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The global dynamics of open shear flows is closely related to the nature of their local
instability characteristics, either convective or absolute. The present investigation
revisits the wake of a sphere, obtains its global behaviour by direct numerical
simulations and derives its local stability features, computed for the underlying basic
flow under a quasi-parallel flow assumption. It is shown that both the axisymmetric
and the planar symmetric basic flows exhibit domains of local absolute instability
in the near-wake region. The largest absolute growth rates occur for instabilities
developing on the non-axisymmetric basic wake and conserving its planar symmetry.

1. Introduction
The global dynamics of shear flows is known to closely depend on the local

instability characteristics, either convective or absolute (Huerre 2000). Convectively
unstable systems are sensitive to inflow perturbations and they behave as amplifiers of
external noise. In contrast, absolutely unstable systems display non-trivial dynamics
without external input, often leading to self-sustained oscillations. Thus, onset of
absolute instability is generally associated with drastic changes in the naturally
selected global flow features. With this in mind, the present investigation has been
undertaken to work out the detailed instability properties prevailing in the wake of
a sphere. By analysing the wake structure and its local stability characteristics,
it is attempted to establish a link between the naturally selected global flow
and the dynamics prevailing locally. A similar line of thought has already been
sucessfully implemented for the two-dimensional wake of a cylinder (Pier 2002).
This approach is here generalized to the fully three-dimensional flow around
a solid sphere.

At moderate Reynolds numbers, the global dynamics of the wake flow around a
sphere is now fairly well established, both experimentally and numerically (Roos &
Willmarth 1971; Nakamura 1976; Sakamoto & Haniu 1995; Johnson & Patel 1999;
Mittal 1999; Ghidersa & Duček 2000; Tomboulides & Orszag 2000; Schouveiler &
Provansal 2002; Bouchet, Mebarek & Duček 2006). The steady axisymmetric wake
is stable for Re < Re1 � 212 and a steady non-axisymmetric flow is observed for
Re1 < Re < Re2 � 272. This non-axisymmetric wake displays a symmetry plane and
is characterized by two vortex threads aligned with the outer flow. At Re2, a Hopf
bifurcation leads to periodic vortex shedding. The resulting time-harmonic regime
conserves the planar symmetry and the associated Strouhal frequency is in the range
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0.12 < St < 0.18. At even larger Reynolds numbers, the planar symmetry is lost
(Mittal 1999) and further bifurcations lead to a more complex behaviour.

Monkewitz (1988b) investigated the linear stability of an analytic two-parameter
family of model axisymmetric, locally parallel and incompressible wake profiles. In
that study, the first helical mode was found to display the largest growth rates and
to be the only one to become absolutely unstable for velocity profiles approximating
those found in the near wake.

Natarajan & Acrivos (1993) computed the axisymmetric basic flow past a sphere
and examined its global linear instability to three-dimensional modal perturbations.
The first instability was found at Re � 210, associated with a vanishing frequency
(regular bifurcation). At Re � 277.5, a second mode was found to become unstable
via a Hopf bifurcation. While these authors only investigated the stability of the
axisymmetric wake, this second critical Reynolds number is remarkably close to
Re2 � 272, corresponding to the transition from a steady non-axisymmetric wake to
periodic vortex shedding.

More recently, the role of local absolute instability in self-sustained oscillations
developing in three-dimensional axisymmetric flows has been analysed by Sevilla &
Martı́nez-Bazán (2004) for the wake of a bullet-shaped body, by Gallaire et al. (2006)
for spiral vortex breakdown, and by Lesshafft et al. (2006) and Nichols, Schmid &
Riley (2007) for variable-density round jets. These studies have all confirmed the
importance of local absolute instability in triggering large-scale global oscillations of
these spatially developing flows.

The present investigation has been undertaken in the same spirit and revisits
the wake of a sphere in order to establish its complete local absolute instability
characteristics. Unlike the above studies, however, not only axisymmetric but also
planar symmetric basic wake flows are considered here. Indeed, at Re2, onset of
vortex shedding occurs via a bifurcation from a planar symmetric basic flow, which
therefore requires stability analyses of these non-axisymmetric velocity profiles.

The paper is organized as follows. The governing equations and numerical solution
methods for the flow around a sphere are presented in §2. The results obtained by
direct numerical simulations are given in §3. This section serves two purposes: first,
to validate the numerical code by accurately reproducing the different known flow
regimes; second, to obtain the exact time-independent solutions of the Navier–Stokes
equations that are used as basic flows for the subsequent stability analyses. In §4,
the local linear stability analyses are carried out for both the axisymmetric and
the non-axisymmetric basic flows. Here the local dispersion relations are derived,
absolute frequencies are computed and the existence of absolutely unstable domains
is established.

2. Governing equations and numerical solution methods
The following study is carried out for incompressible flows governed by the Navier–

Stokes equations. The Reynolds number is defined as Re = U∞D/ν, where U∞
represents the free-stream velocity, D the sphere diameter and ν the kinematic
viscosity.

