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Abstract The three-dimensional boundary layer produced by a disk rotating in otherwise still fluid is ana-
lytically investigated and its stability properties are systematically established. Using a local parallel flow
approximation, finite-amplitude primary travelling vortices governed by a nonlinear dispersion relation are
obtained. A secondary stability analysis yields the secondary linear dispersion relation and the secondary
absolute growth rate, which determines the long-term stability of the primary nonlinear vortex-trains. By
using these local characteristics, spatially developing global patterns of crossflow vortices are derived by
employing asymptotic techniques. This approach accounts for both the self-sustained behaviour, exhibiting
a sharp transition from laminar to turbulent flow, and the spatial response to external harmonic forcing, for
which onset of nonlinearity and transition both depend on the forcing parameters. Based on these results,
an open-loop control method is described in detail. Its aim is not to suppress the primary fluctuations but
rather to enhance them and to tune them to externally imposed frequency and modenumber, and thereby
to delay onset of secondary absolute instability and transition. It is shown that transition can be delayed
by more than 100 boundary-layer units.

Keywords Absolute instabilities · Boundary layers · Control · Rotating disk

1 Introduction

The von Kármán [1] boundary layer on an infinite disk rotating in otherwise still fluid is certainly a rather
crude and academic representation of centrifugal pumps, fans, turbomachinery elements, or backwards-
swept aircraft wings. However, despite its simplicity, it displays most of the features observed in situations
of higher complexity or with more elaborate geometries. All these types of boundary layers display similar
three-dimensional velocity profiles, are subject to inviscid crossflow instabilities and rapidly undergo tran-
sition to turbulent flow [2–4]. Thus, ever since the pioneering work of Kármán [1] and Gregory et al. [5],
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the rotating disk flow has served as the archetypal three-dimensional boundary layer, and its study has lead
to many results of considerable practical importance, e.g., to the aeronautics industry.

In the rotating-disk flow, the magnitude of the local boundary-layer velocity profiles increases linearly
with radial distance. As a result, the nature of the local stability features successively displays the three
well-known régimes from the disk axis outwards: stability, convective instability, absolute instability (for
theoretical definitions see [6,7]). Lingwood’s theoretical local linear stability analyses [8] have revealed
that absolute instability first occurs at a critical radius closely corresponding to the experimentally observed
transition from laminar to turbulent flow. Her findings suggested that the onset of absolute instability is
the driving mechanism responsible for the self-sustained time-dependent flow. Indeed, in stable or con-
vectively unstable systems, perturbations either decay or are carried away by basic advection so that, at
given position, the flow returns to its unpertubed state in the long term. It is only when the instability is
absolute that an initial disturbance may grow in time at fixed spatial position and thus lead to a permanently
perturbed flow. While this scenario for the behaviour of the rotating-disk flow seems to be confirmed by
most experimental studies (including Lingwood’s [9]), it does not, however, take into account two major
effects: spatial inhomogeneity and nonlinearity.

Global stability analyses of spatially inhomogenous systems governed by strictly linear dynamics are by
now fairly complete. For the linear complex Ginzburg–Landau equation with spatially varying coefficients,
Chomaz et al. [10] demonstrated that the complex frequency of a linear global mode is determined by a
saddle point condition applied to the local linear dispersion relation. According to Monkewitz et al. [11],
the same criterion also holds for the Navier–Stokes equations linearized about an arbitrary slowly varying
basic flow. In this linear setting, local absolute instability is a necessary but not sufficient condition for
global instability: in general, the existence of unstable global modes requires a finite range of local absolute
instability. The question whether or not the local absolute instability in the rotating-disk boundary layer
is strong enough to lead to unstable linear global modes has recently been addressed via direct numerical
simulations [12] (see also [13] in this volume). These simulations have shown that the local absolute insta-
bility of this flow does not produce a linear amplified global mode and is only associated with a transient
temporal growth; a result, also in agreement with analytical developments ([14] and N. Peake, Private
communication). These findings seem to be further supported by recent experimental work [15], carefully
designed to remain within the linear régime.

Thus, it appears that the self-sustained transition experimentally observed in the rotating-disk flow can-
not be explained within linear hydrodynamic-stability theory applied to spatially developing flows: a fully
nonlinear approach is thus required. The study of finite-amplitude states covering spatially inhomogenous
systems [16–22] has shown that there exists a variety of nonlinear global modes. The main result [21] of
interest here is that now local absolute instability is a necessary and sufficient condition: nonlinear global
modes exist, however small the absolutely unstable domain. In this context, nonlinear global modes may
exist in globally linearly stable media and their onset occurs via a saddle-node bifurcation [21].

Thus, Lingwood’s scenario can be restored by taking into account both spatial inhomogeneity and non-
linearity: the rotating-disk boundary layer is locally absolutely unstable [8], globally linearly stable [12]
and globally nonlinearly unstable [28].

