuthal modenumber β = 68. (a) Sketch of outward-spiralling nonlinear vortices
triggered at Rca � 507.4; exponentially decaying tail covers the inner region. (b) Corresponding
numerically computed spatial branches obtained by solving the linear (two complex branches
αl±) and the nonlinear (real branch αnl) dispersion relation. Pinching of the linear branches
occurs for the absolute wavenumber α0 = 0.227 − 0.122i at Rca . Radial wavenumber of the
global solution follows the path indicated by the thick line: the linear αl− branch prevails in
the central region; the front at Rca is associated with a jump in wavenumber; the nonlinear
αnl branch prevails in the outer region.

the existence of an inner layer (of size O(ε2/3) see Pier et al. 2001) in the complete
asymptotic analysis.

The WKBJ procedure outlined above guarantees the existence of a global time-
harmonic solution but does not tell us whether or not it is stable with respect
to secondary perturbations. The experimental observation of a rapid transition to
turbulence near Rca suggests that it is not. The aim of the remainder of this paper is
to understand this transition and therefore analyses in detail the secondary stability
of the saturated waves that make up the global solution near Rca .

7. Secondary stability analysis
When investigating the stability of primary saturated vortices of wavenumbers α

and β and frequency ω at a radial station R with respect to secondary perturbations,
the total flow fields are decomposed as

U(z; R) + unl(z, αr + βθ − ωt; α, β; R) + û(r, θ, z, t),

P (z) + pnl(z, αr + βθ − ωt; α, β; R) + p̂(r, θ, z, t),

}
(7.1)

where U + unl , P + pnl represent the new basic flow solution which is perturbed by
û, p̂.

Linear secondary stability of the primary periodic crossflow vortices is governed
by Floquet theory (Herbert 1988) and infinitesimally small secondary velocity and
pressure disturbances can be written in normal-mode form as

û(r, θ, z, t) = ûl(z, αr + βθ − ωt; α̂, β̂; α, β; R) exp i(α̂r + β̂θ − ω̂t),

p̂(r, θ, z, t) = p̂l(z, αr + βθ − ωt; α̂, β̂; α, β; R) exp i(α̂r + β̂θ − ω̂t),

}
(7.2)
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where α̂ is the secondary complex radial wavenumber, β̂ is the secondary integer
azimuthal mode number and ω̂ is the corresponding complex frequency; the
eigenfunctions ûl and p̂l have the same periodicity as the primary wave, i.e. are 2π-
periodic in the real phase variable φ ≡ αr +βθ − ωt . Two-dimensional eigenproblems
in the variables z and φ are then obtained after substitution of (7.1) with (7.2) into
the local governing equations and linearization about the new basic flow. For each
primary nonlinear wave characterized by the real parameters α, β and R and for
each choice of α̂ and β̂ , the solution of the corresponding eigenproblem yields the
secondary complex frequency

ω̂ = Ω̂l(α̂, β̂; α, β; R) (7.3)

together with the associated eigenfunctions ûl and p̂l . Note that the eigenproblem
admits many modes, but in general only the most unstable are physically relevant.

7.1. Numerical solution procedure

The linear local governing equations for the small-amplitude secondary perturbations
(7.2) are formally similar to the linearized version of (3.2)

∂ û
∂t

+ L̂û = −∇p̂ + �û, (7.4a)

∇ · û = 0, (7.4b)

except that advection occurs by the primary vortices (5.1) as well as by the laminar
base flow (3.3) so that now

L̂û ≡
(

(RU + unl)
∂

∂r
+

(
V +

1

R
vnl

)
∂

∂θ
+ (W + wnl)

∂

∂z

)
û

+


rU ′ŵ

rV ′ŵ
W ′ŵ


 +

(
û

∂

∂r
+

1

R
v̂

∂

∂θ
+ ŵ

∂

∂z

)
unl

+


Uû − 2V v̂

Uv̂ + 2V û

0


 +

1

R


 −2vnlv̂

unl v̂ + vnlû

0


 .

