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a b s t r a c t

The flow past a sphere rotating about an axis aligned with the streamwise direction is

numerically investigated. The dynamics is governed by the incompressible Navier–Stokes

equations and depends on two control parameters: the Reynolds number Re and rotation

rate O. The present investigation systematically covers the range Rer350 and Or2. First,

the axisymmetric steady base flow (whether stable or not) is computed for all values of the

control parameters. Then, after linearisation of the equations about the base flow, the

growth rates and frequencies of the leading eigenmodes are obtained. Fully nonlinear direct

numerical simulations yield the detailed flow fields and hydrodynamic forces acting on the

sphere. Different wake modes (low-frequency periodic helical, quasi-periodic shedding and

high-frequency periodic helical) are identified and their characteristic frequencies precisely

determined.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

At moderate Reynolds numbers, our understanding of the wake dynamics for a fixed sphere in uniform upstream flow
is by now fairly complete. More complex scenarios prevail when additional effects are taken into account, such as shear in
the oncoming flow, the presence of a wall, rotation of the obstacle or non-spherical shapes. Most of these configurations
break the axisymmetry of the formulation. The purpose of the present investigation is to shed new light on the dynamics
prevailing in a situation governed by two control parameters but preserving the axisymmetry of the problem: the wake of
a sphere rotating about an axis aligned with the incident flow.

The bifurcation scenario followed by the wake of a fixed sphere in uniform upstream flow is now fairly well established,
both experimentally and numerically (Ghidersa and Duček, 2000; Johnson and Patel, 1999; Nakamura, 1976; Sakamoto and
Haniu, 1995; Schouveiler and Provansal, 2002; Thompson et al., 2001): at low Reynolds numbers a steady, axisymmetric flow
prevails; beyond a first critical Reynolds number, Re1C212, the flow bifurcates and a steady non-axisymmetric wake with
planar symmetry is selected; beyond a second critical Reynolds number, Re2C272, periodic shedding sets in, but conserves the
symmetry plane. At still larger Reynolds numbers, the planar symmetry is broken (Mittal, 1999), and the wake becomes
progressively disordered and turbulent (Constantinescu and Squires, 2004; Ormi�eres and Provansal, 1999; Tomboulides and
Orszag, 2000). Careful measurements of the hydrodynamic forces (drag, lift, torque) acting on the sphere allow characterisation
of these different flow regimes (Benjamin, 1993; Bouchet et al., 2006; Maxworthy, 1965).
ll rights reserved.

www.elsevier.com/locate/jfs
www.elsevier.com/locate/jfs
dx.doi.org/10.1016/j.jfluidstructs.2012.09.002
dx.doi.org/10.1016/j.jfluidstructs.2012.09.002
dx.doi.org/10.1016/j.jfluidstructs.2012.09.002
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.jfluidstructs.2012.09.002&domain=pdf
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.jfluidstructs.2012.09.002&domain=pdf
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.jfluidstructs.2012.09.002&domain=pdf
mailto:benoit.pier@ec-lyon.fr
dx.doi.org/10.1016/j.jfluidstructs.2012.09.002


B. Pier / Journal of Fluids and Structures 41 (2013) 43–5044
In many situations of practical interest, the incoming flow is not perfectly uniform. In the presence of shear (Bagchi and
Balachandar, 2002a; Dandy and Dwyer, 1990; Kurose and Komori, 1999; Kim et al., 2005; Kim, 2006), strain (Bagchi and
Balachandar, 2002b) or stratification (Hanazaki, 1988), the lack of axisymmetry modifies the bifurcation scenario and the
hydrodynamic forces. If the obstacle is not fixed but allowed to interact with the flow, it may rotate and rise or fall under
the action of torque and gravity (Bagchi and Balachandar, 2002a; Ern et al., 2012; Fernandes et al., 2007; Jenny and Dušek,
2004; Jenny et al., 2003, 2004; Veldhuis et al., 2005). Numerous studies have also addressed the wake of deformable bodies
such as bubbles or droplets (Kurose et al., 2001; Legendre and Magnaudet, 1997; Legendre et al., 2006; Magnaudet et al.,
2003; Rastello et al., 2009, 2011; Sugioka and Komori, 2007).