The discrepancy between the global linear and nonlinear dynamics is, among others, due to the impor-
tant radial outflow and the large convectively unstable region upstream of the absolutely unstable region.
Thus, even small external perturbations may undergo a strong transient amplification and trigger nonlinear
dynamics. When external perturbations are switched off, such an externally forced perturbed state would
decay in the long term according to linear theory, but can survive forever due to nonlinear interactions
if finite amplitudes are reached. Most experimental studies [5,24–26] have focused on perturbations that
are fixed with respect to the disk, generated by roughness elements and permanently applied. Two already
mentioned studies [9,15] specifically address the impulse response and the related issue of self-sustained
disturbances. In these two experiments, a short air pulse is applied, either through a hole in the disk surface
once every disk rotation [9] or from above the boundary layer at independent timings [15]. So far the



J Eng Math (2007) 57:237–251 239

competition between self-sustained and externally forced dynamics has not been investigated in terms of
complete hydrodynamic linear and nonlinear stability analyses.

The present investigation outlines a new control method where a carefully designed periodic forcing
is continuously applied in the convectively unstable region so as to modify the self-sustained nonlinear
dynamics and to delay onset of transition.

This contribution first reviews and extends recent results from [23,27–29], and then applies them to
control the flow and delay transition beyond a radius at which the unforced flow would have become
transitional. By systematically computing primary (Sect. 3) and secondary (Sect. 4) stability characteristics,
and using asymptotic developments (Sect. 5), the naturally selected flow dynamics is explained (Sect. 6)
and the spatial response to localized harmonic forcing established (Sect. 7). Based on these results, a new
open-loop control method to delay transition is described (Sect. 8).

2 Basic flow structure

The infinite-disk problem lacks a characteristic length scale and thus allows the use of nondimensional
variables based on disk rotation rate, fluid viscosity and density, so that the flow does not depend on any
control parameter. Throughout this paper an inertial frame of reference is used with r, θ and z denoting
radial, azimuthal and axial coordinates, respectively. The time-independent axisymmetric basic flow is then
given by von Kármán’s [1] exact similarity solution to the Navier–Stokes equations as

U(r, z) ≡
⎛
⎝

rU(z)
rV(z)
W(z)

⎞
⎠ and P(z), (1)

where rU, rV and W are the non-dimensional radial, azimuthal and axial velocity components, and P is
the pressure.

The boundary-layer thickness is constant, of order unity in non-dimensional coordinates. As a result,
when features far from the disk axis and near a given radial location R � 1 are investigated, the assump-
tion of slow radial development is appropriate and local properties at given r = R are derived by freezing
the radial dependence of the basic flow (1) and studying the corresponding homogenous three-dimensional
flow U(z; R) ≡ (RU(z), RV(z), W(z)). The value of R then appears as a control parameter rather than a
coordinate and plays the rôle of an effective local Reynolds number.

3 Local linear and nonlinear travelling vortices

In subsequent developments, the total instantaneous flow field prevailing at a given location R is separated
into basic and perturbation quantities according to
{

U(z; R)+ u(r, θ , z, t),
P(z)+ p(r, θ , z, t).

(2)

Local linear instability properties are then derived by assuming infinitesimally small velocity and pressure
disturbances, written in normal-mode form as
{

u(r, θ , z, t) = ul(z;α,β; R) exp i(αr + βθ − ωt),
p(r, θ , z, t) = pl(z;α,β; R) exp i(αr + βθ − ωt),

(3)

where α is a complex radial wavenumber, β an integer azimuthal modenumber, ω a complex angular
frequency and ul, pl the associated complex velocity and pressure components. Substitution of (3) in the
linearized version of the local governing equations yields an eigenvalue problem in the z-direction. From
it, the local linear dispersion relation
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Fig. 1 Local linear and nonlinear dispersion relations in (α,β)-plane for (a) R = 450 and (b) R = 550. (a1, b1) Isocontours of
linear real frequency �l

r. (a2, b2) Isocontours of linear temporal growth rate �l
i. (a3, b3) Isocontours of nonlinear frequency

�nl, in subregion of (α,β)-plane where saturated wave solutions exist

ω = �l(α,β; R), (4)

together with the eigenfunctions ul(z;α,β; R) and pl(z;α,β; R) are routinely derived. Complex values of
�l computed in the (α,β)-plane for R = 450 and R = 550 are shown in Fig. 1(a1,a2,b1,b2).

In the context of open flows [6,7], a crucial feature is the complex absolute frequency ω0 and the
associated absolute wavenumber α0, defined by a vanishing group velocity condition [30,31] as

ω0(β; R) = �l (α0,β; R) with
∂�l

∂α
(α0,β; R) = 0. (5)

The linear instability properties of the rotating-disk boundary layer are well known [8,32]. Local growth
rates increase with radial distance away from the disk axis: the central region R < Rsc � 285 is linearly
stable, convective instability prevails for Rsc < R < Rca � 507, and absolute instability in the outer region
R > Rca. Transition from the convectively unstable (cu) to the absolutely unstable (au) domains occurs at
Rca for an azimuthal modenumber of βca and with a marginal real absolute frequency of ωca

0 , where

ωca
0 � 50.5, βca = 68, Rca � 507. (6)

In regions of linear instability, the three-dimensional boundary layer admits nonlinearly saturated trav-
elling crossflow vortices, governed by the complete nonlinear equations. The finite-amplitude perturbation
velocity and pressure fields of these nonlinear wave solutions are of the form
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{
u(r, θ , z, t) = unl(z,αr + βθ − ωt;α,β; R),
p(r, θ , z, t) = pnl(z,αr + βθ − ωt;α,β; R),

(7)

where the functions unl and pnl are 2π -periodic in their second variable φ ≡ αr + βθ − ωt with α and
ω now real quantities. After expanding unl and pnl as Fourier series in φ and substituting them in the
local nonlinear governing equations, these finite-amplitude spiral waves are numerically obtained by a
Newton–Raphson search procedure [23]. The real frequency ω of the saturated waves is then determined
by the local nonlinear dispersion relation

ω = �nl(α,β; R). (8)

Values of �nl, computed in the domain of the (α,β)-plane where non-linear travelling vortices exist and
delimited by �l

i = 0, are shown in Fig. 1 (a3) and (b3) for R = 450 and R = 550, respectively.