Upon substituting the previously obtained Fourier expansion (5.6) for the primary
solution and expanding the secondary eigenfunctions (7.2) in a similar fashion as

ûl(z, αr + βθ − ωt) =
∑

n


 ûn(z)

v̂n(z)
ŵn(z)


 exp in(αr + βθ − ωt),

p̂l(z, αr + βθ − ωt) =
∑

n

p̂n(z) exp in(αr + βθ − ωt),




(7.5)

the local governing equations (7.4) transform into an eigenproblem where the infinite
set of eigenfunctions ûn, v̂n and ŵn are linearly coupled via the harmonics un, vn

and wn of the primary wave (5.6). After truncating primary and secondary Fourier
expansions at |n| � Nh and |n| � N̂h respectively and using the Chebyshev collocation
method in the z-direction, a large algebraic eigensystem is obtained, the solution of
which yields the secondary dispersion relation (7.3) and the associated eigenfunctions.
As for the primary linear stability analysis, the physically relevant modes are identified
by monitoring the structure of the eigenfunctions while varying the resolution.
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7.2. Secondary temporal analysis

In a temporal analysis, the radial wavenumber α̂ of the secondary perturbation is
prescribed and real, while the frequency ω̂ as obtained from dispersion relation (7.3)
is complex.

Figure 8 shows the secondary temporal growth rate Ω̂l
i in the real (α̂, β̂)-plane for

the saturated crossflow vortices prevailing near onset of primary absolute instability
and analysed in § 5.2. Such results are usually presented by resorting to wave-oriented
coordinates, i.e. expressing α̂ and β̂ in terms of the wave angle ε (5.3) of the primary
nonlinear vortices as

α̂ = â cos ε − b̂ sin ε,

β̂/R = â sin ε + b̂ cos ε,

}
(7.6)

and prescribing â and b̂ instead of α̂ and β̂ . With a =
√

α2 + (β/R)2 denoting
the primary wavevector modulus, the ratio â/a is the detuning of the primary
wavenumber, and b̂ is the secondary wavenumber in the direction of the primary
vortex axis. By periodicity of the primary waves it is sufficient to consider the range
−a/2 � â � a/2. Here the parameters of the primary wave are R = 510, β = 68,
α = 0.35 and ω = 50.5 which correspond to ε = 0.368 and a = 0.371, and figure 8
shows the highest temporal growth rate of all unstable modes.

From these results it is found that the crossflow vortices under consideration are
unstable to secondary perturbations for any â at small and order-unity values of b̂. It
is only at much higher values of b̂ that secondary perturbations are found to decay,
since the maximum growth rate decreases with b̂.
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7.3. Secondary absolute instability and transition

Whether or not the primary finite-amplitude waves are permanently affected by
secondary disturbances depends on the absolute or convective nature of the secondary
instability. Indeed, for convectively unstable secondary instabilities, an external
impulse may only trigger a transient perturbation that is eventually carried away
radially outwards. Without external noise and for a perfectly smooth rotating disk,
transition can only occur because of secondary absolute instability of the naturally
selected primary crossflow vortices.

In contrast to the previous purely temporal analysis, the use of vortex-oriented
coordinates is not appropriate for a full spatio-temporal analysis where the radial
wavenumber α̂ needs to be considered complex while the mode number β̂ remains
integer.

Following Brevdo & Bridges (1996), the secondary absolute frequency ω̂0 and
absolute radial wavenumber α̂0 for periodic wave solutions are obtained by a
‘pinching condition’ in the complex α̂-plane which is formally analogous to that
of Briggs (1964) and Bers (1983) established for spatially homogenous systems. This
criterion is equivalent to a condition of vanishing radial group velocity,

ω̂0(β̂; α, β; R) = Ω̂l(α̂0, β̂; α, β; R) where
∂Ω̂l

∂α̂
(α̂0, β̂; α, β; R) = 0, (7.7)

with the additional requirement that the two spatial α̂-branches colliding at the
branch-point singularity α̂0 originate from distinct half α̂-planes for sufficiently large
and positive values of ω̂i .

Pinch points are readily identified by the ‘cusp map’ method (Kupfer, Bers &
Ram 1987), i.e. by monitoring how the dispersion relation (7.3) maps the complex α̂-
plane onto the complex ω̂-plane. This process is illustrated in figure 9 for the primary
nonlinear wave obtained with R = 510, α = 0.35, β = 68 and ω = 50.5; the secondary
azimuthal mode number is fixed at β̂ = 20. To start with, dispersion relation (7.3)
is computed on a coarse rectangular grid in the complex wavenumber plane (part
of which is shown by solid dots in figure 9a) to yield an outline of the mapping in
the frequency plane (figure 9b) and the approximate location of a potential pinch
point. Zooming in and recomputing the dispersion relation for a refined rectangular
grid in the wavenumber plane reveals the characteristic cusp in the frequency plane
(magnified portion of figure 9b). The corresponding values of the absolute frequency
and wavenumber

ω̂0 = 8.52 + 1.16i and α̂0 = −0.0012 − 0.0369i (7.8)

are then found by solving ∂Ω̂l/∂α̂ = 0 (see also § A.3). In order to ascertain that
this singularity of Ω̂l corresponds to a genuine pinch point, the two spatial branches
α̂+(ω̂) and α̂−(ω̂) are computed for ω̂ = ω̂0,r + ω̂i with ω̂i ↓ ω̂0,i (thick curve in
figure 9b). The curves labelled α̂+ and α̂− in figure 9(a) demonstrate that indeed they
originate from opposite half-planes.