Of particular interest in the present context are the flows around axisymmetric but non-spherical bodies. When the
symmetry axis of disks or ellipsoids is aligned with the incident flow, the problem remains axisymmetric and the wake
dynamics depend not only on the Reynolds number but also on the aspect ratio. For the extreme case of an infinitely thin
disk, Fabre et al. (2008) have identified new vortex shedding modes and introduced a symmetry-based model to explain
this scenario and predict the evolution of the lift force. For a thicker disk, yet more regimes have been found (Auguste et al.,
2010). Meliga et al. (2009) use the leading eigenmodes derived from global stability theory and develop a weakly nonlinear
model that accurately predicts the sequence of bifurcations for a thin disk. The efficiency of this model relies, among other
things, on the fact that the leading eigenmodes have very similar growth rates, favouring (weak) nonlinear interactions
which control the complex bifurcation scenario. Inspired by these findings, the present investigation revisits the
configuration used by Kim and Choi (2002): the wake of a sphere rotating about a streamwise oriented axis. The rotation
of the sphere introduces a chirality in the problem but does not break the axisymmetry. The growth rates of the leading
eigenmodes depend on two parameters, Reynolds number and rotation rate, and competition between these is expected to
lead to rich dynamics, possibly amenable to weakly nonlinear interaction models.

The paper is organised as follows. After formulating the problem and presenting the numerical methods in Section 2,
axisymmetric base flows and their linear stability properties are discussed in Section 3. The different finite-amplitude
vortex shedding regimes and associated hydrodynamic forces are presented in Section 4. Finally, Section 5 summarises the
results.

2. Problem formulation and numerical method

The study is carried out using the incompressible Navier–Stokes equations. The Reynolds number is defined as
Re¼U1D=n, where U1 is the free-stream velocity, D the sphere diameter and n the kinematic viscosity.

Throughout this investigation, cylindrical coordinates are used with r, y and z (u, v and w) denoting radial, azimuthal
and axial coordinates (velocities), respectively. The z-axis is aligned with the free-stream velocity and the origin is at the
centre of the sphere. For later use, a Cartesian (x,y,z)-frame is also defined. Using non-dimensional variables based on U1
and D, the total velocity and pressure fields are denoted by uðr,y,z,tÞ and pðr,y,z,tÞ, respectively and are governed by the
momentum and continuity equations

@tuþðu � rÞuþrp¼
1

Re
Duþf; ð1Þ

r � u¼ 0; ð2Þ

with boundary conditions

u¼ v�Or¼w¼ 0 for r2þz2 ¼ 1=4; ð3Þ

u¼ v¼w�1¼ 0 for r-1 or z-71: ð4Þ

Here O is the non-dimensional rotation rate (based on U1 and D) of the sphere about the z-axis. The dynamics of the
rotating-sphere wake are then completely determined by two control parameters, Re and O.

The numerical method closely follows the technique successfully implemented for studying the non-rotating sphere wake
(Pier, 2008). An immersed boundary method (Fadlun et al., 2000; Mittal and Iaccarino, 2005; Zhang and Zheng, 2007) is used,
whereby the presence of the sphere is enforced through the externally applied volume force f in the momentum Eq. (1). Thus,
the entire space is assumed to be filled with fluid and the body force ensures that the boundary conditions (3) of a rotating
sphere are met. All flow fields are Fourier-expanded in the azimuthal coordinate y, while the (r,z)-plane is discretised on a
Cartesian grid using finite-differences in z and Chebyshev collocation points in r. The time-marching algorithm uses a second-
order accurate predictor–corrector fractional-step method, similar to Hugues and Randriamampianina (1998).

3. Axisymmetric base flows and linear stability

Axisymmetric wakes have been computed by retaining only the axisymmetric component in the azimuthal Fourier
expansions. For all Reynolds numbers and rotation rates considered in the present study, the sphere wakes were found to
approach a steady state when time-marching the governing Eqs. (1) and (2).

The structure of the basic axisymmetric wake for different values of the control parameters is illustrated in Fig. 1 by
isolines of the azimuthal vorticity oy ¼ @zu�@rw.



Fig. 1. Flow structure of the basic axisymmetric wake for (a) Re¼ 150 and O¼ 1, (b) Re¼ 250 and O¼ 1, (c) Re¼ 250 and O¼ 2. Solid (dashed) isolines

correspond to positive (negative) values of azimuthal vorticity, spaced by 0.5.