4 Secondary stability analyses

In order to investigate the stability of the above primary finite-amplitude crossflow vortices (7) with respect
to secondary perturbations, a secondary stability analysis needs to be carried out. For nonlinear travelling
waves of wavenumber α, modenumber β and frequency ω at a radial station R, the total flow fields are
then decomposed as
{

U(z; R) + unl(z,αr + βθ − ωt;α,β; R) + û(r, θ , z, t),
P(z) + pnl(z,αr + βθ − ωt;α,β; R) + p̂(r, θ , z, t),

(9)

where U+unl, P+pnl represent the new basic flow solution which is perturbed by û, p̂. Assuming infinites-
imally small secondary velocity and pressure disturbances and using Floquet theory [33], the perturbation
quantities are written in normal-mode form as
{

û(r, θ , z, t) = ûl(z,αr + βθ − ωt; α̂, β̂;α,β; R) exp i(α̂r + β̂θ − ω̂t),
p̂(r, θ , z, t) = p̂l(z,αr + βθ − ωt; α̂, β̂;α,β; R) exp i(α̂r + β̂θ − ω̂t),

(10)

where α̂ is the secondary complex radial wavenumber, β̂ is the secondary integer azimuthal modenumber
and ω̂ is the associated complex secondary frequency. The eigenfunctions ûl and p̂l have the same period-
icity as the primary wave, i.e., are 2π -periodic in the real phase variable φ ≡ αr +βθ −ωt, so that a Fourier
series in φ is again appropriate. Two-dimensional eigenproblems in the variables z and φ are then obtained
after substitution of (9) with (10) into the local governing equations and linearization about the new basic
flow (see [23] for numerical details). For each primary nonlinear wave characterized by the real parameters
α, β and R and for each combination of α̂ and β̂, the solution of the corresponding eigenproblem yields
the secondary linear dispersion relation

ω̂ = �̂l(α̂, β̂;α,β; R) (11)

together with the associated eigenfunctions ûl and p̂l.
Whether or not the primary finite-amplitude waves are permanently affected by a secondary disturbance

depends on the absolute or convective nature of the secondary instability. Indeed, in the case of secondary
convective instability an external impulse only triggers a transient perturbation that is eventually carried
away radially outwards, while, for secondary absolute instability, perturbations are exponentially amplified
at fixed radial position.

Following Brevdo and Bridges [34], the secondary absolute frequency ω̂0 and absolute radial wavenum-
ber α̂0 for periodic wave solutions are obtained by a saddle point condition in the complex α̂-plane

ω̂0(β̂;α,β; R) = �̂l(α̂0, β̂;α,β; R) where
∂�̂l

∂α̂
(α̂0, β̂;α,β; R) = 0, (12)
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(a)

(b)

Fig. 2 Isolines (thin solid curves) of nonnegative maximum secondary absolute growth rate ω̂max
0,i (α,β; R) for (a) R = 500 and

(b) R = 550. Nonlinear vortex trains exist to the left of the marginal curve �l
i(α,β; R) = 0 (thick solid line) with frequencies

corresponding to the dashed isolines. Symbols refer to crossflow vortices at (ω,β) = (ωca
0 ,βca) (thick dot), (ω,β) = (65, 90),

(45, 50) (diamonds), and (ω,β) = (65, 80), (50, 50), (50, 40), (45, 35), (35, 20) (triangles)

which is formally analogous to the criterion of Briggs [30] and Bers [31] established for spatially homoge-
nous systems.

The stability of a system of periodic nonlinear crossflow vortices corresponding to given values α, β and
R depends on the maximum secondary absolute growth rate

ω̂max
0,i (α,β; R) ≡ max

β̂

Im ω̂0(β̂;α,β; R). (13)

Thus, it is the sign of this quantity which determines whether the primary spiral vortices are stable
(ω̂max

0,i < 0) or not (ω̂max
0,i > 0) in the long term with respect to secondary perturbations.

Figure 2 shows isocontours (thin solid curves) of ω̂max
0,i ≥ 0 computed in the (α,β)-plane for R = 500

and R = 550. Nonlinear crossflow vortices exist in the region delimited by the (thick solid) marginal curve
�l

i(α,β; R) = 0, and their nonlinear frequencies ω = �nl(α,β; R) are indicated by dashed isolines. The
symbols in these plots correspond to crossflow vortices at particular values of β and ω and will be used in
Sect. 8.
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5 Spatially developing pattern of crossflow vortices

The analyses described in the previous sections entirely characterize the local properties of the rotating-
disk boundary layer: primary linear stability, primary nonlinear saturated waves, secondary stability of
these finite-amplitude periodic vortices. Based on these results, we are now in a position to derive a global
structure of spiral vortices developing over an extended radial domain and to express them in the form
of wavetrains that are slowly modulated in the radial direction. This approach is set on a firm theoretical
basis by using wkbj asymptotic techniques [35, Chap. 10].

