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Abstract The dynamics of unstable systems crucially depends on the nature of the instability, either convec-
tive or absolute. The signalling problem, which is the study of the spatial response to a localized time-harmonic
forcing, is generally believed to be relevant only for stable or convectively unstable systems and to be ill-posed
for absolutely unstable systems, where the self-sustained perturbations grow faster than the forced harmonic
response. The present investigation shows that the signalling problem may still be well posed for media display-
ing absolutely unstable regions. Considering weakly spatially inhomogenous systems, conditions are derived
for the validity of the signalling problem. The complete spatial response to harmonic forcing is first analytically
derived in terms of asymptotic approximations and then confirmed by direct numerical simulations.
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1 Introduction

In spatially homogenous systems, linear stability characteristics are derived from the dispersion relation ω =
�(k) between the frequencies ω and the wave numbers k of normal modes of the form ei(kx−ωt), with x and t
denoting streamwise distance and time, respectively. These stability properties can be understood by resorting
to different methods: temporal, spatial or spatio-temporal [8,10,18].

In a temporal approach, a spatially harmonic perturbation of real wave number k is considered. This wave-
like initial perturbation evolves in time with a complex frequency ω. Its spatial structure, determined by the
wave number k, remains unchanged while its amplitude grows or decays with time. Growth or decay is deter-
mined by the sign of the temporal growth rate1 ωi, while propagation takes place with a phase speed ωr/k.
This analysis based on real wave numbers and complex frequencies is known as the temporal problem.

In a spatial approach, localized harmonic forcing is applied with real frequencyω, say at x = 0. The spatial
response to this forcing yields waves with complex wave numbers k. The wavelength of the spatial response
is determined by kr while the spatial growth or decay depends on ki: for x → +∞, the spatial response grows
when ki < 0 and decays when ki > 0; the reverse holds for x → −∞. The analysis based on real frequencies
and complex wave numbers is known as the spatial, or signalling, problem.

1 Throughout this paper, subscripts r and i denote real and imaginary parts of complex values.

Communicated by T. Colonius

B. Pier (B)
Laboratoire de mécanique des fluides et d’acoustique, École centrale de Lyon—CNRS—Université Claude-Bernard Lyon 1—
INSA Lyon, 36 avenue Guy-de-Collongue, 69134 Écully cedex, France
E-mail: benoit.pier@ec-lyon.fr



8 B. Pier

The full spatio-temporal stability properties may be investigated by applying an impulsive localized per-
turbation: the analysis of the resulting wave packet yields the complete dispersion relation between complex
wave numbers k and complex frequencies ω. While the impulsively started wave packet decays in stable
media, a growing response develops from the impulse location in unstable systems. If the growing wave
packet propagates away from its source and eventually leaves the medium unperturbed, the instability is said
to be convective. If, by contrast, the instability grows in place and invades the system both upstream and
downstream, the instability is said to be absolute. Convectively unstable (cu) systems do not display intrinsic
dynamics and essentially behave as amplifiers: external perturbations are amplified while propagating through
the system, and without continuous external input the medium returns to its unperturbed state. By contrast,
absolutely unstable (au) systems display non-trivial dynamics without external forcing: perturbations expand
in both upstream and downstream directions so as to cover the entire domain and continue to grow exponentially
at every point.

These stability concepts remain valid locally for spatially inhomogenous systems, provided the characteris-
tic inhomogeneity length scale is large compared to a typical instability length scale. However, the connection
between local stability characteristics and the long-term global dynamics of spatially developing systems is far
from obvious. In a linear framework, it has been shown [4,5,11] that the presence of local absolute instability
is a necessary but not sufficient condition for global instability: in general an au region of finite extent is
required for a spatially developing medium to become globally unstable. Thus there exists a wide range of
parameter settings for which a medium does not support any self-sustained fluctuations despite the presence
of a region of local absolute instability. In such a situation, the linear signalling problem is legitimate and this
is precisely the class of systems addressed in the present paper.

Globally stable but locally absolutely unstable systems are encountered in a variety of configurations of
practical interest, among which wakes and boundary layers: the cylinder wake flow for Reynolds numbers
in the range 25 < Re < 49 [12], a class of “synthetic” wake flows [16,17], the wake of a sphere [15], the
three-dimensional boundary layer produced by a rotating disk [7].