Fig. 2. (a) Growth rate oi and (b) frequency or of the leading eigenmode for axisymmetric basic wakes, computed for O¼ 0:0,0:2, . . . ,2:0 and

Re¼ 100,125, . . . ,400.
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The linear stability of these axisymmetric wakes is probed by computing the response to a non-axisymmetric
perturbation. Here only a single non-axisymmetric azimuthal Fourier component is retained in the expansions of the flow
fields, and the Navier–Stokes equations are linearised around the previously computed basic flow. Growth rates and
frequencies of the most unstable modes are then derived from the time-series of selected flow components, recorded at a
fixed spatial location. Such a flow component f is expected to evolve as fpexpð�iotÞ, where o is the complex eigenvalue
associated with the mode. The growth rate oi is then obtained by a linear fit of log 9f 9, while the frequency or is obtained by
spectral analysis of the compensated f expð�oitÞ. Thus, the growth rates oi and frequencies or are obtained for the most
unstable mode at each setting of the control parameters Re and O. These values are shown in Fig. 2. It is observed that two
distinct mode types lead to instability, depending on the control parameters: at moderate rotation rates and low Reynolds
numbers, the instability is dominated by a ‘‘slow’’ mode, the frequency of which scales nearly linearly with the sphere rotation
rate O. In contrast, at higher parameter values, a ‘‘fast’’ mode dominates, whose frequency is approximately independent of O.
Similar behaviour is observed for the nonlinear dynamics, as discussed below.
4. Nonlinear dynamics

To investigate the nonlinear dynamics, a finite number of azimuthal Fourier harmonics are retained and the direct numerical
simulations take into account the nonlinear coupling between all these modes. When starting integration, the initial condition is
chosen as the previously computed axisymmetric base flow with a small non-axisymmetric perturbation. In situations where
this axisymmetric flow is unstable, the non-axisymmetric perturbation starts to grow exponentially in time. After a transient
growth phase, nonlinear effects come into play that limit the amplitude growth. At large times, the system is found to approach
a periodic or quasi-periodic regime, or to display irregular behaviour.

Monitoring the temporal evolution of the energy E1 contained in the first azimuthal harmonic illustrates the development of
non-axisymmetric components in the sphere wake. In Fig. 3, the energy content E1 is plotted for 0rOr2 and Re¼ 250 and
325. For the wakes corresponding to these plots, after entering a finite-amplitude regime, the energy E1 is seen to reach either
a constant value or to converge towards a state of periodic oscillations. At larger values of the Reynolds number, irregular
oscillations may also be found to persist indefinitely.



Fig. 3. Temporal evolution of energy E1 (arbitrary units) contained in first azimuthal harmonic for O¼ 0:0,0:4, . . . ,2:0 and Re¼ 250 (a), Re¼ 325 (b).

Fig. 4. Temporal evolution of hydrodynamic forces for Re¼ 225 and O¼ 1. Cz: drag; Cx and Cy: lift forces; Cl: transverse force. Initial condition consists of

the axisymmetric base flow with a small-amplitude non-axisymmetric perturbation.
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To further characterise the flow dynamics, the hydrodynamic forces acting on the sphere have been computed. These
forces are obtained by spatial integration of the volume force used in the immersed boundary method; there is no need to
evaluate components of the stress tensor at the sphere surface. The drag coefficient Cz measures, in non-dimensional units,
the component of the force acting in the z-direction aligned with the outer flow. The lift coefficients Cx and Cy are obtained

by projection onto the x- and y-axes, respectively, while the lateral force coefficient Cl is defined as Cl ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2

xþC2
y

q
.

For axisymmetric wakes, all coefficients vanish except the drag Cz. In configurations where the axisymmetric base flow
is unstable, the development of finite non-axisymmetric flow components is accompanied by a similar development of
transverse forces, characterised by Cx and Cy (and Cl). The constant, periodic, quasi-periodic or irregular values taken by
these hydrodynamic force coefficients characterise the associated wake dynamics.

4.1. Helical regime

The wake behaviour observed for Re¼ 225 and O¼ 1 is typical of the dynamics prevailing after the first destabilisation
of the axisymmetric flow. Fig. 4 illustrates the temporal evolution of the force coefficients, starting from the slightly
perturbed (and unstable) axisymmetric base flow. After a transient regime characterised by growth of transverse force
components, the wake is seen to approach a state of constant drag, slightly higher than for the base flow (Fig. 4a). Lift
coefficients Cx and Cy display harmonic oscillations, out of phase by a quarter-period, while the magnitude of the lateral
force Cl is observed to tend to a constant value (Fig. 4b). This is further illustrated by the time-trace in the ðCx,CyÞ-plane
(Fig. 4c): beyond the transient phase, a perfect circle is described at a constant angular speed.