In the rotating-disk flow, the region of particular interest is the neighbourhood of Rca � 507 where onset
of primary absolute instability first occurs. This characteristic radius is large compared to the boundary
layer thickness, hence fulfilling the assumption of slow radial development. It is thus legitimate to use

ε ≡ 1
Rca � 1 (14)

as a small parameter in the asymptotic formulation and to introduce the slow radial coordinate

R̄ = εr. (15)

In this multiple-scales approach, the fast r-scale accounts for the oscillatory behaviour of the spatially
extended wavetrain, while its amplitude and local structure are slowly modulated on the R̄-scale so as to
adjust to the radial evolution of the underlying basic flow. In classical wkbj fashion, the flow fields are
expanded in powers of ε and written as
{

u(r, θ , z, t) = u(z,φ; R̄) = u0 + εu1 + ε2u2 + · · · ,
p(r, θ , z, t) = p(z,φ; R̄) = p0 + εp1 + ε2p2 + · · · ,

(16)

with 2π -periodicity in the fast phase function φ(r, θ , t) whereas the R̄-dependence accounts for the slow
radial development. For regular spatially developing global solutions, the local frequency ω = −∂tφ and
local azimuthal modenumber β = ∂θφ necessarily remain constant in the entire system, while the local
radial wavenumber α(R̄) = ∂rφ varies slowly with radial distance, leading to a fast phase function of the
form

φ =
(

1
ε

∫ R̄
α(ρ̄)dρ̄

)
+ βθ − ωt. (17)

After substitution of the global solution (16) with (17) into the Navier–Stokes equations, the local
governing equations are recovered at leading order in the expansion parameter ε. At the local level,
R̄ solely acts as an external control parameter, and for each value of R̄ the leading-order solution, among
all possible waves, is the one that matches the overall frequency ω and modenumber β, as derived from the
relevant dispersion relation. Note that in the previous sections, local properties were derived with the local
Reynolds number R as control parameter. When carrying out the present asymptotic analysis, however, it
is more appropriate to rescale this parameter as R̄ = εR and to consider the local properties as functions
of the slow R̄ instead.

Two different situations arise depending on the magnitude of the perturbation fields: in small-amplitude
regions the wave pattern is described by the linearized equations while the fully nonlinear equations are
needed in regions of finite amplitude vortex-trains.

Small-amplitude regions are governed by the linear dispersion relation (4). The radial wavenumber
α(R̄) in the rapidly varying phase (17) is then complex, accounting for both wavelength and growth
rate in the radial direction. When solving (4) for the wavenumber α with prescribed β and ω, two com-
plex spatial branches αl±(R̄;ω,β) are obtained. The separation of these into + and − branches is dic-
tated according to classical causality arguments [30,31] and determined whether they correspond to a
downstream or upstream spatial response to localized harmonic forcing. The leading-order wkbj solution
(16, 17) corresponding to a branch αl(R̄;ω,β) takes the form
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u ∼ A0(R̄)ul
(

z;αl(R̄;ω,β),β; R̄
)

exp i

(
1
ε

∫ R̄
αl(ρ̄;ω,β)dρ̄ + βθ − ωt

)
, (18)

where ul is one of the family (3) of linear eigenfunctions and A0(R̄) is a slowly varying amplitude determined
by a solvability condition at order ε.

In contrast, the finite-amplitude régime is governed by the local nonlinear equations and the associated
dispersion relation (8). Solving (8) with prescribed β and ω yields the corresponding real wavenumber
branch αnl(R̄;ω,β). In nonlinear regions, the global solution associated with αnl(R̄;ω,β) within the family
(7) of saturated crossflow vortices has the form

u ∼ unl

(
z,

1
ε

∫ R̄
αnl(ρ̄;ω,β)dρ̄ + βθ − ωt +�0(R̄);αnl(R̄;ω,β),β; R̄

)
, (19)

where the slowly varying phase function �0(R̄) obeys a solvability condition obtained at order ε.
The stability of the spatially developing finite-amplitude vortices (19) with respect to secondary pertur-

bations is determined by the secondary local dispersion relation (11) and in particular by the maximum
secondary absolute growth rate (13) along the relevant nonlinear wavenumber branch

ω̂max
0,i (R̄;ω,β) ≡ ω̂max

0,i

(
αnl(R̄;ω,β),β; R̄

)
. (20)

In regions where ω̂max
0,i (R̄;ω,β) > 0, secondary perturbations develop on top of the nonlinear wkbj solution

(19), grow at fixed radial positions and trigger transition. In contrast, while ω̂max
0,i (R̄;ω,β) < 0, secondary

perturbations are at most convectively unstable and do not permanently affect the underlying primary
wavetrain of frequency ω and modenumber β.

6 Self-sustained behaviour

As demonstrated in earlier investigations [21], spatially developing systems display a nonlinear self-
sustained state whenever a region of absolute instability is present. This intrinsic state is the only non-trivial
behaviour that would be observed in the absence of any external perturbations: a perfectly smooth disk
and no residual perturbations in the surrounding fluid.

