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The effect of eccentricity on absolute instabilities (AI) in the Taylor–Couette system
with pressure-driven axial flow and fixed outer cylinder is investigated. Five modes
of instability are considered, characterized by a pseudo-angular order m, with here
|m| 6 2. These modes correspond to toroidal (m = 0) and helical structures (m 6= 0)
deformed by the eccentricity. Throughout the parameter range, the mode with the
largest absolute growth rate is always the Taylor-like vortex flow corresponding to
m= 0. Axial advection, characterized by a Reynolds number Rez, carries perturbations
downstream, and has a strong stabilizing effect on AI. On the other hand, the effect
of the eccentricity e is complex: increasing e generally delays AI, except for a
range of moderate eccentricites 0.3 . e . 0.6, where it favours AI for large enough
Rez. This striking behaviour is in contrast with temporal instability, always inhibited
by eccentricity, and where left-handed helical modes of increasing |m| dominate
for larger Rez. The instability mechanism of AI is clearly centrifugal, even for the
larger values of Rez considered, as indicated by an energy analysis. For large enough
Rez, critical modes localize in the wide gap for low e, but their energy distribution
is shifted towards the diverging section of the annulus for moderate e. For highly
eccentric geometries, AI are controlled by the minimal annular clearance, and the
critical modes are confined to the vicinity of the inner cylinder. Untangling the AI
properties of each m requires consideration of multiple pinch points.

Key words: absolute/convective instability, Taylor–Couette flow

1. Introduction

The flow between rotating cylinders has attracted attention since the end of the 19th
century, starting with the experiments of Couette (1888a,b) and Mallock (1888), and
the landmark work by Taylor (1923), who first predicted theoretically the threshold for
centrifugal instability. Taylor characterized centrifugal effects using a non-dimensional
number appropriate in the limit of small clearance, d= (b− a)� a, with a and b the
inner and outer cylinder radii (see figure 1). In this paper, a wide gap geometry with
radii ratio η=a/b=0.5 will be considered, and centrifugal effects will be conveniently
measured by an azimuthal Reynolds number ReΩ = aΩd/ν, with Ω the inner cylinder
rotation rate and ν the kinematic viscosity.
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FIGURE 1. Eccentric annulus of radius ratio η= a/b= 0.5 and basic flow U=U⊥+Wez.

Adding axial flow to this system, one obtains a simple prototype for the
study of pattern formation in real open flows. The effect of axial advection
can also be measured by a Reynolds number Rez = Wd/ν, based on the mean
axial velocity W. First theoretical predictions of the absolute instability (AI)
threshold were obtained by Tsameret & Steinberg (1991a) with a criterion based
on a one-dimensional Ginzburg–Landau equation (with coefficients determined by
two-dimensional numerical simulations), and then by Babcock, Ahlers & Cannell
(1991), Babcock, Cannell & Ahlers (1992), using the full set of hydrodynamic
equations and a saddle-point criterion (Briggs 1964; Bers 1983) that will be
discussed in § 2.3. They showed that upon crossing the AI threshold, periodic
self-sustained vortices appear, in contrast with the irregular patterns emerging from
noise amplification in the convectively unstable régime. In these papers and subsequent
work (Tsameret & Steinberg 1991b; Babcock et al. 1992; Lücke & Recktenwald 1993;
Babcock, Ahlers & Cannell 1994; Swift, Babcock & Hohenberg 1994; Tsameret &
Steinberg 1994), effort was dedicated to identifying the noise sources (inlet noise
versus thermal noise) which sustain the convective instability (CI). These studies were
restricted to small axial Reynolds numbers Rez, typically below 4, and it was found
that the most unstable (fastest growing) perturbations were in the form of propagating
Taylor vortices. For higher values of axial advection, Takeuchi & Jankowski (1981)
and Ng & Turner (1982) had previously shown numerically (and also experimentally
for the former reference) that critical modes consisted of propagating helical vortices,
with helicity opposite that of the basic flow, and with azimuthal order m increasing
with Rez. However, the concept of AI was not widespread in fluid mechanics back
then, and these studies were restricted to CI.