The paper is organized as follows: After formulating the problem in terms of the widely used partial differ-
ential complex Ginzburg–Landau equation (Sect. 2), its local (Sect. 3) and global (Sect. 4) stability properties
are recalled. In Sect. 5, the correspondence between the complex space and frequency planes and the structure
of the wave number branches are analysed. The complete analytic solution to the signalling problem is obtained
in Sect. 6 in terms of asymptotic approximations and discussed in Sect. 7. These results are confirmed by direct
numerical simulations in Sect. 8.

2 Problem formulation

Partial differential model equations account for the dynamics of a variety of physical systems [6] and are often
tractable by analytical methods. The linearized complex Ginzburg–Landau model (1) has on many occasions
proven to be a convenient testground to recognize and study generic features that have later been identified in
a variety of situations. The same strategy is adopted here.

The system under consideration is assumed to be described by a complex scalar field ψ(x, t) in an infinite
one-dimensional spatially inhomogenous domain and it is governed by

∂ψ

∂t
= − i

(
ω0(X)+ 1

2
ωkk(X)k0(X)

2
)
ψ + ωkk(X)k0(X)

∂ψ

∂x
+ i

2
ωkk(X)

∂2ψ

∂x2 + S(x, t), (1)

where the complex functions ω0(X), k0(X) and ωkk(X) account for the local properties of the medium and
only depend on a slow space variable X = εx . The coefficients of (1) have been cast in this form for reasons
that will become clear in the next section. The weak inhomogeneity parameter ε � 1 is defined as the ratio
of the typical instability length scale to the inhomogeneity length scale of the medium. The source function
S(x, t) represents an externally applied forcing to be specified below. While Eq. 1 applies to the real x-axis, the
functions ω0(X), k0(X) and ωkk(X) are assumed to be analytic and their continuation in the complex X -plane
will be used in the following sections.

3 Local stability properties

In the subsequent discussion, constant use is made of the local properties of system (1). Local characteristics
are derived from (1) by freezing X to some arbitrary (possibly complex) value and studying the corresponding
spatially homogenous system
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∂ψ

∂t
= − i

(
ω0 + 1

2
ωkkk2

0

)
ψ + ωkkk0

∂ψ

∂x
+ i

2
ωkk

∂2ψ

∂x2 + S(x, t), (2)

where the dependence of the coefficients on the parameter X has been omitted. Normal modes of the form
ei(kx−ωt), with complex frequency ω and complex wave number k, are then governed by the local dispersion
relation

ω = �(k) ≡ ω0 + 1

2
ωkk (k − k0)

2. (3)

To satisfy causality, temporal growth rates must be bounded which requires that Imωkk < 0. The particular
form in which the coefficients of (1) and (2) have been cast brings to the fore the local complex absolute fre-
quency ω0 associated with the local complex absolute wave number k0 determined by the zero group velocity
condition [2,3]

ω0 = �(k0) with
∂�

∂k
(k0) = 0.

For impulsive forcing of the form S(x, t) = δ(x)δ(t), where δ denotes the Dirac delta function, the absolute
frequency ω0 characterizes the temporal evolution of the resulting wave packet observed at a fixed station:
when Imω0 < 0, the system is stable or convectively unstable and the wave packet either decays or grows
while being swept away by advection; when Imω0 > 0, the system is absolutely unstable and the impulse
response exponentially grows at each point in space.

Now consider a spatially localized but temporally harmonic forcing of (possibly complex) frequency ω f ,
switched on at t = 0, i.e., S(x, t) = δ(x)H(t)e−iω f t where H denotes the Heaviside unit step function. The
spatial response to this harmonic forcing consists in traveling waves of frequency ω f and their wave numbers
are derived from (3) as

k±(ω f ) = k0 ±
√

2
ω f − ω0

ωkk
. (4)

Upon choosing the square-root branch cut in (4) along the positive real axis and with the square-root symbol
denoting the root with positive imaginary part, the k+ and k− branches pertain to the domains x > 0 and
x < 0 on either side of the forcing. However, turning on the forcing at t = 0 also produces a transient wave
packet that grows according to the absolute growth rate Imω0 at any fixed spatial location. Hence, two different
situations arise depending on the relative values of Imω f and Imω0:

– When Im (ω f −ω0) > 0 the switch-on wave packet is overwhelmed for large time by the spatial response
tuned to the forcing frequency ω f , and the signalling problem is well-posed.

– When Im (ω f − ω0) < 0, the switch-on wave packet overwhelms the spatial response at ω f and the har-
monic forcing does not succeed in tuning the medium to the externally applied frequency. The signalling
problem is then ill-posed.