The naturally selected finite-amplitude solutions (so-called ‘elephant’ global modes [36]) are character-
ized by a stationary front located at the transition radius from local convective to absolute instability. The
selection mechanism is the following: in the au region, amplified perturbations develop and their envelope
advances inwards against the radial flow. At the station of neutral absolute instability a balance between
upstream perturbation growth and downstream advection is reached and perturbations pile up at that
location. Nonlinearities lead to saturation of the perturation amplitude and a stationary front is formed.
This front generates a downstream propagating fully nonlinear wavetrain and an upstream exponentially
decaying tail. It thus connects linear and nonlinear regions, acts as a source and effectively tunes the entire
system to its own frequency. The stationary front obeys a marginal stability criterion [37], hence the global
frequency of these modes equals the real absolute frequency prevailing at the front location.

In the rotating-disk flow, the absolute growth rate ω0,i(β; R) depends on both azimuthal modenumber
and radial position, and it is for βca = 68 that absolute instability first occurs: at Rca � 507 with a marginal
frequency ωca

0 � 50.5 (6). Hence the expected self-sustained behaviour (see sketch in Fig. 3a) is charac-
terized by a front at Rca of frequency ωca

0 and azimuthal modenumber βca [23]. The naturally selected
flow fields can then be interpreted as the spatial response to this source, which generates the inwards
exponentially decaying linear wavetrain and the outwards spiralling finite-amplitude crossflow vortices. In
terms of wkbj expansions, the inner region R < Rca is described by linear waves of the form (18), decaying
towards the disk centre and following the complex αl−(R;ωca

0 ,βca) radial wavenumber branch. In the outer
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(a) (b)

Fig. 3 (a) Self-sustained flow structure. Finite-amplitude spiral vortices are triggered at Rca, by onset of primary absolute
instability, and immediately give way to turbulence, caused by secondary absolute instability. (b) Externally forced flow struc-
ture. Localised harmonic forcing applied at Rf produces a radially amplified response. Finite-amplitude crossflow vortices
develop beyond saturation radius Rnl and break down by secondary absolute instability beyond R̂ca

(a)

(b)

Fig. 4 (a) Maximum secondary absolute growth rate ω̂max
0,i (R;ωf ,βf) and (b) nonlinear spatial branches αnl(R;ωf ,βf) for

different values of ωf and βf . The zero-crossings of ω̂max
0,i in (a) define the corresponding R̂ca(ωf ,βf) and are marked by dots.

The αnl branches in (b) terminate at low R when the marginal Rm(ωf ,βf) is reached. Solid lines in (a) and (b) correspond to
forcing parameters which delay onset of secondary absolute instability to beyond Rca
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region R > Rca, a nonlinear wavetrain of the form (19) prevails and follows the nonlinear wavenumber
branch αnl(R;ωca

0 ,βca). Computation of ω̂max
0,i (R;ωca

0 ,βca), the maximum secondary absolute growth rate
(20) along this naturally selected nonlinear wavenumber branch (see also Fig. 4), reveals that the primary
saturated waves initiated by the front at Rca are already absolutely unstable with respect to secondary
perturbations [23].

In view of these results, the intrinsic behaviour of the rotating-disk boundary layer (Fig. 3a) may be
explained in the following way. The self-sustained finite-amplitude fluctuations are produced at the inner
boundary Rca of the absolutely unstable domain. This frontier for onset of primary absolute instability acts
as a source and generates outwards spiralling saturated crossflow vortices, governed locally by the associ-
ated nonlinear dispersion relation. Due to secondary absolute instability, this naturally selected primary
structure is dynamically unstable and immediately gives way to a disordred state.

7 Externally forced behaviour

The rotating-disk boundary layer is convectively unstable over the radial interval Rsc � 284 < R < Rca �
507 and can thus also act as an amplifier of external perturbations, such as roughness elements on the disk
surface or fluctuations in the external flow. In order to characterize the response of the boundary layer
to external perturbations, this section addresses the signalling problem: the spatial response to radially
localized harmonic forcing applied in the at most cu domain (see sketch in Fig. 3b).

Consider a radially localized forcing at Rf with frequency ωf, azimuthal modenumber βf and small
amplitude Af. In the vicinity of the forcing location, the magnitude of the response is of the same order as
the forcing amplitude and thus governed by linear dynamics, provided that Af � 1. Near Rf the spatial
response then follows a linear wkbj expansion of the form (18) where the complex local radial wavenumber
branches αl±(R;ωf,βf) are obtained by solving (4) with ω = ωf and β = βf: the αl+-branch pertains to the
outwards R > Rf side of the forcing and the αl−-branch to the inwards R < Rf side.

In stable or cu regions, the upstream spatial response decays for all frequencies and modenumbers, thus
αl−

i (R;ωf,βf) < 0 for all R < Rf. The linear wkbj approximation (18) which is exponentially decaying
towards the disk axis with local wavenumber αl−(R;ωf,βf) then applies to the entire region upstream of
the forcing location.