The spatial structure of the wake flow is illustrated in Fig. 5, where isolines of the azimuthal vorticity are plotted for
two orthogonal (x,z)- and (y,z)-planes.

Temporal spectral analysis of the force coefficients (as well as of any other flow components) demonstrates that this
regime is characterised by a single frequency. For Re¼ 225 and O¼ 1, the periodicity of the lift coefficients is obtained as
ox ¼oy ¼ 0:31. In fact, it can be shown that the entire wake is in a helical state, characterised by ‘‘solid-body’’ rotation of
the flow field about the z-axis at constant angular speed. This means that the flow is steady in a frame of reference rotating
about the z-axis at ox (¼oy). Note that the angular speed ox ¼oy is well below the sphere rotation rate O¼ 1.

4.2. Quasi-periodic vortex shedding

For Re¼ 275 and O¼ 0:8, a different behaviour is obtained. Again, the development of non-axisymmetric components
is accompanied by an increase in drag. But here, no steady state is reached: the drag coefficient continues to oscillate



Fig. 5. Snapshot of vorticity fields in the helical regime at Re¼ 225 and O¼ 1. Isolines of azimuthal vorticity in two orthogonal planes.

Fig. 6. Temporal evolution of hydrodynamic forces for Re¼ 275 and O¼ 0:8.

Fig. 7. Snapshot of vorticity fields in the quasiperiodic regime at Re¼ 275 and O¼ 0:8.
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(Fig. 6a). Lift coefficients Cx and Cy display quasiperiodic oscillations while the lateral force Cl fluctuates with the
same periodicity as the drag (Fig. 6b). This behaviour leads to a more complex pattern in the ðCx,CyÞ-plane, see
Fig. 6(c). Temporal spectral analyses show that these signals are characterised by two distinct (and incommensurate)
frequencies: ox ¼oy ¼ 0:21 and oz ¼ol ¼ 0:62. Indeed, Cz and Cl are periodic (with same frequency oz ¼ol) while Cx and Cy

are quasiperiodic (displaying a combination of oz and ox).
A snapshot of the spatial structure of the associated vorticity fields is given in Fig. 7. This dynamics can be interpreted

as a quasiperiodic vortex shedding regime, corresponding to the combination of a helical mode (‘‘solid-body rotation’’
about the z-axis at ox) and vortex shedding waves travelling axially downstream (frequency oz).
4.3. High-frequency helical regime

For Re¼ 300 and O¼ 1 a further wake behaviour is observed, representative of a third class of flow dynamics. After a
relatively long transient, the system approaches a (single-frequency) periodic state. The drag Cz and the lateral force Cl

reach constant values, while the lift coefficients Cx and Cy display harmonic oscillations in quadrature, leading to a circular
time-trace in the ðCx,CyÞ-plane (Fig. 8). This regime is again of periodic helical vortex shedding type, characterised by a
single frequency ox ¼oy ¼ 0:90. Note that the frequency of this ‘‘solid-body’’ rotation is quite closer to the sphere rotation
rate O. Hence, this regime could be termed ‘‘high-frequency helical vortex shedding’’.



Fig. 8. Temporal evolution of hydrodynamic forces for Re¼ 300 and O¼ 1.

Fig. 9. Snapshot of vorticity fields in the high-frequency helical regime at Re¼ 300 and O¼ 1.

Fig. 10. Characteristic frequencies prevailing in the rotating-sphere wake. (a) Frequencies ox ¼oy dominating the fluctuations of the lift coefficients Cx

and Cy. (b) Frequencies oz ¼ol governing the oscillations of the drag and lateral force coefficients Cz and Cl. Solid curves correspond to low- or high-

frequency helical regimes. Dashed curves indicate quasiperiodic vortex-shedding (or disordered) regimes.
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The corresponding vorticity fields are illustrated for two orthogonal planes in Fig. 9. Although this regime is periodic
and the flow fields would be steady in a frame rotating at ox around the z-axis, these vorticity fields closely resemble those
prevailing in the quasiperiodic regime (see Fig. 7) and are rather different from those of the low-frequency helical regime
(see Fig. 5). It is as if the axial vortex shedding and the helical ‘‘solid-body’’ rotation were locked together, or ‘‘frozen’’ (Kim
and Choi, 2002).