4 Global stability properties

In spatially inhomogenous systems governed by (1), the above discussion yields stability characteristics pre-
vailing locally at each X . However the associated global behaviour cannot be immediately derived and must
be analysed carefully [5,11].

In a typical situation of interest, the local absolute growth rate Imω0(X) displays a single maximum over
the real X -axis and the medium is stable for X → ±∞. In the same spirit as Huerre and Monkewitz [9] and
in order to keep computational difficulties to a minimum, it is assumed that

ω0(X) = ωs + 1

2
ωX Xs(X − Xs)

2, (5)

where ωs , ωX Xs and Xs are complex parameters with ImωX Xs < 0. By resorting to asymptotic expansions,
it has been shown [5,11] that the impulse response of the spatially developing system is then dominated for
large time by a global mode of frequency ωs . Hence, whenever Imωs < 0 the system does not display self-
sustained solutions: any perturbation eventually decays even though large amplification may be observed in
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Fig. 1 Correspondence by the analytic mapping ω0(X) between a complex X -plane and b complex ω-plane. Associated curves
are rendered by the same symbols. The real X -axis is mapped onto the dotted curve {ω0(X i = 0)}, and the real frequencies ωca

0 ,
ωac

0 correspond to the boundaries Xca , Xac of the au interval. Horizontal lines in (b) are associated in (a) with the corresponding
isolines {X1,2(ωi = cst)} of constant absolute growth rate

the transient régime. Systems with Imωs < 0 are thus globally stable whether or not they exhibit an interval
of local absolute instability.

The paper is concerned with globally stable but locally absolutely unstable systems. In this situation all
transient behaviour displays eventual decay, and it is legitimate to study the long-term spatial response to an
externally applied time-harmonic forcing.

5 Structure of complex X-plane and spatial branches

When media are considered that are both globally stable and locally absolutely unstable, the local absolute
frequency is of the form (5) with Imωs < 0 and positive absolute growth rate (ω0,i(X) > 0) occurs over some
finite interval Xca < X < Xac. Note that this is possible only if the saddle point Xs of ω0(X) is not located
on the real X -axis. Let ωca

0 ≡ ω0(Xca) and ωac
0 ≡ ω0(Xac) denote the real marginal absolute frequencies at

the boundaries of the au interval.
The function ω0(X) defines an analytic mapping between the complex X -plane and the complex ω-plane

as shown in Fig. 1. The real X -axis is mapped onto the locus denoted as {ω0(X i = 0)} (dotted parabolic curve
in Fig. 1b) crossing the real frequency axis twice at ωca

0 and ωac
0 , corresponding to the marginally absolutely

unstable positions Xca and Xac. Note that Fig. 1 illustrates a configuration where ωca
0 < ωac

0 and Im Xs > 0;
situations with ωac

0 < ωca
0 and/or Im Xs < 0 yield similar pictures and results.

In the complex X -plane (Fig. 1a), isolines of constant absolute growth rate Imω0(X) are obtained as pre-
images byω−1

0 of horizontal lines in theω-plane. When such a line {ωi = cst} is located above the {ω0(X i = 0)}
curve in the ω-plane (thick dashed line in Fig. 1b), the two corresponding isolines in the X -plane (thick dashed
curves in Fig. 1a) do not cross the real axis and may be labelled {X1,2(ωi = cst)}, where the subscripts 1 or 2
correspond to curves confined to the upper or lower half X -planes, respectively. When the line {ωi = cst} is
lowered onto the real ω-axis, the associated X1 and X2 curves move towards each other. Since the real ω-axis
is crossed by the {ω0(X i = 0)}-curve at ωca

0 and ωac
0 , one of the associated isolines (indicated by solid curves

in Fig. 1a) necessarily crosses the real X -axis at Xca and Xac. In Fig. 1a, it is the lower {X2(ωi = 0)}-isoline
that crosses the X -axis while the associated {X1(ωi = 0)}-isoline lies entirely within the upper half-plane.
Note that the (thin-dashed) curves {X1,2(ωi = Imωs)} pinch at the saddle point Xs for the line {ωi = Imωs},
which is however located in the lower frequency half-plane and will not be considered here.