For forcing applied at Rf in the cu domain, there exists however a range of frequencies and modenum-
bers yielding downstream growth, i.e., with αl+

i (Rf;ωf,βf) < 0. At leading order, the order of magnitude,
ψext, of the externally forced linear spatial response (18) for R > Rf is

ψext ∼ Af exp
∫ R

Rf

−αl+
i (ρ;ωf,βf)dρ (21)

and hence grows exponentially radially outwards. The nonlinear saturation station Rnl where the spatial
response takes O(1) values is determined by the condition
∫ Rnl

Rf

−αl+
i (ρ;ωf,βf)dρ = − log Af. (22)

At Rnl, nonlinear saturation prevents further growth and leads to a nonlinear wavetrain, again with fre-
quency and modenumber determined by the forcing. Beyond Rnl, the spatial response thus consists of a
finite-amplitude saturated wavetrain of the form (19), uniquely determined by the forcing parameters ωf
and βf, and whose local radial wavenumber follows the nonlinear branch αnl(R;ωf,βf).

The long-term stability of these primary nonlinear spiral vortices is dictated by ω̂max
0,i (R;ωf,βf), the maxi-

mum secondary absolute growth rate (20) following along the nonlinear wavenumber branch αnl(R;ωf,βf)

(see Fig. 4). Denote by R̂ca(ωf,βf) the radius corresponding to transition from secondary convective to
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absolute instability, i.e., defined by

ω̂max
0,i (R;ωf,βf) = 0 for R = R̂ca(ωf,βf). (23)

For R< R̂ca(ωf,βf), a secondary perturbation is at most convectively unstable (ω̂max
0,i (R;ωf,βf)< 0) and thus

does not succeed in permanently affecting the primary crossflow vortices. For R > R̂ca(ωf,βf), however,
the au finite-amplitude crossflow vortices (ω̂max

0,i (R;ωf,βf) > 0) give way to a disordered state.

It should be noted that, for givenωf and βf, the saturation location Rnl depends on both forcing amplitude
Af and radius Rf, whereas the nonlinear wavetrain (19) prevailing beyond Rnl does not. Thus, the radius
R̂ca(ωf,βf) for onset of secondary absolute instability is uniquely determined by the forcing parameters
ωf and βf, while that, Rnl, for primary nonlinearity further depends on the parameters Af and Rf.

The character of the forced spatial response depends on the relative positions of R̂ca and Rnl. In situa-
tions where Rnl < R̂ca (sketched in Fig. 3b), the linear spatial response (18) grows from Rf to Rnl, followed
by nonlinear periodic crossflow vortices (19) in the domain Rnl<R< R̂ca. Secondary absolute instability
occurs at R̂ca, leading to a disordered state in R > R̂ca. An increase/decrease of the forcing amplitude Af
results in earlier/later onset of nonlinearity (Rnl) but does not modify the secondary stability properties
nor transition at R̂ca(ωf,βf).

With very low forcing amplitudes, onset of nonlinearity may be delayed beyond R̂ca, i.e., Rnl > R̂ca.
Near Rnl, nonlinear saturation then leads to a wavetrain which is already au with respect to secondary per-
turbations (ω̂max

0,i (R
nl;ωf,βf) > 0). Thus the nonlinear periodic régime (19) is bypassed and a disordered

state covers the entire region beyond Rnl. Since the transition radius then directly depends on Rnl, an
increase/decrease of the forcing amplitude Af then brings about earlier/later transition. Due to the expo-
nential growth of the response, a situation where Rnl > R̂ca generally occurs, however, only for extremely
small forcing amplitudes.

8 Open-loop control

The above results show that the rotating-disk boundary layer displays all the features required for success-
ful implementation of the open-loop control method previously developed for a one-dimensional model
problem [28]. In this strategy, localized periodic forcing is applied in the cu region so as to replace the
naturally selected nonlinear global structure by the spatial response to external forcing. The aim is not to
suppress the primary vortices but to tune them to an externally imposed frequency and modenumber and
thereby delay onset of secondary absolute instability and transition.

Assuming that the boundary layer displays the self-sustained behaviour described in Sect. 6, the au
domain R > Rca � 507 is covered by finite-amplitude fluctuations initiated at Rca, while a linear wkbj
approximation (18) of frequencyωca

0 and modenumber βca describes the inner range R < Rca. The resulting
linear wavetrain decays exponentially towards the disk centre and, to leading order, the order of magnitude,
ψint, of its amplitude varies with radial distance R as

logψint ∼
∫ Rca

R
αl−

i (ρ;ωca
0 ,βca)dρ. (24)

Suppose that a radially localised external forcing of frequency ωf and modenumber βf is applied to the
above flow structure at Rf in the cu region, i.e., Rsc < Rf < Rca. For small forcing amplitude Af, the order
of magnitude (21) of the linear spatial response for R > Rf is given by

logψext ∼ af −
∫ R

Rf

αl+
i (ρ;ωf,βf)dρ, (25)

where af = log Af. In the neighbourhood of Rf, both the spatial response and the self-sustained global
mode are governed by linear dynamics and the resulting flow is a superposition of both fields. This linear
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régime prevails through the region extending from Rf outwards until either ψext or ψint reaches finite
levels. Nonlinearity of the self-sustained field appears at Rca, whereas the forced response achieves O(1)
amplitude at the saturation radius Rnl, defined by (22) and which depends on the forcing parameters. The
nature of the nonlinear dynamics taking over from the linear régime thus crucially depends on the relative
positions of Rca and Rnl.