Theoretical prediction of AI of helical modes was investigated only recently (Pinter,
Lücke & Hoffmann 2003; Altmeyer, Hoffmann & Lücke 2011). In these papers, the
authors studied the effect of axial through-flow on the spatio-temporal properties of
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toroidal and helical wavepackets with angular orders |m|6 2, for Rez 6 20. For |m|6 1,
it was shown that critical azimuthal Reynolds numbers ReΩ are higher for AI than
for CI, and that the difference between the two thresholds increases with Rez. For
|m| = 2 and a stationary outer cylinder, AI was found to occur in a closed region
of the Rez–ReΩ plane, considering only the saddle point originating at the critical
conditions for CI with Rez = 0 (detailed in § 2.4). However, the authors mentioned
other saddle points expected to destabilize these modes in other regions of parameter
space and which will be taken into account in the present article. More recent work
on AI in the Taylor–Couette–Poiseuille flow concerned the effect of radial flow at the
inner cylinder, representative of filtration devices (Martinand, Serre & Lueptow 2009).
In this analysis, it was shown that axisymmetric modes become absolutely unstable
for inward radial flow, while helical modes with helicity identical to that of the basic
flow dominate at high enough Rez, for outward radial flow.

When the two cylinder axes do not coincide, axisymmetry is broken and the
stability properties of the flow are modified. Eccentricity is generally measured
by the non-dimensional distance between the two cylinders e = c/d (see figure 1).
Adding eccentricity to the Taylor–Couette flow with axial advection, one obtains a
basic model for annular mud flows in oil-well drilling, or lubrication flows present in
high-speed journal bearings. In the first case, mud is injected in a rotating drillstring,
and flows back to the surface through the annular domain between the drillstring and
the rock face, with several engineering functions: carry the rock cuttings out, lubricate,
prevent inflow of formation gases and wellbore collapse, etc. (Escudier, Oliveira &
Pinho 2002; Guo & Liu 2011). For deep wells, the drillstring inevitably bends along
its axis, on a typical length scale much larger than the well diameter. As a result,
a parallel-flow assumption is reasonable, and the flow can be locally described
as a Taylor–Couette–Poiseuille flow between eccentric cylinders. In high-speed
turbomachinery, a similar configuration is found: oil is contained in eccentric journal
bearings for lubrication purposes, and a pressure gradient is imposed along the shaft
to evacuate damaging impurities (Sep 2008).

Aside from its fundamental interest, these industrial applications motivate the
present analysis. In both applications, transition to complex hydrodynamic régimes
would result in increased frictional losses, detrimental to the system efficiency. If the
basic flow advection is weak compared to the rotation rate, hydrodynamic resonance
may occur and the entire flow would bifurcate to an undesired self-sustained
oscillatory state. This specific behaviour, called absolute instability, is particularly
‘dangerous’, because it does not require a permanent forcing: once the instability
is triggered, it will propagate in both the downstream and upstream directions, and
amplify using energy from the basic flow. On the other hand, convective instabilities
correspond to wavepackets propagating only in the downstream direction: in the
absence of forcing, the system eventually relaxes to its initial state at any fixed
location, after perturbations have been ‘blown away’ from the source. The most
temporally amplified perturbations are given by a classical temporal stability analysis,
and such a study was recently carried out for this flow (Leclercq, Pier & Scott
2013). It was shown that the physics is essentially similar to the axisymmetric case
(Takeuchi & Jankowski 1981; Ng & Turner 1982), with propagating toroidal vortices
replaced by helical structures of increasing azimuthal complexity as Rez is increased.