Throughout this investigation, cylindrical coordinates are used with r , θ and z (u, v

and w) denoting radial, azimuthal and axial coordinates (velocities) respectively. The
z-axis is aligned with the free-stream velocity and has its origin at the center of the
sphere. For future use, a Cartesian (x, y, z)-frame is also introduced where the x- and
y-axes coincide with the directions defined by θ = 0 and θ = π/2 respectively.
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Using non-dimensional variables based on U∞, D and ν, and denoting the total
velocity and pressure fields by u(r, θ, z, t) and p(r, θ, z, t) respectively, the governing
momentum and continuity equations may be written as

∂t u + (u · ∇)u + ∇p =
1

Re
�u + f , (2.1a)

∇ · u = 0, (2.1b)

where the different terms are defined in cylindrical coordinates as
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and f (r, θ, z, t) is an externally applied volume force to be specified below. The
boundary conditions are vanishing velocity fields on the sphere surface and free-
stream conditions in the far field:

u = 0 for r2 + z2 = 1/4, (2.2a)

u = v = w − 1 = p = 0 for r → ∞ or z → ±∞. (2.2b)

2.1. Immersed boundary method

For the purpose of fast numerical integration, the above equations are discretized
on a Cartesian grid in the (r, z)-plane, and the spherical obstacle is treated by an
immersed boundary method (for a review of this technique see Mittal & Iaccarino
(2005)). Thus the entire space is assumed to be filled with fluid, and a body force f b

is applied inside the region covered by the sphere (r2 + z2 � 1/4) so that the fluid
is brought to rest there and condition (2.2a) is satisfied. In the present investigation,
several implementations for the force f b have been tested to drive the components
of the velocity fields to negligible values. Best results have been obtained when the
effect of the sphere is modelled via a visco-elastic restoring force

f b = −
(

1

τv

u +
1

τ 2
e

∫ t

0

u(τ )dτ

)
φ

(√
r2 + z2

)
, (2.3)

with τv = 0.01 and τe = 1; the shape function is defined as

φ(ρ) ≡ 1

2

(
1 + tanh

0.5 − ρ

δ

)

with δ = 0.001.
By implementing this method, there is no need for body-fitted coordinates or

explicit boundary conditions on the obstacle surface, thus enabling fast computations
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on a Cartesian (r, z)-grid. Another advantage is that the hydrodynamic drag and lift
forces acting on the sphere (see §3.4) are directly obtained by spatial integration of
the volume force f b and there is no need to evaluate components of the stress tensor
near the surface.

2.2. Spatial discretization

All flow quantities are expanded as Fourier modes in the azimuthal direction (indexed
by the integer β)

u(r, θ, z, t) =
∑

β

uβ(r, z, t)e
iβθ and p(r, θ, z, t) =

∑
β

pβ(r, z, t)e
iβθ , (2.4)

their complex components satisfying the conditions u−β = u

β , v−β = v


β , w−β = w

β

and p−β = p

β , where 
 denotes complex conjugation. However, when considering flow

fields which exhibit a symmetry plane containing the z-axis, the numerical effort may
be reduced: if the flow is symmetric about the (x, z)-plane, i.e. about the (θ = 0)-plane,
it is invariant under the planar symmetry operator Π mathematically defined as

Π :
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⎞
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and the components uβ , wβ and pβ are then real while vβ is purely imaginary (and
v0 = 0). In the numerical implementation, the expansions (2.4) are truncated at a finite
number of harmonics |β| � Nh. For the moderate Reynolds numbers of interest here,
it has been found that only a small number of modes (Nh = 3 or 4) are required to
accurately capture all the flow features, a fact already noticed by Ghidersa & Duček
(2000). Note that analyses of the axisymmetric wake features are simply carried out
by setting Nh = 0.

The discretization of the (r, z)-plane on a Cartesian grid combines finite differences
in the z-direction with Chebyshev collocation points in the r-direction (Canuto,
Hussaini & Quarteroni 1988; Boyd 2001).

An axial mesh of nz = nu + no + nd points is constructed with no equispaced grid
points separated by δz and clustered around z = 0, and nu (nd) elements in the
upstream (downstream) regions uniformly stretched according to a stretching factor
of κu (κd). All the results shown in this paper have been obtained with nu = 142,
no = 101, nd = 335, δz = 0.01, κu = κd = 1.02. The total streamwise extent of the
domain is then −8.5 < z < 387.

The radial discretization of the r-axis on nr collocation points is obtained by
mapping the Chebyshev points −1 � ξi ≡ − cos[iπ/(nr +1)] � +1 for i = 0, . . . , nr +1
onto the entire radial axis −∞ � ri � +∞ through the algebraic transformation
r
√

2/�r = ξ/(1 − ξ 2). The parameter �r governs the distribution of collocation points
over the r-axis: half of the points are located in the interval −�r < r < �r . Using
the vanishing boundary conditions (2.2b) at r = ±∞, the computation may be
restricted to the interior collocation points associated with 1 � i � nr . Moreover,
taking advantage of radial parity properties of the Fourier components (2.4), only
positive r-values need to be taken into account: the components uβ+1, vβ+1, wβ and
pβ are symmetric (antisymmetric) in r for β even (odd). The use of the appropriate
(anti)symmetric operators when computing radial derivatives then also resolves the
apparent singularity at r = 0, due to the formulation of the governing equations in
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polar coordinates (Boyd 2001). Throughout, �r = 1 has been used. Different resolution
tests have shown that reasonable but approximate results are obtained with nr = 80,
and that a high accuracy is achieved for nr � 160.

2.3. Time-marching algorithm

The integration in time of the incompressible Navier–Stokes equations (2.1) is carried
out by a second-order-accurate predictor–corrector fractional-step method (Goda
1979; Raspo et al. 2002). At the intermediate time-step, the velocity components
are obtained by solving Helmholtz-type problems. A Poisson problem then yields a
correction to the pressure required to enforce divergence-free velocity fields. A Crank–
Nicholson scheme is used for the viscous terms; the advection terms are obtained at
the intermediate time-step by extrapolation based on the previous time-steps.