When solving the dispersion relation (3) with coefficients depending on X for a given frequency ω f , the
two spatial branches are obtained as

k±(X, ω f ) = k0(X)±
√

2
ω f − ω0(X)

ωkk(X)
. (6)

In the complex X -plane, these expressions display two branch points at X1,2(ω f ), where ω0(X) = ω f ,
and branch cuts must be introduced. Upon choosing the branch cut for the square-root function in (6) along
positive real values of its argument, the causality condition Imωkk(X) < 0 guarantees that the branch cuts for
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Fig. 2 Turning points and Stokes lines in the complex X -plane. The two turning points Xt
1,2 are located on their respective

{X1,2(ωi = 0)}-isocontours (dashed lines). Each turning point is associated with a branch cut (dotted curves) and gives rise to a
network of three Stokes lines (solid curves)

k± lie within the regions where Im [ω f − ω0(X)] < 0 and thus do not intersect the region located between
the {X1,2(ωi = Imω f )}-curves where Im [ω f − ω0(X)] > 0. Hence the branch cut starting at X1(ω f )
is located above the {X1(ωi = Imω f )}-curve and the branch cut starting at X2(ω f ) is located below the
{X2(ωi = Imω f )}-curve (see also Fig. 2). As indicated in Sect. 3, the spatial branches (6) may be unambigu-
ously interpreted as downstream k+ or upstream k− branches when Im [ω f −ω0(X)] > 0, which corresponds
to the domain of the X -plane located between the X1 and X2 curves. The above choice of branch cuts thus
extends the definition of the k±(X, ω f )wave number branches to the entire complex X -plane for any frequency
ω f with Imω f > Imωs (region above thin-dashed line in Fig. 1b). When considering real forcing frequencies
ω f in (6), the choice of k+ and k− branches corresponds to the downstream and upstream branches derived
by traditional causality considerations in the stable or convectively unstable domain of the complex X -plane,
characterized by Imω0(X) < 0 and located between the solid {X1,2(ωi = 0)}-curves of Fig. 1.

6 Signalling problem in spatially developing medium

For the signalling problem, the system is driven at some position on the real axis, say X f , with a real frequency,
say ω f , and the spatial response to this localized time-harmonic forcing is considered. Since the medium is
assumed to be globally stable, any switch-on transients will eventually decay and it is legitimate to seek a
long-term response of the form ψ(x, t) = φ(x)e−iω f t , globally tuned to the forcing frequency.

Under the slowly-varying medium hypothesis characterized by ε� 1, time-periodic solutions may be
obtained in terms of wkbj approximations [1] where the spatial structure is described by a rapidly vary-
ing complex phase, accounting for the local wavelength and spatial growth/decay rate, and a slowly varying
envelope. For a given global frequency ω f , a wkbj approximation is of the form

ψ(x, t) = A(X) exp

⎡
⎣ i

ε

X∫
k(u, ω f )du − iω f t

⎤
⎦ (7)

where the envelope A(X) is expanded in powers of ε as A ∼ A0 + εA1 + · · · and governed by amplitude
equations that can be computed recursively up to any order. In (7), the local wave number k(X, ω f ) satisfies
the local dispersion relation and follows one of the two spatial branches (6). Hence, in different domains of the
complex X -plane, the solution may be approximated by different wkbj expansions of the form (7) pertaining
to different spatial wave number branches.

The above wkbj expansions are singular [1] at each of the two turning points Xt = X1,2(ω f ) of the disper-
sion relation, where k+(Xt , ω f ) = k−(Xt , ω f ). These turning points are located on their respective {X1,2(ωi =
0)}-contours, see Fig. 2. From a turning point, three Stokes lines emerge, defined by Im

∫ X
Xt [k+(u, ω f ) −

k−(u, ω f )]du = 0, and partition the complex plane into three different sectors. Along these Stokes lines both
wkbj approximations remain of the same order of magnitude, while inside the sectors one approximation is
exponentially large with respect to the other.
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Consider first the turning point Xt
1 ≡ X1(ω f ), located on the upper {X1(ωi = 0)}-contour in the complex

X -plane (upper dashed curve in Fig. 2), and the two associated linearly independent wkbj approximations

	±
1 = A±(X) exp

⎡
⎢⎣ i

ε

X∫

Xt
1

k±(u, ω f )du − iω f t

⎤
⎥⎦. (8)

Three Stokes lines and one branch cut emanate from Xt
1. The branch cut (dotted line), along which k+ and k−

branches get exchanged, is located above the {X1(ωi = 0)}-curve and extends from Xt
1 towards infinity in the

upper complex X -plane. The three Stokes lines 
1
1, 
2

1 and 
3
1 divide the complex plane into three sectors S1

1 , S2
1

and S3
1 , and sector S2

1 is further divided into S2−
1 and S2+

1 by the branch cut, see zoom to right of Fig. 2. Along
these Stokes lines both approximations	±

1 are of the same magnitude, and the dominant (resp. subdominant)
solution becomes subdominant (resp. dominant) whenever a Stokes line is crossed.