For given ωf, βf and Rf, there exists a critical forcing amplitude Ac ≡ eac , defined by

ac =
∫ Rca

Rf

αl+
i (ρ;ωf,βf)dρ, (26)

for which the nonlinear saturation radius Rnl of the externally forced response coincides with the onset
radius Rca of intrinsic nonlinearities. For stronger forcing levels Af > Ac (resp. weaker levels Af < Ac),
the saturation radius moves upstream Rnl < Rca (resp. downstream Rnl > Rca).

The open-loop control strategy [28] to be applied here for the rotating-disk boundary layer is based on
the following results. For weak forcing levels Af < Ac, the spatial response does not achieve O(1) ampli-
tudes at radius Rca and is thus unable to perturb the nonlinear self-sustained state selected by the front at
Rca and triggering finite-amplitude fluctuations for R > Rca. However, for higher forcing levels Af > Ac,
the spatial response reaches nonlinear saturation upstream of the front, i.e., Rnl < Rca, and the naturally
selected behaviour is then suppressed and replaced by the forced spatial response throughout the flow.

This behaviour may be interpreted as the result of two competing sources of different periodicities at
different locations: the self-sustained (ωca

0 ,βca)-front at Rca (responsible for the intrinsic nonlinear struc-
ture) and the external (ωf ,βf)-forcing at Rf. In the absence of external forcing, the front at Rca acts as a
keystone upon which the global structure is based. When forcing is applied at Rf, the intrinsic wavemaker
at Rca survives only if its upstream decaying tail experiences an unperturbed medium. As soon as the front
is overwhelmed by incoming finite-amplitude perturbations, the source of the global mode is suppressed
and hence so is the entire self-sustained structure. The underlying (primary) au region then plays no rôle
in the dynamics, since it is effectively masked by an externally imposed nonlinear wavetrain.

Without external input, the boundary layer displays transition to turbulence near Rca � 507 (Fig. 3a).
With open-loop control by external forcing of periodicity ωf and βf, transition occurs instead near
R̂ca(ωf,βf), where the externally forced nonlinear crossflow vortices become au with respect to secondary
perturbations (Fig. 3b). The goal of delaying transition can then be achieved if the two conditions

Rnl < Rca and R̂ca > Rca (27)

are both fulfilled. Identification of efficient control parameters thus requires a systematic investigation of
primary and secondary instability characteristics.

The condition Rnl < Rca is necessary for control of the primary wavetrain to be effective: the forced
spatial response needs to reach nonlinear levels and to saturate upstream of Rca in order to supersede the
self-selected dynamics. The second condition, R̂ca > Rca, then guarantees that onset of secondary absolute
instability, and thus of transition, is postponed to beyond Rca. Thus the forcing parameters ωf and βf must
be chosen so that, near Rca, the resulting nonlinear crossflow vortices have negative secondary absolute
growth rate.

Suitable control parameters may be derived from Fig. 2(a) which shows the (α,β)-plane for R = 500,
slightly upstream of Rca. Saturated travelling waves exist to the left of the marginal boundary �l

i(α,β) = 0
(thick solid curve) and their nonlinear frequencies �nl(α,β) are indicated by dashed curves. Among these
nonlinear waves, those associated with secondary absolute instability (ω̂max

0,i ≥ 0, indicated by thin solid
isocontours) must be avoided. As a result, the two control conditions (27) may be met for frequen-
cies ωf and modenumbers βf associated with nonlinear vortices located between the curves �l

i = 0 and
ω̂max

0,i = 0. In Fig. 2(a), selected forcing parameters are indicated by symbols: transition can be delayed for
(ωf,βf) = (65, 80), (50, 50), (50, 40), (45, 35) or (35, 20) (triangles), but not for (ωf,βf) = (65, 90), (45, 50)
(diamonds), nor of course for the self-sustained (ωca

0 ,βca) (thick dot).
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With external forcing, the new transition radius R̂ca(ωf,βf) is determined by the zero crossing of the
maximum secondary absolute growth rate ω̂max

0,i (R;ωf,βf). Figure 4(a) shows the radial evolution of ω̂max
0,i

for different values of ωf and βf; the associated nonlinear wavenumber branches αnl(R;ωf,βf) are given in
Fig. 4(b). The values of ω̂max

0,i for R = 500 and R = 550, corresponding to the forcing parameters used in
Fig. 4, are shown by symbols in Fig. 2(a) and (b) respectively.

It is seen that the naturally selected vortices, for ωca
0 and βca (corresponding to the solid dot in Fig. 2),

are among the most unstable primary nonlinear waves. The associated ω̂max
0,i and αnl curves are given in Fig.

4 for 400<R< 600, but note that the values for R < Rca are irrelevant to the self-sustained global mode,
since it has finite amplitude only for R > Rca.

When the intrinsic dynamics at (ωca
0 ,βca) is replaced by nonlinear waves with (ωf,βf) = (65, 90) or

(45, 50) (diamonds in Fig. 2), secondary instability is reduced and the ω̂max
0,i curves in Fig. 4(a) are lowered.

For these forcing parameters, however, the radius Rca remains within the secondarily au region ω̂max
0,i > 0.

In consequence, rather than reducing the size of the turbulent domain, external harmonic forcing actually
promotes earlier transition because the secondary perturbations propagate inwards below Rca down to the
corresponding marginal radius R̂ca(ωf,βf) < Rca (indicated by small dots in Fig. 4a).