3. Global flow behaviour and basic velocity fields
The present section considers the global wake dynamics for moderate Reynolds

numbers, Re � 350, and compares its features with those obtained by previous
experiments or simulations. The direct numerical simulations carried out here serve
two purposes. (1) Validate the numerical code by accurately reproducing the different
known flow regimes: steady axisymmetric flow for Re < Re1, steady non-axisymmetric
flow for Re1 < Re < Re2 and unsteady flow for Re > Re2. (2) Obtain the time-
independent solutions of the Navier–Stokes equations that are used as basic flows for
the stability analyses of the next section. These basic flow fields must be computed at
all relevant Reynolds numbers, including those for which they are globally unstable:
Re > Re1 for the axisymmetric and Re > Re2 for the non-axisymmetric basic flows.
These globally unstable non-axisymmetric basic wakes have been computed for the
first time here, by the frequency damping method of Åkervik et al. (2006).

3.1. Steady axisymmetric flow

A steady axisymmetric solution

u = uA(r, z; Re),

p = pA(r, z; Re),

}
(3.1)

of the Navier–Stokes equations (2.1) exists at all Reynolds numbers and can easily be
computed via direct numerical simulations. By truncating the Fourier expansions (2.4)
at |β| � Nh = 0, the system converges in time towards the steady state (3.1), even for
Re > Re1 when this basic state is globally unstable to non-axisymmetric perturbations
(see §3.2).

The structure of the basic axisymmetric wake fields at Re = 100, 200 and 300 is
illustrated in figure 1 where isolines of the pressure field p and the azimuthal vorticity
ωθ ≡ ∂zu−∂rw are shown. These fields are in excellent agreement with those obtained
for Re < Re1 by Johnson & Patel (1999, figures 6 and 7) using a discretization based
on spherical coordinates, a spatial grid fitted to the sphere surface and explicitly
implementing surface boundary conditions. Thus the ability of the present immersed
boundary technique to capture the flow fields with great accuracy is demonstrated.

3.2. Global instabilities

At Re1 � 212, a regular bifurcation occurs (Ghidersa & Duček 2000) and the
axisymmetric flow becomes globally unstable with respect to non-axisymmetric
perturbations. Thus, for Re > Re1, the wake flow naturally evolves towards a new
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Figure 1. Flow structure of steady axisymmetric wake. Isolines of pressure p (left) and
azimuthal vorticity ωθ (right) at (a) Re = 100, (b) Re = 200 and (c) Re = 300. Solid (dashed)
contours correspond to positive (negative) values. Pressure contours are spaced by 0.04 and
vorticity contours by 0.5.

steady non-axisymmetric state exhibiting a symmetry plane containing the z-axis. This
steady planar symmetric flow in turn becomes globally unstable at Re2 � 272, where
a Hopf bifurcation leads to periodic vortex shedding.

The breaking of axisymmetry is associated with the appearance of higher azimuthal
Fourier modes. Figure 2 shows the temporal evolution of energy contained in the first
azimuthal (β = 1) Fourier component; in these simulations the axisymmetric basic
flow solution (3.1) is non-axisymmetrically perturbed at t = 0. From figure 2(a) it is
derived that global instability of the axisymmetric state occurs for 210 < Re1 < 220,
while onset of periodic vortex shedding is seen in figure 2(b) to occur for 270 <

Re2 < 280. The steady planar symmetric wake obtained with Re = 250 can be seen
in figure 4(a) below, and a snapshot of the vortex shedding regime prevailing at
Re = 300 is shown in figure 3. The vortex shedding frequency measured for Re > Re2

weakly increases with Reynolds number and equals ω = 0.85 at Re = 300, which
corresponds to a Strouhal number of St = ω/2π = 0.135. These results are in good
agreement with the usually assumed critical Reynolds numbers of Re1 = 212 and
Re2 = 272, as well as the expected Strouhal number (Johnson & Patel 1999; Ghidersa
& Duček 2000). Since the purpose of the present investigation is not the precise
determination of these thresholds, these results are deemed sufficient validation of the
code and no further numerical refinement has been pursued.

3.3. Steady planar symmetric flow

For Re > Re1, there exists a steady non-axisymmetric but planar symmetric solution

u(r, θ, z, t) ≡ uP (r, θ, z; Re),

p(r, θ, z, t) ≡ pP (r, θ, z; Re),

}
(3.2)

of the Navier–Stokes equations (2.1). Below, the coordinates are always chosen so
that the symmetry plane coincides with the (x, z)-plane defined by θ = 0. This steady
planar symmetric wake flow is globally stable up to Re2. A direct numerical simulation
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Figure 2. Temporal evolution of energy E1 (arbitrary units) contained in the first azimuthal
Fourier mode for Re = 200, 210, . . . , 300.

x

1

–1
5 10 15 z

1

–1
5 10 15 z

y

Figure 3. Snapshot of periodic vortex shedding regime at Re = 300. Isolines of azimuthal
vorticity ωθ in the (x, z)-plane (symmetry plane θ = 0) and (y, z)-plane (θ = π/2) Solid (dashed)
contours correspond to positive (negative) values, spaced by 0.5.

(with Nh > 0) thus evolves in time towards the steady planar symmetric wake for
Re1 < Re < Re2 and towards a time-dependent regime for Re > Re2. It should be
noted that the onset of periodic vortex shedding does not break the planar symmetry
of the underlying unstable basic flow: the time-dependent flow fields (see figure 3)
conserve the (x, z)-symmetry plane. Thus there is no way to obtain the steady unstable
flow solution (3.2) for Re > Re2 by imposing an additional symmetry condition in
the direct numerical simulations.
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In order to compute the planar symmetric basic flow for Re > Re2, a Newton–
Raphson search procedure could be numerically implemented that solves for steady
solutions of the full system. However, owing to the size of the system of non-
linearly coupled equations, this procedure turned out to be extremely time and
memory consuming (even when resorting to approximate iterative methods) and
poorly converging.