Since the region near X = +∞ is at most convectively unstable, the spatial response to the external
forcing there necessarily features the k+ wave number branch and is thus made up of the subdominant 	+

1
approximation. Hence the dominant approximation 	−

1 is not present in the sector S3
1 , defined as the sector

containing the region near X = +∞, and the solution of the signalling problem in S3
1 and along its bordering

Stokes lines 
1
1 and 
2

1 is of the formψ ∼ C+
1 	

+
1 , solely made up of the subdominant	+

1 approximation with,
say, coefficient C+

1 . When continuing the solution from S3
1 into S1

1 across 
2
1, approximation 	+

1 becomes
dominant. Inside sector S1

1 , any subdominant contribution of the form C−
1 	

−
1 may be present. On the next

Stokes line 
3
1, both approximations are again of the same order, and the solution is then approximated by

ψ ∼ C−
1 	

−
1 + C+

1 	
+

1 along 
3
1. (9)

Similarly, when continuing the solution from S3
1 into S2+

1 across 
1
1, approximation	+

1 becomes dominant
and a solution of the form C=

1 	
−
1 + C+

1 	
+
1 must be considered inside sector S2+

1 . When crossing the branch
cut, the approximations	+

1 and	−
1 get exchanged so that the same wkbj superposition reads C+

1 	
−
1 +C=

1 	
+
1

in S2−
1 , with 	−

1 now the dominant term. On the Stokes line 
3
1, both approximations are again of the same

order, and the solution is then approximated by

ψ ∼ C+
1 	

−
1 + C=

1 	
+
1 along 
3

1. (10)

Finally, comparing both expansions (9) and (10) shows that all coefficients C=
1 , C−

1 and C+
1 are identical

to, say, C1. In the different regions around turning point Xt
1, the following approximations to the signalling

problem are then obtained

ψ ∼
⎧⎨
⎩

C1	
+
1 in S2+

1 , S3
1 , S1

1 and along 
1
1, 
2

1,
C1(	

+
1 +	−

1 ) along 
3
1,

C1	
−
1 in S2−

1 .
(11)

Note that nothing special happens across the branch cut, except relabeling of the superscripts of k± and 	±
1 .

Hence a result similar to the above holds even in situations where the orientation of the Stokes lines is such
that the branch cut is not confined between 
1

1 and 
3
1 (see example in Fig. 3a).

Thus it is only across the Stokes line 
3
1, defined as the Stokes line opposite the sector containing the region

near X = +∞ (see also Fig. 3 for further examples), that a change in the dominant wkbj approximation occurs:
a crossover between k+ and k− as dominant wave number branches takes place across 
3

1 while everywhere
else the dominant local wave number continuously depends on X .

Consider now the turning point Xt
2 ≡ X2(ω f ), located on the lower {X2(ωi = 0)}-contour (lower dashed

curve in Fig. 2). The same reasoning as above holds for the expansion of the spatial response in terms of the
two associated wkbj approximations

	±
2 = A±(X) exp

⎡
⎢⎣ i

ε

X∫

Xt
2

k±(u, ω f )du − iω f t

⎤
⎥⎦ . (12)
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Fig. 3 Spatial structure of the signalling problem in the complex X -plane for different forcing frequencies ω f . The two turning
points Xt

1,2 (thick dots) are located on their respective {X1,2(ωi = 0)}-isolines (dashed curves) and give rise to a network of
Stokes lines (solid curves) and branch cuts (dotted lines). The spatial response is dominated by the k− wave number branch in
the shaded regions and by the k+ branch everywhere else. The au interval of the real X -axis is hatched. a With ω f outside the
range ωca

0 –ωac
0 , the turning points Xt

1,2 are located in opposite half X -planes and the k+ wave number dominates over the entire
real X -axis. b,c With ω f within the range ωca

0 –ωac
0 , the turning points Xt

1,2 are located in same half X -planes, and the spatial

response displays a jump in the dominant wave number on the real axis at the intersection with the 
3
2 Stokes line