After a first pinch point has been found, a continuation technique associated with
an iterative procedure searching for zeros of ∂Ω̂l/∂α̂ yields the absolute frequency ω̂0

and associated wavenumber α̂0 for nearby values of β̂ or of R, α and β . This iterative
search requires only the computation of the mapping α̂ �→ ω̂, which is numerically
much faster (but still slow!) since the governing equations are of first order in time.
Occasional spot checks using the (computationally more intensive) mapping ω̂ �→ α̂
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in figure 4, fixed secondary azimuthal wavenumber β̂ = 20. Magnified portion of (b) shows
cusp structure at ω̂0. Vertical frequency path (thick line in b) is associated with two spatial
branches α̂+ and α̂− indicated by thick lines in (a). The two branches collide at absolute
wavenumber α̂0 and originate from opposite half-planes for large values of ω̂i .

are performed to ensure that the values of α̂0 and ω̂0 thus obtained are still associated
with genuine pinch points.

The above analysis and result (7.8) are based on the nonlinear waves that are
part of the self-sustained global solution and prevail for R = 510. As depicted in
figure 9, the location of ω̂0 in the upper complex frequency plane then reveals that the
saturated crossflow vortices that are naturally selected near Rca are absolutely unstable
with respect to secondary perturbations. This strong secondary absolute instability
explains why the naturally selected spiral vortices (sketched in figure 7) are not
observed experimentally: as soon as the primary nonlinear vortices are generated
near Rca , secondary perturbations develop in situ and are amplified by a factor of
exp(2πω̂0,i) � 1500 per disk rotation, and transition to turbulence immediately occurs.

The structure of the secondary eigenfunction associated with the pinch point of
figure 9 is illustrated in figure 10 by its azimuthal velocity field v̂l(z, φ). Isocontours of
(a) the velocity modulus |v̂l | and (b) its real part v̂l

r are shown over two wavelengths,
superimposed on vnl-levels of the primary nonlinear wave, from figure 4(ii)(a). The
largest amplitude of the eigenfunction is seen to occur for φ � 3π/2 and precisely
correlates with the region where the primary wave displays strongly sheared velocity
profiles, cf. figure 4(iii).
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Figure 10. Structure of secondary eigenfunction associated with the pinch point of figure 9.
Equispaced isolines of (a) modulus and (b) real part of azimuthal velocity component
v̂l(z, φ) superimposed on azimuthal isolines of primary nonlinear wave (thin dashed curves,
cf. figure 4iia). Negative (zero) levels are shown by dotted (thick) curves.
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Figure 11. Secondary absolute growth rate ω̂0,i(β̂) pertaining to primary crossflow vortices
near onset of nonlinearity α = 0.35, β = 68, ω = 50.5 and R = 510.

Figure 11 displays the variation of secondary absolute growth rate ω̂0,i with mode
number β̂ , computed for the same primary saturated vortices, and shows that
secondary absolute instability prevails for a wide range of azimuthal mode numbers.
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8. Conclusion
This study has demonstrated that the behaviour of the three-dimensional boundary

layer produced by a rotating disk can be analysed in terms of an ‘elephant’
global mode: the self-sustained finite-amplitude fluctuations are produced at the
inner boundary Rca of the absolutely unstable domain. This boundary for onset
of absolute instability acts as a source and generates outward-spiralling saturated
primary crossflow vortices. Due to the slow radial development of the boundary
layer, these wavetrains are governed locally by the associated nonlinear dispersion
relation derived numerically from the local boundary layer velocity profiles considered
as parallel. A secondary stability analysis has revealed that the primary saturated
waves initiated at Rca are already absolutely unstable with respect to secondary
perturbations. The naturally selected structure is thus dynamically unstable and gives
way to a disordred state. (Note that, strictly speaking, these results only pave the
way towards transition: in order to fully document the route to turbulence one would
need to establish that secondary instabilities themselves do not saturate.) In con-
sequence, the rotating-disk flow follows the scenario first outlined by Huerre (1988),
using model equations rather than based on the Navier–Stokes equations, that
secondary absolute instability may occur prior to primary absolute instability.