Eccentricity deforms the critical modes, but does not introduce new instabilities
to the problem. The effect of eccentricity is stabilizing for all values of Rez, and
this result is interpreted as a consequence of the reduction of centrifugal effects in
the basic flow. Indeed, as eccentricity increases, the azimuthal flow rate decreases
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for a fixed inner cylinder rotation rate, resulting in weaker driving of the instability.
This is a consequence of the appearance of a recirculation region in the wide gap
which does not contribute to the net azimuthal flow rate. Outside this zone, in the
vicinity of the inner cylinder, the flow resembles an axisymmetric Taylor–Couette flow
with clearance scaling with the inner gap d(1 − e). The reduction of the ‘effective’
clearance ratio δ= d/a with eccentricity, or increase in ‘effective’ radius ratio η, also
explains stabilization; see DiPrima (1960) for the effect of η on the Taylor–Couette
flow. To date, it is, to the authors’ knowledge, the only available theoretical study of
eccentric Taylor–Couette–Poiseuille flow. The only known series of experiments were
performed by Coney & Mobbs (1969), Coney (1971), Younes (1972), Younes, Mobbs
& Coney (1972), Mobbs & Younes (1974), Coney & Atkinson (1978) and show good
agreement with our a posteriori predictions, despite small discrepancies attributed to
finite-length effects. For a brief review of other theoretical and experimental results
on eccentric Taylor–Couette flow on the one hand, and axisymmetric Taylor–Couette–
Poiseuille flow on the other hand, we refer to Leclercq et al. (2013).

The present paper extends this previous linear stability analysis by considering the
case of AI. In § 2, the linear stability framework is presented. The governing equations
and numerical methods are briefly described, and the main properties of the basic flow
and normal modes are recalled. In § 2.3, the methods used to investigate AI, based
on the Briggs (1964)–Bers (1983) pinching criterion, are described. In § 3, results are
presented for the five modes of instability with angular orders |m|6 2, which include
the fastest growing temporally unstable modes for Rez 6 50.

2. Linear stability framework
In the following, the geometry will be described using the ratio 0 < η = a/b < 1

between the inner and outer cylinder radii a and b (see figure 1), and the eccentricity
0 6 e = c/(b − a) < 1, based on the distance c between centres, divided by the
clearance d = b − a. The gap varies azimuthally between d(1 − e) and d(1 + e).
The radii ratio will be fixed at the value η = 0.5 throughout this paper. Rotation
and axial advection will be quantified using the two Reynolds numbers given in the
introduction: ReΩ = aΩd/ν and Rez =Wd/ν, with Ω the inner cylinder rotation rate,
W the basic-flow mean axial velocity and ν the kinematic viscosity.

The velocity u will be made non-dimensional with the rotation speed V ≡ aΩ . The
clearance d will be taken as the reference length scale L. Finally, the pressure p will
be in units of P ≡ ρV2, with ρ the density of the fluid. All equations and physical
quantities will be written in non-dimensional form, using V , L and P.

2.1. Basic flow
The velocity u can be decomposed into a component w parallel to the axis ez, and a
component u⊥= u−wez in a plane perpendicular to the axis. The axial flow is driven
by a pressure gradient G in the z-direction. Denoting the in-plane pressure gradient
as ∇⊥p=∇p−Gez, the incompressible Navier–Stokes equations read:

(∂t + u · ∇)
[

u⊥
w

]
= −

[∇⊥ p
G

]
+ Re−1

Ω ∇2

[
u⊥
w

]
,

∇ · u = 0,

 (2.1)

with impermeability and no-slip boundary conditions on the fixed outer cylinder and
on the inner cylinder, whose rotational velocity is 1. In-plane and axial derivatives
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FIGURE 2. Modified bipolar coordinate system (ξ , φ) fitting the eccentric annular domain.
Polar coordinates (r, θ) are centred on the inner cylinder, with θ = φ = 0 along the line
joining the cylinder axes.

can be separated, using convenient notation: u⊥ · ∇⊥ ≡ u · ∇−w∂z, ∇2
⊥≡∇2− ∂2

zz and
∇⊥ · u⊥ ≡ ∇ · u − ∂zw. Assuming an axially invariant flow, the problem is
two-dimensional and u⊥ becomes independent of w:

∂tu⊥ + u⊥ · ∇⊥u⊥ = −∇⊥ p+ Re−1
Ω ∇2

⊥u⊥,
∇⊥ · u⊥ = 0.