The associated branch cut (dotted curve) is now located below the {X2(ωi = 0)}-curve. With Stokes lines and
sectors around Xt

2 labeled as in Fig. 2 (left zoom), the solution to the signalling problem is then approximated
by

ψ ∼
⎧⎨
⎩

C2	
+
2 in S2+

2 , S3
2 , S1

2 and along 
1
2, 
2

2,
C2(	

+
2 +	−

2 ) along 
3
2,

C2	
−
2 in S2−

2 ,
(13)

and crossover between the dominant k+ and k− wave number branches takes place across the Stokes line 
3
2,

located opposite the sector containing the region near X = +∞. In the complex X -plane, the solution is thus
dominated by the k+ branch everywhere except in the two sectors issuing from the turning points Xt

1 and Xt
2,

respectively, and delimited by the Stokes lines 
3
1 or 
3

2 and the corresponding branch cuts; these regions are
indicated in grey in Fig. 2. Note that, although the approximations (12) are formally identical to (8), the spatial
branches in (12) are integrated from Xt

2 and the dominant/subdominant character depends on the behaviour
for X radiating away from this turning point.

The relationship between the constants C1 and C2 is readily derived by comparing the wkbj expansions
(11) and (13) in regions where they overlap, for example for X → +∞. From

ψ ∼ C1 A+(X) exp

⎡
⎢⎣ i

ε

X∫

Xt
1

k+(u, ω f )du − iω f t

⎤
⎥⎦

and ψ ∼ C2 A+(X) exp

⎡
⎢⎣ i

ε

X∫

Xt
2

k+(u, ω f )du − iω f t

⎤
⎥⎦

it follows that

C2 = C1 exp

⎡
⎢⎣ i

ε

Xt
2∫

Xt
1

k+(u, ω f )du − iω f t

⎤
⎥⎦ . (14)

The above results (11, 13, 14) entirely specify the asymptotic wkbj approximation to the unique solution
of frequency ω f satisfying a causal boundary condition, i.e., made up of the k+ branch near X = +∞. The
spatial response of system (1) to harmonic forcing of frequency ω f thus follows this solution over the real
X -axis on the right side of the forcing location, for X f < X < +∞. When the external forcing is applied with
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O(1) amplitude, the response is also O(1) near X f which yields the magnitude of the remaining unknown

constant as C1 ∼ exp i
ε

∫ Xt
1

X f
k+(u, ω f )du. Note however that in this linear setting the precise value of C1, and

thus the exact spatial location of the forcing, does not influence the spatial structure of the response to the right
side of the forcing.

The spatial response pertaining to the domain −∞ < X < X f on the left side of the forcing is similarly
derived from the unique solution of frequency ω f made up of the subdominant k− branch for X → −∞.
The corresponding details are straightforward and will not be presented here. In a typical situation of interest,
forcing is applied upstream of the au domain, i.e., X f < Xca , so that all relevant features concerning the
structure of the spatial response over the au interval are derived from the solution valid over X f < X < +∞.

7 Discussion

The previous analysis yields the spatial response to harmonic forcing over the entire X -axis, including the au
interval Xca < X < Xac.

For harmonic forcing of real frequency ω f applied at some station X f upstream of the au domain, local
causality considerations suggest that the spatial response follows the k+(X, ω f )wave number branch over the
stable or cu interval X f < X < Xca , between the forcing location and onset of absolute instability. Similarly,
in the at most convectively unstable downstream domain extending from X = Xac to X → +∞, the solution
is obtained as the downstream response to some upstream located cause and is there also expected to follow
the k+(X, ω f ) wave number branch.

However, local considerations fail to predict the structure of the spatial response in the au interval Xca <
X < Xac since the k± wave number branches (6) are there only formal solutions of the local dispersion relation
and cannot be interpreted in terms of upstream or downstream spatial branches.

Based on the developments of the previous section, it will now be shown that in the au region Xca < X <
Xac the structure of the spatial response and the dominant wave number essentially depend on the positions
of the turning points Xt

1,2 ≡ X1,2(ω f ) relative to the real X -axis and thus on the relative values of ω f , ωca
0

and ωac
0 .