A much more efficient way to compute the unstable basic flow was to implement
the selective frequency damping method of Åkervik et al. (2006). In a nutshell, this
frequency damping method enables the computation of steady solutions by adding to
the right-hand side of (2.1a) a linear forcing term f d driving the system towards a
target solution

f d(r, θ, z, t) = − 1

τd

(
u(r, θ, z, t) − ū(r, θ, z, t)

)
, (3.3)

where τd can be understood as a characteristic damping time. The target solution
ū must be chosen so that it converges towards the unknown steady solution, and
this can be achieved by low-pass filtering (with cutoff frequency 1/τf ) the already
computed velocity fields

ū(r, θ, z, t) =

∫ t

0

1

τf

exp

(
− t − t ′

τf

)
u(r, θ, z, t ′)dt ′, (3.4)

or equivalently

∂t ū =
1

τf

(u − ū). (3.5)

Time-marching of the target solution governed by (3.5) can be done simultaneously
with the simulation of the Navier–Stokes equations (2.1) with f = f b + f d and only
requires minimal modifications to the original code. As this coupled system converges
towards a steady state, the additional damping term (3.3) vanishes and the resulting
time-independent flow fields are exact steady solutions of the original Navier–Stokes
equations. In the present investigation, a good compromise between stability of the
scheme and fast convergence towards a steady solution was obtained with τd = 1
and τf = 10.

The structure of the steady planar symmetric wake at Re = 200, 250 and 300 is
shown in figure 4.

3.4. Drag, lift and reverse flow

As a final check, and to conclude this section on the global flow behaviour, the drag
and lift forces acting on the sphere as well as the reverse-flow regions in the different
wake regimes have also been computed.

As mentioned in §2.1, the hydrodynamic forces are here simply obtained by spatial
integration of the volume forces (2.3) required by the immersed boundary method.
Since these volume forces are designed to maintain the fluid at rest in the domain
covered by the sphere, they exactly oppose the hydrodynamic forces due to the
surrounding flow. The drag force is the component acting in the z-direction. Since the
symmetry plane of the wakes is chosen to lie at θ = 0, defined as the (x, z)-plane, the
lift force is obtained by projection onto the x-axis, while the lateral force along the
y-axis vanishes. Drag and lift coefficients CD and CL are shown in figure 5. The
thick solid lines correspond to the steady axisymmetric wakes; the thick dashed lines
represent the hydrodynamic forces computed for the steady planar symmetric fields.
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Figure 4. Flow structure of a steady planar symmetric wake. Isolines of azimuthal vorticity
ωθ in (x, z)-plane (symmetry plane θ = 0) and (y, z)-plane (θ = π/2) at (a) Re = 250, (b)
Re = 300 and (c) Re = 350. Solid (dashed) contours correspond to positive (negative) values,
spaced by 0.5.

Beyond Re2, the wake naturally evolves towards a time-dependent state, and the thin
lines illustrate the maximum and minimum values in this periodic regime.

Since absolute instability is often associated with the existence of reverse flow, the
evolution with Reynolds number of the recirculation region is plotted in figure 6. For
axisymmetric basic wakes, the reverse-flow region terminates at a stagnation point
located at ZA


 (solid curve) on the z-axis (note that the recirculation length is given by
ZA


 −0.5). For the steady planar symmetric wakes, two quantities have been computed:
the downstream boundary of the reverse flow region ZP


 (dashed curve), defined as the
zero-crossing of minr,θ wP (r, θ, z; Re), and the location ZP



 (dotted curve) where the
z-axis crosses the reverse flow region, i.e. the zero-crossing of wP (r = 0, θ, z; Re).
At Re = Re1, the breaking of axisymmetry causes a lateral shift of the reverse-flow
region, which entails a drop in ZP



. However, reverse flow prevails off the z-axis
beyond ZP



 down to ZP

 , which is seen to increase almost linearly with Re.

The results shown in figures 5 and 6 are in excellent agreement with the data
recently obtained by Bouchet et al. (2006) using a different method; note however
that these authors did not compute the globally unstable planar symmetric base flow
for Re > Re2.
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Figure 5. (a) Drag and (b) lift coefficients as a function of the Reynolds number for the
different flow regimes: axisymmetric wake (thick solid), steady planar symmetric wake (thick
dashed), unsteady planar symmetric wake (two thin lines corresponding to minimum and
maximum values).

4. Local linear stability analyses
The next two subsections of this study investigate the local stability properties of

the previously obtained basic wake flows: both the axisymmetric uA(r, z; Re) (3.1)
and the planar symmetric uP (r, θ, z; Re) (3.2) steady solutions of the Navier–Stokes
equations. Local properties of these flows, valid at a given axial position z, are
derived from the velocity profiles prevailing at that station. Such an approach can
be justified by a rigorous asymptotic analysis based on the assumption of a slow
axial development of the basic flow. The flow around a spherical obstacle is clearly
non-parallel in the near-wake region; however, following the successful treatment of
the cylinder wake (Pier 2002), we again ignore the non-parallelism of the present flow
and study its local stability features. Local properties are then derived by freezing the
z-coordinate, at say z = Z, and studying the equivalent axially parallel shear flows of
either axisymmetric or planar symmetric velocity profiles

UA(r; Z, Re) ≡ uA(r, Z; Re) or UP (r, θ; Z, Re) ≡ uP (r, θ, Z; Re), (4.1)



Local and global instabilities in the wake of a sphere 49

Re

100 150 200 250 300 350

Z

1.5

2.0

2.5

Re1

Z�
P

Z�
A

Z��
P

Figure 6. Reynolds-number dependence of reverse-flow region. For axisymmetric basic wakes,
the recirculation region terminates at ZA


 (solid curve). For planar symmetric basic wakes, it
extends down to ZP


 (dashed) and crosses the z-axis at ZP


 (dotted).

where Z now acts as a parameter rather than a coordinate.