}
(2.2)

Basic flows Q≡ (U, P), denoted with capital letters, are defined as axially invariant,
steady solutions of (2.1). Such solutions are found by integrating forwards in time
(2.2) until convergence of U⊥ is attained, and then solving for the corresponding axial
velocity W, given by:

U⊥ · ∇⊥W =−G+ Re−1
Ω ∇2

⊥W. (2.3)

Equations are expressed using locally orthogonal, body-fitted coordinates (ξ , φ), with
−1 6 ξ 6 1 and 0 6 φ < 2π the pseudo-radial and pseudo-azimuthal coordinates
respectively (see figure 2). In this modified bipolar coordinate system, a Fourier–
Chebyshev pseudospectral projection method is implemented, with Nφ = 2Kφ + 1
Fourier modes, and Nξ Gauss–Lobatto collocation points. For more details on the
numerical procedure, the reader is referred to Leclercq et al. (2013).

For an axisymmetric flow, the basic in-plane motion results from diffusion of axial
vorticity from the rotating inner cylinder to the fixed outer cylinder. In cylindrical
coordinates (r, θ), it takes the well-known form U⊥ = (0, Ar + B/r), with A and B
two constants depending on the geometry. For low eccentricities, the result is quite
similar, as can be seen in figure 3(ai) . However, for higher eccentricities, a low-speed
recirculation region forms in the wide gap (figure 3aii). For the relatively high value
of ReΩ = 500 presented here, small recirculation can already be seen for e = 0.2,
whereas in Leclercq et al. (2013), figure 3, it was not present for ReΩ = 100 and
appeared around e≈ 0.3 for that lower value of ReΩ .

In the axisymmetric case, W is independent of U⊥, and the axial flow is very similar
to a parabolic Poiseuille flow, with small corrections due the annular geometry. As
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FIGURE 3. Basic flows for ReΩ = 500: (i) weak eccentricity e= 0.2, (ii) high eccentricity
e=0.7. (a) Contours of equispaced in-plane streamfunction with superimposed U⊥ profiles
at θ = 0, π/2, π, 3π/2 (polar angle with respect to the inner cylinder). (b) Equispaced
contours of W.

eccentricity is increased, W decreases in the small gap, because of viscous effects, and
most of the volume flux passes through the wide gap (see figure 3bii). Distortion also
occurs, due to coupling with U⊥, and the peak velocity is no longer in the symmetry
plane. For high rotation rates, the nonlinear interaction term U⊥ · ∇⊥W can locally
dominate the viscous term Re−1

Ω ∇2
⊥W, and there is significant transport of W by in-

plane components.

2.2. Normal modes
Let q′ ≡ q − Q be three-dimensional perturbations of small amplitude superimposed
onto the two-dimensional basic flow, and satisfying the linearized Navier–Stokes
equations with no-slip boundary conditions. Because of temporal and axial invariance
of the basic flow, perturbations are sought in the form of normal modes

q′ = q̃(ξ , φ) exp i(kz−ωt)+ c.c., (2.4)

where c.c. denotes the complex conjugate. In a general framework, k is the complex
axial wavenumber and ω is the complex frequency. As usual, ωr ≡ Re(ω) is the
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temporal frequency and ωi ≡ Im(ω) is the temporal growth rate. Equivalently,
kr ≡ Re(k) is the wavenumber of the mode, and −ki ≡−Im(k) is the spatial growth
rate. Injecting the modal form (2.4) into the linearized Navier–Stokes equations
with boundary conditions, one obtains a problem of the form (A − iωB)q̃ = 0,
where (A , B) are two linear operators, with A depending on k. Expressions for
A and B are given in Leclercq et al. (2013), in the modified bipolar coordinate
system. The wavenumbers k and frequencies ω satisfying this problem for non-zero
q̃ define the dispersion relation D(k, ω) = 0. Using the same Fourier–Chebyshev
decomposition as for the basic flow, the linear problem is converted into a generalized
eigenvalue problem for ω and q̃ that can be solved numerically, using LAPACK
(www.netlib.org/lapack) or ARPACK++ (Lehoucq, Sorensen & Yang 1997) routines.
For more information on the numerical procedure, the reader is referred to Leclercq
et al. (2013).