It should be emphasized that, in the present configuration, transition to a turbulent
flow is triggered by secondary absolute instability while the transition location itself
is controlled by primary absolute instability. Indeed, primary nonlinear waves are a
prerequisite for the development of secondary instability leading to transition. Since
the secondary disturbances feed on the primary vortices, the turbulent régime cannot
propagate inwards of Rca and the central region remains unperturbed. As a result,
the transition location from basic to turbulent flow precisely coincides with the onset
of primary absolute instability. Thus the primary instability remains essential, even
though the primary spiral waves are obliterated.

In the present findings, transition occurs via a primary state of azimuthal mode
number β = 68, while the spiral structures that have been observed experimentally
generally display fewer spiral arms, in the range 25–50. There is no inconsistency,
however, since experimental measurements of β have only been done for crossflow
vortices that are steady with respect to the disk: these steady structures are presumably
produced by roughness elements on the disk surface, depend on the experimental
conditions and differ in frequency and wavenumber from the naturally selected ones.
Also, using a smooth disk, Lingwood (1996) has not observed any periodic vortices,
only a sharp transition from the unperturbed boundary layer to turbulence. Hence
it seems that the observation of primary vortices requires external forcing whereas
transition is an intrinsic feature of the boundary layer. A further confirmation of this
assertion is the wide scatter in the number of observed spiral arms, whereas transition
always occurs at a well-defined location.

The present results emphasize the essential difference between rotating-disk and
swept-wing boundary layers. The rotating-disk problem is primarily one-dimensional:
its dynamics is organized in the radial direction while the azimuthal and wall-
normal coordinates appear as eigendirections. In contrast, the swept-wing problem
is genuinely two-dimensional which makes its investigation much harder both
analytically and numerically. Azimuthal periodicity of the disk enables the intrinsic
route to turbulence via primary and secondary absolute instabilities. The swept-wing
flow undergoes primary and secondary convective instabilities which ‘initiate but do
not instantly cause breakdown to turbulence’ (Koch 2002).



Crossflow vortices and transition in the rotating-disk boundary layer 339

Nz = 30 Rca ωca
0 αca

0 Nz = 40 Rca ωca
0 αca

0

a	 = 1 502.645 50.3471 0.21686 − 0.11819i a	 = 1 508.475 50.5285 0.21719 − 0.12281i

2 507.537 50.5043 0.21757 − 0.12208i 2 507.504 50.4952 0.21679 − 0.12188i

3 507.284 50.4885 0.21676 − 0.12166i 3 507.369 50.4926 0.21694 − 0.12177i

4 507.561 50.4974 0.21694 − 0.12184i 4 507.402 50.4933 0.21691 − 0.12180i

5 507.216 50.4876 0.21712 − 0.12190i 5 507.403 50.4934 0.21692 − 0.12180i

6 506.895 50.4822 0.21655 − 0.12202i 6 507.386 50.4929 0.21692 − 0.12180i

Nz = 50 Rca ωca
0 αca

0 Nz = 60 Rca ωca
0 αca

0

a	 = 1 507.088 50.4836 0.21688 − 0.12148i a	 = 1 507.500 50.4961 0.21690 − 0.12191i

2 507.368 50.4925 0.21693 − 0.12177i 2 507.403 50.4934 0.21692 − 0.12181i

3 507.401 50.4934 0.21692 − 0.12180i 3 507.398 50.4932 0.21692 − 0.12180i

4 507.396 50.4932 0.21692 − 0.12180i 4 507.397 50.4932 0.21692 − 0.12180i

5 507.397 50.4932 0.21692 − 0.12180i 5 507.397 50.4932 0.21692 − 0.12180i

6 507.397 50.4932 0.21692 − 0.12180i 6 507.397 50.4932 0.21692 − 0.12180i

Table 1. Onset location Rca of primary absolute instability at β = 68 and corresponding
absolute frequency ωca

0 and wavenumber αca
0 . Values computed with Nz = 30, 40, 50 and 60

collocation points using transformation (4.3) with a	 as given, b	 = 0.6 and c	 = 0.5.