4.1. Local stability of axisymmetric basic wake

When studying the local stability properties of the axisymmetric basic wake under
the parallel flow assumption, both z and θ are homogenous directions, and the total
flow fields may then be separated into basic and perturbation quantities according to

u(r, θ, z, t) = UA(r; Z, Re) + ul(r; α, β; Z, Re) exp i(αz + βθ − ωt),

p(r, θ, z, t) = P A(r; Z, Re) + pl(r; α, β; Z, Re) exp i(αz + βθ − ωt).

}
(4.2)

Here the infinitesimally small velocity and pressure disturbances have been written in
normal-mode form, where α is a complex axial wavenumber, β an integer azimuthal
mode number, ω a complex angular frequency and ul , pl the associated complex
velocity and pressure components. After substitution of (4.2) into the Navier–Stokes
equations, the linearization in the perturbation quantities yields an eigenvalue problem
in the radial direction. By using a Chebyshev spectral method based on the same radial
collocation points for which the base flow has been computed, the full ω-spectrum
is obtained for each setting of the wavenumbers α and β and of the parameters Z

and Re. In figure 7, the ω-spectra are shown corresponding to α = 2 and |β| � 4
for the velocity profiles obtained in the axisymmetric wake at Z = 1 with Re = 300
(illustrated in figure 1c). The full spectra are made up of many modes, among which
only a few are physically relevant. Note that the numerical method approximates a
continuous spectrum at ωr = α, associated with modes oscillating in the free stream.
For each β the most unstable (or least stable) mode is indicated by a bold dot in
figure 7. Identification of these modes yields the local linear dispersion relation

ω = ΩA(α, β; Z, Re). (4.3)

For axisymmetric base flows, the eigenfunctions ul(r; α, β) and ul(r; α, −β) are
associated with the same frequency, i.e. ΩA(α, β) = ΩA(α, −β), and transform
into each other under the symmetry operator Π (2.5), with respect to the
(θ = 0)-plane. A planar symmetric eigenmode is thus obtained as the combination
u = ul(r; α, β)eiβθ +ul(r; α, −β)e−iβθ , which satisfies Πu = u, whereas the combination
u = ul(r; α, β)eiβθ − ul(r; α, −β)e−iβθ satisfies Πu = −u and thus represents an
eigenmode that is antisymmetric with respect to the (θ = 0)-plane. For comparison
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Figure 7. Superposition of temporal ω-spectra corresponding to α = 2 and β = 0, 1, 2, 3, 4
for axisymmetric wake flow at Z = 1 with Re = 300.
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Figure 8. Structure of eigenfunctions obtained for axisymmetric wake flow at Z = 1,
Re = 300 with α = 2 and (a) β = 0, (b) β = 1, (c) β = 2, (d) β = 3. The axial velocity
component w(r, θ ) of the normalized modes (thick curves) is shown together with the axial
basic flow component W (r) (thin curves). (a) Radial profile of real wr (thick solid) and
imaginary wi (thick dashed) parts of the axisymmetric mode corresponding to α = 2 and
β = 0. (b–d) Modulus |w| (thick equispaced isolines) of planar symmetric modes corresponding
to α = 2 and β = 1 (b), β = 2 (c) and β = 3 (d). In (b–d), the basic wake profile W is indicated
by thin equispaced isolines.

with eigenmodes pertaining to non-axisymmetric wakes (figure 13), the structure of
the symmetric eigenmodes is illustrated in figure 8.

In the context of open shear flows, a crucial feature is the complex absolute
frequency defined as the frequency observed at a fixed spatial location in the long-
time linear response to an initial impulse. For an axially localized impulse with given
azimuthal mode number β , the local absolute frequency ωA

0 and associated absolute
axial wavenumber αA

0 are derived from the linear dispersion relation (4.3) by applying
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Figure 9. Identification of absolute frequency ω0 and wavenumber α0 for β = 1, Z = 1 in an
axisymmetric wake at Re = 300, by monitoring how the dispersion relation maps the complex
α-plane onto the complex ω-plane. (a) Isocontours of ωr (solid) and ωi (dashed) in the α-plane
display a saddle point at αA

0 � 1.75 − 0.78i marked by a solid dot. (b) The temporal curves
ΩA(α) computed for lines of constant αi display a cusp at ωA

0 � 0.52 + 0.25i in the ω-plane.

the Briggs (1964) and Bers (1983) pinch-point criterion, equivalent to the vanishing
group velocity condition

ωA
0 (β; Z, Re) = ΩA

(
αA

0 , β; Z, Re
)

and
∂ΩA

∂α

(
αA

0 , β; Z, Re
)

= 0 (4.4)

with the additional requirement that the two spatial α-branches that coalesce at
the branch-point singularity αA

0 originate from distinct half-α-planes for sufficiently
large and positive values of ωi . Pinch points are readily identified by computing the
dispersion relation (4.3) on a rectangular grid in the α-plane and monitoring how it
maps the complex α-plane onto the complex ω-plane. Plotting the associated temporal
branches in the ω-plane and ωr - and ωi-isolines in the α-plane reveals respectively the
characteristic cusp near ωA

0 and saddle point near αA
0 . Once a pinch point has thus

been approximately located, the exact values of ωA
0 and αA

0 are found by iteratively
solving (4.4) with this initial guess. This method is illustrated in figure 9 for β = 1,
Z = 1 and Re = 300, which yields ωA

0 = 0.52 + 0.25i and αA
0 = 1.75 − 0.78i. The

structure of the absolute eigenmodes obtained for azimuthal mode numbers β = 0, 1
and 2 at Z = 1 in an axisymmetric wake with Re = 300 is given in figure 10.