In that previous study, a temporal stability analysis was carried out to predict the
fastest growing perturbations with k real and ω complex. It was found that among
the large set of temporal modes ω(k), the most unstable ones were in the form
of deformed toroidal vortices for low Rez, or complex helical structure for higher
Rez. The modes were labelled according to a pseudo-azimuthal integer wavenumber
m, or angular order. The labelling was done in accordance with the axisymmetric
case, where normal modes can be written as q′ = q̃(r) exp i(kz+mθ −ωt) in polar
coordinates (r, θ) (see figure 2). Restricting attention to positive k, because of
symmetry arguments to be discussed in the next paragraph, positive values of m (resp.
negative) correspond to helical structures winding clockwise (resp. counter-clockwise)
around the inner cylinder, and were called left-helical (resp. right-helical), or LH|m|
(resp. RH|m|) modes. The case m = 0 corresponds to the classical toroidal Taylor
vortex flow (TV). By following these modes as eccentricity is continuously varied,
one obtains the corresponding pseudo-angular order m for e 6= 0. Figure 4 shows the
structure of modes m=−2, . . . , 2 for the classical Taylor–Couette flow.

Note that the symmetry Π0 ≡ (m, ω, w)→ (−m, −ω?, −w) (with ? denoting the
complex conjugate) between RH and LH in figure 4 is broken when axial flow
is added, or when k is complex. Indeed, by taking the complex conjugate of the
axisymmetric modal form, the general symmetry Π1 ≡ (k, m, ω)→ (−k?, −m, −ω?)
appears, also valid for e 6= 0. By considering the mirror image of the system (z→−z),
one obtains another symmetry: Π2 ≡ (Rez, k, w)→ (−Rez, −k, −w). Combining Π1
and Π2, one gets

Π3 ≡ (Rez, k,m, ω,w)→ (−Rez, k?,−m,−ω?,−w). (2.5)

Setting Rez to zero and k real in Π3, one recovers Π0. In the general case, because of
Π3, one can choose to study only m > 0, or only Rez > 0, without loss of generality.
Π1 also indicates that it is possible to restrict computations to kr > 0.

2.3. Absolute instability threshold
Absolute instability occurs when the impulse response wavepacket is temporally
growing at any fixed axial position z. The asymptotic dynamics of the wavepacket is
dominated by the normal mode which satisfies the pinching criterion of Briggs
(1964)–Bers (1983) and has the largest temporal growth rate. This mode has
zero group velocity ∂ω/∂k(k0)= 0 for the complex absolute wavenumber k0. This
condition indicates the presence of a saddle point of ω(k) at k0. This saddle point is

www.netlib.org
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FIGURE 4. Structure (isovalues of axial velocity) of the five modes of interest m =
−2, . . . , 2, from left to right. For this example, e = 0, ReΩ = 68.19, Rez = 0 and k =
3.16, corresponding to the critical conditions for temporal instability of the axisymmetric
Taylor–Couette flow (see DiPrima & Swinney 1985 for a review).

associated to a branch-point singularity at the complex absolute frequency ω0=ω(k0).
Additionally, the saddle point must comply with causality and result from the collision
between downstream- and upstream-propagating spatial branches, respectively denoted
k+(ω) and k−(ω). The flow is absolutely unstable if and only if the most unstable
pinch point has positive absolute growth rate ω0,i. Otherwise, the flow is either
stable or convectively unstable. In the latter case, the wavepacket grows while being
advected away from the impulse location so the system eventually relaxes to its initial
state at any axial position. For a comprehensive review of these concepts, the reader
is referred to Huerre & Monkewitz (1990), Huerre (2000), Chomaz (2005).

The border of the absolutely unstable domain is determined by following all
the neutrally stable saddle points in parameter space. This is done by performing
Newton–Raphson iterations at each point, varying simultaneously kr, ki and ReΩ
until |ωi|, |Re(∂ω/∂k)| and |Im(∂ω/∂k)| are all below 10−6. Estimated values for
the independent variables are obtained by linear extrapolation with respect to the
parameter being varied, e.g. e, ReΩ or Rez. For |m| = 2, critical curves display folds,
and it is necessary to implement a continuation scheme based on an arclength variable
(Keller 1977).