Nz = 30 α E1 E2 E3 E4 E5 Nz = 40 α E1 E2 E3 E4 E5

Nh = 1 0.33660 625.49 Nh = 1 0.33660 625.60

2 0.34450 628.03 41.09 2 0.34450 628.09 41.12

3 0.34607 622.24 37.63 3.88 3 0.34607 622.07 37.55 3.87

4 0.34620 621.11 37.20 3.48 0.39 4 0.34616 621.10 37.13 3.45 0.38

5 0.34620 620.97 37.13 3.45 0.35 0.04 5 0.34616 621.03 37.09 3.43 0.35 0.04

Nz = 50 α E1 E2 E3 E4 E5 Nz = 60 α E1 E2 E3 E4 E5

Nh = 1 0.33660 625.66 Nh = 1 0.33660 625.70

2 0.34450 628.14 41.13 2 0.34450 628.16 41.14

3 0.34607 622.11 37.56 3.87 3 0.34607 622.14 37.56 3.87

4 0.34616 621.15 37.14 3.46 0.38 4 0.34616 621.17 37.14 3.46 0.38

5 0.34616 621.08 37.10 3.43 0.35 0.04 5 0.34616 621.11 37.10 3.44 0.35 0.04

Table 2. Nonlinear wave at R = 510 and β = 68 with prescribed frequency ω = 50.5. Values
of radial wavenumber α and harmonic energy content computed with Nz = 30, 40, 50, 60 and
Nh = 1, . . . , 5.

Suggestions and advice from Nigel Peake and Werner Koch are gratefully acknowl-
edged. Special thanks go to Julian Scott for a careful reading of the manuscript and
to Paul Metcalfe for so efficiently setting up the Linux boxes which made possible the
numerical computations of the present paper.

Appendix. Resolution tests
A.1. Onset of primary absolute instability

Transition from primary linear convective to absolute instability first occurs for
β = 68. Table 1 shows how the marginal location Rca , the real marginal absolute
frequency ωca

0 and the corresponding absolute wavenumber αca
0 depend on the number

and distribution of axial collocation points.
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Nz = 30 N̂h = 1 2 3 4 5

Nh = 1 8.8017+ 1.2062i 8.7483+ 1.1959i 8.7549+ 1.2132i 8.7556+ 1.2127i 8.7556+ 1.2127i

2 8.6422+ 1.0452i 8.5613+ 1.1728i 8.5409+ 1.2081i 8.5435+ 1.2110i 8.5437+ 1.2109i

3 8.5978+ 1.0262i 8.5197+ 1.1485i 8.5282+ 1.1858i 8.5266+ 1.1904i 8.5269+ 1.1907i

4 8.5931+ 1.0260i 8.5162+ 1.1470i 8.5254+ 1.1827i 8.5286+ 1.1882i 8.5285+ 1.1885i

5 8.5929+ 1.0263i 8.5163+ 1.1471i 8.5256+ 1.1827i 8.5289+ 1.1881i 8.5292+ 1.1886i

Nz = 40 N̂h=1 2 3 4 5

Nh = 1 8.7915+ 1.1754i 8.7389+ 1.1699i 8.7457+ 1.1866i 8.7463+ 1.1862i 8.7463+ 1.1862i

2 8.6296+ 1.0153i 8.5492+ 1.1446i 8.5297+ 1.1792i 8.5324+ 1.1819i 8.5325+ 1.1818i

3 8.5859+ 0.9973i 8.5085+ 1.1208i 8.5182+ 1.1564i 8.5170+ 1.1609i 8.5173+ 1.1610i

4 8.5825+ 0.9975i 8.5062+ 1.1197i 8.5162+ 1.1539i 8.5200+ 1.1592i 8.5199+ 1.1595i

5 8.5825+ 0.9978i 8.5063+ 1.1198i 8.5165+ 1.1539i 8.5202+ 1.1592i 8.5207+ 1.1597i

Table 3. Secondary absolute frequency ω̂0(β̂ = 20) pertaining to primary crossflow vortices
near onset of nonlinearity ω = 50.5, β = 68 and R = 510.

A.2. Nonlinear wave near onset of primary absolute instability

Nonlinear waves prevailing at R = 510 with β = 68 and a prescribed frequency of
ω = 50.5 have been computed for a range of resolutions. Table 2 shows how the
corresponding radial wavenumber α and the distribution of the energy content by
harmonics depends on the number of collocation points and of harmonics used in
the computation.

A.3. Secondary absolute frequencies

Table 3 shows how the secondary absolute frequency ω̂0 for β̂ = 20 depends on the
number of primary Nh and secondary N̂h Fourier modes taken into account. The
primary nonlinear wave at R = 510, β = 68 and ω = 50.5 is computed with Nz = 30
or 40 collocation points remapped according to (4.3) using a	 = 2, b	 = 0.6 and
c	 = 0.5.
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