External forcing of nonlinear waves between the marginal�l
i = 0 and ω̂max

0,i = 0 curves in Fig. 2(a) suffi-

ciently weakens secondary instability that the critical radius R̂ca for onset of secondary absolute growth
is located beyond Rca, fulfilling the second condition (27). Values corresponding to (ωf,βf) = (65, 80),
(50, 50), (50, 40), (45, 35) and (35, 20) are indicated by triangles in Fig. 2, and the corresponding ω̂max

0,i and

αnl branches are represented by solid lines in Fig. 4. With ωf = 50 and βf = 40 (lowest curve in Fig. 4a),
onset of secondary absolute instability is postponed to beyond R̂ca > 600. Hence it is possible to delay the
turbulent régime by approximately 100 boundary layer units from Rca to R̂ca.

Due to the condition Rnl < Rca, it seems unlikely that forcing parameters exist that would delay transi-
tion much further. Indeed, the nonlinear solution branches are governed by the local nonlinear dispersion
relation (8) and terminate at low R when the marginal radius associated with ωf and βf, denoted as
Rm(ωf,βf) and indicated by dots in Fig. 4(b), is reached. Thus for given ωf and βf, saturation of the spatial
response may only occur for Rnl > Rm(ωf,βf), and the range of possible control parameters is therefore
limited by the condition

Rm(ωf,βf) < Rca. (28)

As can be seen from Fig. 4, settings of ωf and βf that yield high values of R̂ca(ωf,βf) also push Rm(ωf,βf)

outwards.
The spatial response at ωf and βf is radially exponentially amplified over the interval Rm(ωf,βf) <

R < Rca, and the largest amplification is obtained when forcing is applied at Rf = Rm(ωf,βf). Due to the
exponential growth of the forced response, only small forcing amplitudes (26) are generally necessary to
reach a nonlinear state at Rnl<Rca. However, when Rm is too close to Rca, the radial amplification of the
spatial response is only moderate and more substantial forcing amplitudes are required.

As a result, the values of ωf = 50 and βf = 40 are deemed to be very close to the optimal forcing
parameters for delaying transition by the present open-loop control method.

9 Discussion

For the three-dimensional boundary layer produced by a rotating disk, the scenario leading from the
unperturbed boundary layer to the turbulent state takes place in two steps and involves both primary
and secondary instabilities: primary nonlinear waves are the prerequisite for a possible development of
secondary absolute instability leading to transition. Since the secondary disturbances feed on the primary
vortices, the turbulent régime prevailing at large radial distances may propagate inwards until either the
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nonlinear waves cease to exist (R = Rnl) or until their secondary absolute growth rate changes sign
(R = R̂ca).

The intrinsic dynamics, observed without external perturbations, display a sudden transition from basic
to turbulent states, where primary and secondary instabilities simultaneously take place. At the radius
Rca � 507 of transition from primary linear convective to absolute instability, a stationary front of fre-
quency ωca

0 � 50.5 and azimuthal modenumber βca = 68 generates outward spiralling nonlinear crossflow
vortices. These finite-amplitude waves are already au with respect to secondary perturbations. Hence a
disordered state covers the whole region R > Rca, while the unperturbed boundary layer prevails for
R < Rca. In this situation, the transition location is dictated by onset of primary nonlinear waves, which in
turn corresponds to onset of primary absolute instability (Rnl = Rca).

When harmonic forcing is applied at Rf in the cu region with frequency ωf and modenumber βf in the
unstable range, the linear response exponentially grows with radial distance and reaches finite-amplitude at
radius Rnl > Rf. The associated nonlinear vortices display secondary absolute instability for R > R̂ca. When
forcing parameters are chosen so that Rnl < R̂ca, the spatial response displays three successive régimes
downstream of Rf: linear growth over Rf < R < Rnl, nonlinear crossflow vortices over Rnl < R < R̂ca and
a turbulent state for R > R̂ca. In this situation, transition is due to onset of secondary absolute instability
at R̂ca, and this radius is uniquely determined by ωf and βf.

The aim of the open-loop control strategy is to delay onset of secondary au perturbations, and thus
transition, from Rca to larger radii by a controlled modification of the primary nonlinear state. This tech-
nique consists in replacing the naturally selected flow state by the spatial response to carefully chosen
harmonic forcing. Transition is effectively postponed for control parameters such that Rnl < Rca < R̂ca: by
enhancing primary instability, onset of secondary instability may be delayed. Thus, the natural dynamics,
where primary and secondary instabilities occur simultaneously at Rca, is replaced by an externally forced
flow structure whose primary nonlinearities appear earlier (at Rnl < Rca) but whose secondary pertur-
bations develop only later (at R̂ca > Rca). In other words, the linear (ωf,βf)-waves must be sufficiently
unstable to reach nonlinear saturation before Rca and at the same time not too unstable so that the resulting
finite-amplitude waves display secondary absolute instability only after Rca. Best control (large R̂ca) is thus
obtained by applying weakly unstable forcing: transition may be delayed by approximately 100 boundary
layer units beyond Rca when using ωf = 50 and βf = 40. However, optimizing for large R̂ca requires a
very precise tuning of the forcing parameters and is expected to be difficult to implement experimentally.
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