However, not all saddle points are valid and only the ones satisfying the pinching
criterion are relevant. In order to discard invalid saddle points, extensive tests
are carried out, where the two spatial branches k(ω) coalescing at k0 are tracked
numerically as ωi is increased from ω0. The saddle point is a genuine pinch only
when the spatial branches separate into the upper and lower half-k-planes for large
enough ωi. Indeed, causality demands that this be true for ωi > ωi,max, where ωi,max

is the maximum temporal growth rate for real k. Spatial branches are obtained by
numerically inverting the relation ω(k) with a Newton–Raphson iteration.
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FIGURE 5. ‘Island’ of AI in the axisymmetric case, for mode LH2. Line: present
calculation; dots: figure 8(b) in Altmeyer et al. (2011).

2.4. Validation
To validate the numerical procedure, critical curves in the axisymmetric case were
computed and compared with literature results. For m= 0 and 1, Pinter et al. (2003)
provide the coefficients of fourth-order polynomials fm fitting their data in the range
−20 6 Rez 6 20, with step δRez = 1. The same procedure was applied here, and our
calculated values g̃m at the same points were fitted by polynomials gm. To compare
our results, the residual

∑20
−20 | fm(Rez)− gm(Rez)|2 between the two fits was divided by

the residual
∑20
−20 |gm(Rez)− g̃m(Rez)|2 between our fit and our calculated values. For

m= 0 and 1, this ratio is respectively 1.16× 10−2 and 1.10× 10−2, showing agreement
with the Pinter et al.’s calculations. For m=2, only graphical data were available, and
figure 5 shows excellent agreement with the ‘island’ of instability found by Altmeyer
et al. (2011) in the ReΩ–Rez plane.

In their analysis, those authors considered only the saddle points originating at
the real critical wavenumber kc of temporal instability with Rez = 0, as will be
explained now. For ReΩ above the temporal instability threshold ReΩ,c, the medium
is unstable, and the growing part of the wavepacket is bounded by two spatio-temporal
rays referred to as leading and trailing fronts, respectively z/t = V+ and z/t = V−
with V− < V+. The fronts are defined by the conditions ∂ω/∂k(k±∗ ) = V± and
ωi(k±∗ ) − V±k±∗,i = 0 (see Huerre 2000 for more details). At critical conditions for
temporal instability, ReΩ = ReΩ,c and k = kc, the constraint ∂ωi/∂k = 0 for k real
defines two degenerate fronts propagating at the group velocity Vmax of the most
rapidly amplified temporal mode: V± = Vmax = ∂ω/∂k(kc). For ReΩ just above ReΩ,c,
V+ 6= V− so the fronts are properly defined and the now complex wavenumbers k±∗
are close to kc so V± ≈ Vmax. In general, Vmax > 0, so the wavepacket is advected
downstream and the flow is only convectively unstable. But when ReΩ is further
increased, one front may eventually change propagation direction, which translates
into the saddle-point condition ∂ω/∂k = 0 defining the AI threshold. In Altmeyer
et al. (2011), only the two fronts bounding the convectively unstable wavepacket at
ReΩ slightly above ReΩ,c and Rez = 0 were considered. These specific fronts were
followed as ReΩ and Rez were varied, and the AI boundary in figure 5 corresponds
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m 0 1 −1 2 −2
e 0.3 0.7 0.3 0.7 0.3 0.7 0.45 0.7 0.45 0.7

16× 8 402.59 283.22 475.66 285.22 431.88 300.21 465.54 305.73 472.77 347.83
16× 16 402.59 283.32 475.66 285.70 431.88 300.22 465.54 306.79 472.77 347.90
32× 32 402.59 283.33 475.65 285.71 431.88 300.29 465.52 306.80 472.46 348.34

TABLE 1. Critical azimuthal Reynolds number ReΩ for Rez = 50 and different resolutions
Nξ ×Kφ .

to points where one of the fronts was stationary. Saddle points corresponding to
other stationary fronts were ignored in figure 5, even though the authors mentioned
the existence of more. Note that validation for m > 0 is sufficient because of the
Π3-symmetry (2.5).