The streamwise evolutions of the local absolute growth rate ω0,i and real absolute
frequency ω0,r are illustrated in figure 11 for β = 0, 1, 2, 3 and axisymmetric basic
wakes in the range 100 � Re � 350.

From these plots it is found that the near wake displays absolutely unstable regions
when Re > Rea � 130 and that the strongest instability always occurs for |β| = 1.
Axisymmetric (β = 0) perturbations are weakly absolutely unstable for Re > 170
while higher azimuthal modes (|β| � 2) never reach absolute instability at these
Reynolds numbers. The discrepancy between onset of local absolute instability at
Rea � 130 and of global vortex shedding at Re2 � 272 will be addressed in the
concluding section.

4.2. Local stability of planar symmetric basic wake

When investigating the local stability features of a planar symmetric basic flow, the
local velocity profiles depend on both radial and azimuthal directions, and z is the
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Figure 10. Structure of absolute eigenfunctions for axisymmetric wake flows at Z = 1 and
Re = 300. The axial velocity component w(r, θ ) of the modes (thick curves) is shown together
with the axial basic flow component W (r) (thin curves). (a) Axisymmetric mode β = 0, radial
profile of real wr (thick solid) and imaginary wi (thick dashed) parts. (b,c) Non-axisymmetric
modes β = 1 and β = 2 respectively, equispaced (thick solid) isolines of modulus |w|.
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Figure 11. Local absolute growth rates ωA
0,i and frequencies ωA

0,r for |β| � 3 in axisymmetric
basic wake flows at Re = 100, 110, . . . , 350.

only spatial homogenous coordinate. The total flow fields are then separated into
basic and perturbation quantities as

u(r, θ, z, t) = UP (r, θ; Z, Re) + ul(r, θ; α; Z, Re) exp i(αz − ωt),

p(r, θ, z, t) = P P (r, θ; Z, Re) + pl(r, θ; α; Z, Re) exp i(αz − ωt),

}
(4.5)
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Figure 12. Frequency eigenvalues obtained with α = 2 for non-axisymmetric wake flow at
Z = 1 with Re = 300.

where α is again a complex axial wavenumber, ω a complex angular frequency and
the eigenmodes ul and pl are now functions of both r and θ and are governed by the
local Navier–Stokes equations linearized about the local planar symmetric wake flow.

For a given Reynolds number above onset of non-axisymmetry (Re > Re1),
computation of the planar symmetric steady wake following the method outlined
in §3.3 provides the basic flow fields required in (4.5). For these basic flow quantities,
the values of their azimuthal Fourier components are known on a set of radial
collocation points. Thus the same Fourier–Chebyshev expansion is used for the two-
dimensional eigenfunctions ul and pl in (4.5), and the associated eigenproblems are
then obtained as a large system of linear equations where the different azimuthal
harmonics of the eigenfunctions are linearly coupled via the harmonics of the basic
flow. The solution of these eigensystems then yields the full ω-spectrum for each
setting of the wavenumber α and the parameters Re and Z. Since the basic flow
is symmetric about the plane θ = 0, i.e. invariant under the symmetry operator Π

(2.5), the associated eigenfunctions are either symmetric (Πu = u) or antisymmetric
(Πu = −u), and the numerical resolution of the eigenproblems can be speeded up
by taking advantage of these symmetry properties. By analogy with two-dimensional
jets or wakes, the present symmetric (resp. antisymmetric) modes are also termed
varicose (resp. sinuous). Figure 12 shows the frequency spectrum corresponding to
α = 2, computed with the planar symmetric basic wake profile at Z = 1 for Re = 300
(illustrated in figure 4b). By comparison of this spectrum with the corresponding
spectra obtained at similar parameter settings for the axisymmetric wake flow (see
figure 7), the physically relevant eigenvalues in figure 12 are labelled as m = 0, ±1,
±2, . . . where the values m � 0 denote symmetric or varicose modes while the values
m < 0 denote antisymmetric or sinuous modes. Identification of these modes then
yields the local linear dispersion relation governing the planar symmetric wake flows

ω = ΩP (α, m; Z, Re). (4.6)

Comparison of figures 7 and 12 reveals that the non-axisymmetric basic flow
displays larger growth rates ωi than the axisymmetric case. Unlike the situation
prevailing for axisymmetric velocity profiles where the modes ±β are degenerate,
here the non-axisymmetric components of the basic flow lift the degeneracy of
the ±m modes, i.e. ΩP (α, m) 
= ΩP (α, −m) for m 
= 0. However, the influence
of the non-axisymmetric components is relatively weak: only the modes m = ±1