Indeed, a forcing frequencyω f outside the rangeωca
0 –ωac

0 lies above the {ω0(X i = 0)} curve in the complex
ω-plane (dotted parabolic curve of Fig. 1b). The associated turning points are then located on either side of the
real X -axis: Xt

1 in the upper half-plane and Xt
2 on parts of the {X2(ωi = 0)}-isoline in the lower half-plane, as

illustrated in Fig. 3a. In this situation, the branch cuts emanating from Xt
1,2 and, respectively, extending into

the far upper and lower half X -planes do not cross the real X -axis. As a result, the spatial branches k±(X, ω f )
continuously depend on X over the entire real axis, and the k+(X, ω f ) branches prevailing on either side of
the au interval (hatched in Fig. 3) are continuously connected over the real X -axis. Note that the branch cut
starting at Xt

2, while remaining below the {X2(ωi = 0)}-isoline, could cross the real axis twice before heading
toward the far lower X -plane; however, the conclusions are not affected as long as an even number of crossings
occurs since the branch cut could then be modified so as to avoid the X -axis. At the same time, the Stokes
lines 
3

1 and 
3
2 over which an exchange of the dominant wkbj approximations occurs do not cross the real

X -axis either. The regions in the complex X -plane where the spatial response is dominated by the k− branch
(shaded regions in Fig. 3a) then do not overlap the real X -axis. Hence the spatial response to harmonic forcing
is approximated by the wkbj approximation featuring the k+ wave number branch over the entire domain
X f < X < +∞ including the au interval Xca < X < Xac.

By contrast, for a forcing frequency ω f within the range ωca
0 –ωac

0 , i.e., below the {ω0(X i = 0)}-curve in
the complex ω-plane, both turning points are located on the same side of the real X -axis: turning point Xt

2 has
moved to the part of the {X2(ωi = 0)}-isoline located in the upper complex half-plane, as illustrated in Fig. 3b,
c. Thus the branch cut emanating from Xt

2 crosses the real X -axis and the spatial k±(X, ω f ) branches display
a discontinuity across the branch cut. The k+(X, ω f ) branches prevailing on either side of the au interval are
no longer continuously connected over the real X -axis. It follows that the local wave number of the spatial
response to harmonic forcing applied at X f must display a jump somewhere in the au interval Xca < X < Xac

if the k+ branches prevailing for both X f < X < Xca and Xac < X < +∞ are to be reconciled. In this situation
indeed, the real X -axis is also crossed by the 
3

2 Stokes line and, as shown in the previous section, an exchange
in the dominant wkbj solution approximating the spatial response precisely takes place across this Stokes line.
Hence the region where the spatial response is dominated by the k− branch (shaded regions in Fig. 3b, c)
overlaps the real X -axis, and along the au interval both the branch cut and the 
3

2 Stokes line are encountered.
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As a result, the spatial response to harmonic forcing is then obtained in terms of both wkbj approximations
and the jump of the dominant local wave number occurs at the intersection of the 
3

2 Stokes line with the real
X -axis.

8 Confirmation by direct numerical simulation

The structure of the spatial response derived by analytic methods in the previous sections has been confirmed by
direct numerical simulations of system (1). The results presented in Fig. 4 have been obtained with a spatially
varying local absolute frequency (5) defined by ωs = 2 − 0.5i, Xs = 2 + i and ωX Xs = −1 − 2i and ε = 0.1,
while the parameters k0 = 1 − i and ωkk = 1 − 0.5i were kept at constant values. These parameter settings
correspond to an au interval characterized by Xca � 1.6, ωca

0 � 3.2 and Xac = 3.3, ωac
0 � −1.1. Harmonic

forcing is applied upstream at X f = 1 with frequencies ω f = 5 (left sequence of Fig. 4) and ω f = 2 (right
sequence). The thick curves in Fig. 4 illustrate the different characteristics of the numerically computed spatial
response: envelope |ψ | and real part ψr (first row), envelope on a logarithmic scale (second row), real part kr
(third row) and imaginary part ki (fourth row) of local wave number. The thin curves in the wave number plots
represent the wave number branches k±(X, ω f ) analytically computed via (6) with the corresponding ω f .