4.4. Characteristic frequencies

For each Reynolds number and sphere rotation rate, the characteristic frequencies have been determined via temporal
Fourier analyses of long time series of the force coefficients. The helical frequencies ox (¼oy) are plotted in Fig. 10(a),
while the axial frequencies oz (¼ol) are shown in Fig. 10(b). In these plots, solid curves correspond to low- and high-
frequency modes while dashed curves indicate quasiperiodic (or disordered) vortex shedding. Note that helical frequencies
dominating the fluctuations of the lift coefficients Cx and Cy are obtained for any non-axisymmetric flow, while the axial
vortex-shedding frequencies governing the oscillations of the drag and lateral force coefficients Cz and Cl are only relevant
in the quasiperiodic shedding regimes.

In Fig. 10(a), it is seen that ox displays an almost linear dependence on O in the low-frequency helical and quasiperiodic
regimes. Transition from low-frequency helical to quasiperiodic vortex shedding hardly affects these values. In the high-
frequency helical regimes, however, order of magnitude larger values for ox are obtained. The axial frequencies oz shown in
10(b), correspond more specifically to axially travelling vortex shedding waves and display only weak dependence on the
rotation rate O.



Fig. 11. Map of the different regimes as a function of the control parameters.
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5. Conclusion and discussion

Direct numerical simulations have been carried out in order to systematically cover the governing parameter space
for sphere rotation rates Or2 and Reynolds numbers up to Re¼ 350. Fig. 11 presents a map of the observed regimes
characterised by the associated time-traces of the lift coefficients in the ðCx,CyÞ-plane.

At low Reynolds numbers, the axisymmetric wake is stable. When the Reynolds number is increased, a low-frequency
helical regime takes over, characterised by constant values of drag (Cz) and transverse force (Cl). The flow field is found to rotate
around the z-axis at constant frequency ox ¼oy without deformation. Indeed, in such a rotating frame, the flow field would be
time-independent. The rate ox at which the wake rotates around the axis is found to increase almost linearly with the sphere
rotation rate O, and this regime can be viewed as a continuous deformation, through axial rotation, of the well-documented
steady planar symmetric state for non-rotating spheres in the range Re1oReoRe2, with Re1C212 and Re2C272 (Ghidersa
and Duček, 2000; Johnson and Patel, 1999; Mittal, 1999; Schouveiler and Provansal, 2002).

A second bifurcation occurs when the Reynolds number is increased, leading to a quasiperiodic state which can be
interpreted as a modulation (at a second incommensurate frequency oz) of the previous helical regime. A rotating frame in
which the flow field would be steady no longer exists. Again, this regime can be viewed as the continuation through axial
rotation of the periodic vortex shedding regime that prevails for Re4Re2C272 for a non-rotating sphere. In the non-
rotating case, onset of vortex shedding occurs through a Hopf bifurcation (Schouveiler and Provansal, 2002). Here, our
results indicate that this remains true along the entire boundary separating the low-frequency helical wakes from the
quasiperiodic wakes. However, many more computations would be necessary to prove that the amplitude of the second-
frequency component scales as the square-root of the distance to this critical boundary.

The third type of behaviour, termed the high-frequency helical regime, occurs at still larger Reynolds numbers.
This periodic regime does not have an analogue in the non-rotating O¼ 0 case. While the transition from the low-
frequency helical to the quasiperiodic regime is a continuous process, the switching from quasiperiodic to high-frequency
helical regimes is discontinuous in the control parameters. Indeed, the dominant ox-frequency prevailing in the wake
abruptly increases while the amplitude of the transverse forces (Cl) suddenly drops. The nature of the associated
bifurcation remains unclear. Despite several attempts at slowly modifying one of the control parameters, no hysteresis
was found.

At yet larger Reynolds numbers, irregular states have been observed. No systematic survey of the parameter space
beyond Re¼ 350 has been attempted since this would require much finer spatial meshes to obtain reliable results.

In future work, it would be interesting to address the nature of the bifurcations between the different regimes in more
detail and to test whether the theory of Meliga et al. (2009) can be adapted to the present configuration.
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