54 B. Pier

m = 0

x–1

y
1

1

x–1 1

m = +1
y
1

–1

x–1 1

1

–1

x–1 1

1

–1

x–1 1

1

–1

x

x

–1 1

1

–1

–1 1

1

–1

m = –1
y

m = +2
y

m = –2
y

m = +3
y

m  = –3
y

Figure 13. Structure of eigenfunctions obtained for planar symmetric wake flow at Z = 1
and Re = 300, with α = 2 and m = 0, ±1, ±2, ±3. The modulus of the axial velocity
component |w(r, θ )| of the modes (thick equispaced isolines) is shown together with the axial
basic flow component W (r, θ ) (thin equispaced isolines).

are clearly distinguished in the frequency plane of figure 12. The spatial structure
of the associated eigenfunctions is illustrated in figure 13 by isolines of |w|,
the modulus of their complex-valued axial velocity component. Again, only the
modes m = ±1 are clearly differentiated while the higher modes closely resemble
their axisymmetric counterparts (see figure 8). Note that plots of |w| are all
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Figure 14. Evolution with Reynolds number of planar symmetric m = +1 and antisymmetric
m = −1 eigenfunctions obtained for the basic wake at Z = 1, α = 2 and Re = 200, 220,
240, 280. While the modes are degenerate for the axisymmetric wake prevailing at Re = 200,
they evolve separately for Re > Re1 � 212 with increasing departure from axisymmetry. The
modulus of the axial velocity component |w(r, θ )| of the modes (thick equispaced isolines) is
shown together with the axial basic flow component W (r, θ) (thin equispaced isolines).

symmetric with respect to the x-axis: in this representation antisymmetric eigenmodes
are characterized by the vanishing of the w component on the x-axis, while
planar-symmetric eigenmodes display non-vanishing values of |w| over the x-axis.
It should be noted also that the unstable eigenfunctions (|m| � 2) are shifted towards
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Figure 15. Structure of absolute eigenfunctions for planar symmetric wake flow at Z = 1
and Re = 300, with m = 0, m = +1 and m = −1. The modulus of the axial velocity
component |w(r, θ )| of the modes (thick equispaced isolines) is shown together with the axial
basic flow component W (r, θ ) (thin equispaced isolines).

the regions where the basic wake displays the largest shear, i.e. the neighbourhood of
(x, y) = (0.5, 0) in these plots.

To further illustrate how the non-axisymmetric modes emerge from their
axisymmetric equivalents with increasing Reynolds number, figure 14 plots both
planar symmetric m = +1 and antisymmetric m = −1 eigenmodes obtained with
α = 2 and Z = 1 for Re = 200, 220, 240 and 280. For Re = 200, below onset
of non-axisymmetry, both modes are identical up to a rotation around the z-axis.
For Re > Re1 � 212, with increasing departure from axisymmetry, the discrepancy
between the m = +1 and m = −1 modes is seen to increase as they concentrate
towards the region of largest shear in the basic flow.

The analysis of absolute instability properties for non-axisymmetric wakes is carried
out in a similar fashion as for the axisymmetric case in the previous section; its
numerical implementaion, however, is more demanding on computational resources.
Application of the Briggs (1964) and Bers (1983) pinch-point criterion with dispersion
relation (4.6) yields, for each mode m, the local absolute frequency ωP

0 and associated
absolute axial wavenumber αP

0 by solving

ωP
0 (m; Z, Re) = ΩP

(
αP

0 , m; Z, Re
)

with
∂ΩP

∂α

(
αP

0 , m; Z, Re
)

= 0. (4.7)

The structure of the absolute eigenfunctions obtained for the modes m = 0, +1
and −1 for the non-axisymmetric basic wake at Z = 1 and Re = 300 is illustrated
in figure 15. These modes are associated respectively with the absolute frequencies
ωP

0 (m = 0) � −0.15 + 0.03i, ωP
0 (m = +1) � 0.76 + 0.41i and ωP

0 (m = −1) �
0.78 + 0.27i. Comparison with the corresponding absolute modes pertaining to
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Figure 16. Local absolute growth rates ωP
0,i and frequencies ωP

0,r for planar symmetric basic
wake flows at Re = 220, 230, . . . , 350 and m = 0, +1 and −1.

axisymmetric wakes (illustrated in figure 10) reveals again that the non-axisymmetric
eigenfunctions are concentrated in the regions where the planar symmetric wake
displays larger axial shear.

The streamwise evolution of local absolute growth rate ωP
0,i and real absolute

frequency ωP
0,r are illustrated in figure 16 for m = 0, +1, −1 and non-axisymmetric

basic wakes in the range 220 � Re � 350.
These results reveal that local absolute instability (ωP

0,i > 0) prevails in the near
wake for all Reynolds numbers Re > Re1, for which a planar symmetric wake exists.
For Re close to Re1, the non-axisymmetric components of the basic flow are relatively
small, and the symmetric m = +1 and antisymmetric m = −1 modes display very
similar features. With increasing Reynolds number, however, the non-axisymmetric
basic wake components strengthen and the m = +1 and m = −1 modes evolve
separately. It is the symmetric m = +1 mode that displays the largest absolute
instability, while the growth rate of the antisymmetric m = −1 increases more weakly
with Reynolds number. At Re = 350, the maximum absolute growth rate of the
m = +1 mode is in excess of 0.6, about twice the maximum value reached by the
m = −1 mode for the same Reynolds number. For the axisymmetric configuration,
the m = 0 modes are at most weakly absolutely unstable while the higher modes
(|m| � 2, not shown) do not reach absolute instability.
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β=±1) and planar symmetric (Zac
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5. Discussion
Local absolute instability analyses, based on both the axisymmetric and the planar

symmetric basic wake flows, have demonstrated the existence of absolutely unstable
regions in the near wake. The strength and the spatial extent of the absolute
instabilities increase with Reynolds number. The axisymmetric basic wakes display
absolute instability for Re > Rea � 130; planar symmetric basic wakes exist for
Re > Re1 � 212 and are always absolutely unstable.