The forcing frequency ω f = 5 lies outside the range ωca
0 –ωac

0 , so that the associated turning points Xt
1 �

2.7+2.5i and Xt
2 � 1.3−0.5i are located on either side of the real X -axis, which is thus free from any branch

cuts. Figure 3a has been computed with exactly these parameter values. The critical Stokes lines 
3
1 and 
3

2 do
not cross the real axis and the spatial response for X > X f is thus predicted to be entirely made up of the k+
wave number branch. Inspection of the numerical results given in Fig. 4a1–a4 reveals that this is indeed the
case. From Fig. 4a1, a2 it is seen that the spatial response grows from X f through the entire au interval to
reach maximum amplitude beyond Xac, before eventual decay further downstream. The local wave number
in the spatial response, numerically computed as −i∂xψ/ψ and corresponding to the thick curves in Fig. 4a3,
a4, very closely follows the analytically computed wave number branches (thin curves). The salient feature is
that the spatial response follows the k+ branch in the entire domain to the right of the forcing location X f ,
including the au interval Xca < X < Xac (delimited by dashed vertical lines).

The forcing frequency ω f = 2 lies within the range ωca
0 –ωac

0 , so that the associated turning points Xt
1 �

1.8 + 1.7i and Xt
2 � 2.2 + 0.3i are both located in the upper complex half plane, as illustrated in Fig. 3b

obtained with these parameter values. Now the Stokes line 
3
2 crosses the real axis for X3

2 � 1.9 where a jump
in the dominant wave number of the spatial response is predicted. This phenomenon is indeed observed in
Fig. 4b3, b4. The spatial response is seen to be dominated by the k+ branch from the forcing location X f to the
Stokes line at X3

2, beyond which the k− branch dominates. This exchange in dominant wkbj approximations
at X3

2 materializes by a cross-over of the numerically computed local wave number in Fig. 4b3, b4 and by a
kink of the envelope in Fig. 4b2. The spatial response then follows the k− branch from X3

2 to the branch cut
at X� � 3.0 (vertical dotted line), beyond which the k− branch is seemlessly relabelled as k+. As anticipated
from the previous section, the spatial response displays the k+ wave number branch in the two at most cu
domains X f < X < Xca and Xac < X < +∞. However, with ω f in the range ωca

0 –ωac
0 these branches are not

continuously connected through the central au interval. Hence the solution is there made up of both branches
and cross-over of the dominant wave number occurs at the intersection with the Stokes line.

9 Conclusion

The signalling problem in spatially developing systems is fairly well understood for media that are at most
convectively unstable, and it is generally believed to be ill-posed for absolutely unstable systems. The present
investigation has shown that this problem remains well-posed for a certain class of absolutely unstable sys-
tems: whenever the system is globally stable (i.e., all global modes decay with time) all transient behaviour is
eventually damped and a spatial response tuned at the forcing frequency establishes for large time. By resorting
to asymptotic wkbj expansions, the spatial structure of the time-harmonic response has been obtained in the
entire domain, including the au interval. In the au interval, the dominant local wave number of the spatial
response has been shown to depend on the positions in the complex X -plane of the turning points associated
with the forcing frequency. The positions of these turning points depend on the relative values of the forcing
frequency ω f and the (real) marginal absolute frequencies ωca

0 and ωac
0 prevailing at the end points of the au
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(a1) (b1)

(b2)

(b3)

(b4)

(a2)

(a3)

(a4)

Fig. 4 Envelope |ψ |, real part ψr , local wave numbers kr and ki of spatial response to harmonic forcing obtained by direct
numerical simulation. Forcing is applied at X f , upstream of the absolutely unstable interval Xca < X < Xac. a With ω f outside
the range ωca

0 –ωac
0 , the spatial response follows the k+ wave number branch for X f < X < +∞, including the au interval.

b For ω f within the range ωca
0 –ωac

0 , the real X -axis intersects the Stokes line 
3
2 at X3

2, where a jump in the dominant wave
number is observed. Beyond the branch cut at X�, the k− wave number branch prevailing for X3

2 < X < X� becomes k+ and
extends to X = +∞

interval. The detailed analysis in the complex X -plane of the Stokes lines and branch cuts has revealed that
two distinct situations arise:

– For forcing frequencies ω f outside the range ωca
0 –ωac

0 , the local wave number observed in the spatial
response continuously depends on streamwise distance and follows the k+-branch everywhere downstream
of the forcing location.

– For forcing frequencies within the range ωca
0 –ωac

0 , the spatial response displays a jump in the dominant
local wave number branch at the location within the au domain where the real X -axis is crossed by a Stokes
line.

The above results have been analytically derived in a general setting and confirmed by numerical integra-
tion of the Ginzburg–Landau model equation. Work currently in progress concerns application of the present
findings to the spatial response in the rotating-disk three-dimensional boundary-layer and its implications for
an open-loop control strategy [13,14], based on localized harmonic forcing.
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