For axisymmetric sphere wakes, the largest absolute growth rates are reached for the
β = ±1 modes, i.e. the first azimuthal harmonic. This corresponds to the general result
(Monkewitz 1988b) that the first helical modes are the most unstable in axisymmetric
wake profiles. For planar symmetric basic wakes, the non-axisymmetric basic flow
components are found to enhance the instability, and the strongest absolute growth
rates are found for the varicose m = +1 eigenmodes, which conserve the planar
symmetry of the underlying basic flow.

The relationship between absolutely unstable and reverse-flow regions is illustrated
in figure 17. For Re > Rea , transition from convective to absolute instability occurs
at Zca in the very near wake, and the flow returns to convective instability further
downstream at Zac. For axisymmetric wakes, the absolutely unstable region terminates
at Zac

β=±1 where ωA
0,i(β = ±1; Z, Re) changes sign. For planar symmetric wakes, the

domains where the m = +1 (m = −1) modes display absolute instability are delimited
by Zac

m=+1 (Zac
m=−1) defined as zero-crossings of ωP

0,i(m = +1; Z, Re) (respectively of

ωP
0,i(m = −1; Z, Re)). As already noted, the varicose m = +1 modes developing in the

planar symmetric basic wakes display the strongest absolute instabilities: Zac
m=+1 >

Zac
m=−1 > Zac

β=±1. Comparison of the marginal Zac-curves with the stagnation Z
-
curves (from figure 6) shows that reverse flow prevails beyond the absolutely unstable
region, both for the axisymmetric and the planar symmetric wakes: ZA


 > Zac
β=±1 and

ZP

 > Zac

m=+1. For planar symmetric wakes, however, the curves Zac
m=+1 and ZP


 display
the same asymptotic trend, which suggests that absolutely unstable and reverse-flow
regions exactly overlap in the limit of large Reynolds numbers.

These results confirm the presence of a ‘wave-maker’ in the near wake of the
sphere: the absolutely unstable region sustains fluctuations that develop in situ and
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feed waves into the downstream convectively unstable domain. Moreover, since the
dominant instability is a varicose (m = +1) mode, this is in agreement with the
observed planar symmetry, rather than antisymmetry, of vortex shedding.

In the context of slowly spatially developing flows, theoretical investigations have
shown that the onset of self-sustained nonlinear oscillations coincides with the
appearance of local absolute instability (Pier, Huerre & Chomaz 2001; Chomaz
2005). According to this theory, vortex shedding in the sphere wake should occur as
soon as Re > Rea � 130 and not only for Re > Re2 � 272. However, these theoretical
analyses rely on the assumption of asymptotically slow streamwise variation, which
is clearly not the case in the near wake of a sphere. This strong non-parallelism is
thought to be responsible for the discrepancy between onset of absolute instability
and onset of global instability. A similar discrepancy prevails for the two-dimensional
wake of a circular cylinder, where absolute instability starts at Re � 25, while the
onset of vortex shedding is at Re � 47 (Monkewitz 1988a; Provansal, Mathis & Boyer
1987; Pier 2002).

Concerning the Strouhal number, the frequency of a self-sustained time-periodic
finite-amplitude vortex shedding regime is expected to be governed by the criterion
of ‘steep’ or ‘elephant’ nonlinear global modes (Pier et al. 1998; Pier & Huerre 2001).
According to this theory, the global frequency equals the real absolute frequency
prevailing at the transition location from convective to absolute instability. From
the plots of figures 11 and 16, it is seen that transition from convective to absolute
instability occurs near the rear boundary of the sphere, for Z � 0.5. In this very near-
wake region, the associated real absolute frequencies are in the range 0.7 < ω < 1.3,
which corresponds to 0.11 < St < 0.21. More specifically, the frequencies prevailing at
the convective/absolute transition cover the range 0.7 < ωA

0,r < 1.0 for axisymmetric

wakes (130 � Re � 350) and the range 1.2 < ωP
0,r < 1.3 for planar symmetric

wakes (220 � Re � 350). It would thus appear that the instability properties of the
axisymmetric base flows yield frequency predictions closer to the actually observed
shedding frequencies (ω = 0.85 at Re = 300), while the non-axisymmetric base
flows somewhat overestimate the shedding frequencies. However, these quantitative
differences are thought to be inconclusive since the theoretical frequency selection
criterion is based on the assumption of weakly non-uniform systems, while the
local absolute frequency displays an important drop in the region 0.5 < Z < 1. In
view of these strong non-parallel effects in the vicinity of the sphere, the qualitative
agreement found with the actually observed frequencies is deemed very reasonable.
Note also that for the two-dimensional cylinder wake the global frequencies were
similarly found to be systematically below those derived from the local absolute
frequencies (Pier 2002). Also for the cylinder wake, Barkley (2006) has recently shown
that a linear stability analysis of the mean flow yields better frequency predictions
than a nonlinear frequency selection criterion applied to the basic flow. For the
three-dimensional wake of a sphere, the relevance of this result and comparisons with
different frequency selection criteria (reviewed in Chomaz 2005) are currently being
investigated and will be reported in a future publication.

To conclude, it should be emphasized that the motivation of the present study was
to completely work out the local absolute instability features of real sphere wakes
in order to address the link between these local properties and the fundamental
mechanisms dictating the global flow dynamics. While this link is not adequately
verified, due, among other factors, to non-parallel effects, the existence of an absolutely
unstable pocket has been clearly established.
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