In this study, only values of |m| 6 2 will be considered and a small number of
Fourier modes Kφ = 8 is deemed satisfactory, as can be seen in table 1. A higher
number of collocation points Nξ = 16 is however required for accuracy at large ReΩ .

3. Results
A parametric study has been performed within the ranges e 6 0.7, 0 6 Rez 6 60

and 0 6 ReΩ 6 500. Within these bounds, modes m = 0, 1, 2 are always the most
temporally unstable, except for a small range e6 0.3, 506Rez 6 60, where m= 3 has
the largest temporal growth rate (Leclercq et al. 2013). It will be assumed that the
absolute growth rate of these modes will be higher than that of |m|>3. However, right
helical modes RH1 and RH2 will be retained in the analysis, as RH are known to
be more absolutely unstable than TV and LH in some cases (e.g. high-Rez, outward
radial flow, e = 0, cf. Martinand et al. 2009). Because we are considering both
positive and negative m, it is unnecessary to consider negative Rez, because of the
Π3-symmetry (2.5).

3.1. Reference saddle point
The bifurcation to (pseudo-)toroidal vortices without axial flow is a steady one,
ωr(m= 0)= 0, so CI and AI thresholds, respectively denoted here ReΩ,c and ReΩ,c−a,
coincide in this case. For modes m 6= 0, CI occurs through Hopf bifurcations at
Rez = 0, so AI only occurs above a higher threshold: ReΩ,c−a > ReΩ,c. For these
modes, ReΩ,c−a(Rez = 0) is found by locating the saddle point with k0 closest to
kc, the real critical wavenumber of CI. This neutral saddle point corresponds to a
stationary front of the impulse response wavepacket for ReΩ just above ReΩ,c, as
explained in detail in § 2.4. For m = 1, 2, the stationary front is the trailing one:
V− = 0, k0,i < 0. For negative m, k0,i > 0 because of the Π3-symmetry (2.5), and
the stationary front is the leading one: V+ = 0. The present subsection defines the
reference saddle point for each m, obtained for Rez = 0 and e = 0. These saddle
points are systematically followed in parameter space to define critical curves of AI.
However, as will be seen in the next subsection, other saddle points are also relevant
to the spatio-temporal dynamics and must be considered.

3.2. Multiplicity of saddle points
Pinch points corresponding to other stationary fronts can be identified using the
geometric method described in § 3.2 of Juniper (2006). The same approach is used
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FIGURE 6. Contours of temporal growth rate at criticality for m= 0, e= 0.3075 and Rez=
60 (ReΩ = 472.24). Saddles are indicated by white circles. The thick line indicates the
steepest descent path associated with the pinch points s1 and s2. The white cross indicates
a branch point ∂k/∂ω= 0 from which originates a branch cut (vertical dotted line). The
temporal growth rate of s2 is larger than that of s1: the pinch s2 dominates the impulse
response.

here to study the dispersion relation of mode m = 0 in the presence of strong axial
advection, Rez = 60, for three eccentricities around e = 0.3. Figure 6, similar to
figure 2 in Juniper (2006), shows isocontours of ωi(k) for complex values of k. The
thick black line indicates a contour in the complex k-plane including the steepest
descent paths of all genuine pinch points, here s1 and s2 (s3 and s4 are ‘spurious’
k−/k− saddle points). The impulse response can be obtained at any time using a
classical inverse Laplace transform formula (see Huerre 2000 for instance), which is
easily evaluated at large time using this integration contour. The asymptotic response
is indeed dominated by the pinch point of largest temporal growth rate, which here
is s2. With this geometrical approach, genuine pinch points and invalid saddle points
are easily identified.

If the eccentricity is varied by a small amount, the nature of the saddle points may
change: valid saddle points may become invalid and vice versa. This is illustrated in
figure 7: in case (b), s1 and s2 are the two pinch points, but in case (a), only s1 is a
pinch, and in case (c), s1, s2 and s3 are all three valid. Since the growth rate of each
saddle point also varies with the control parameters, the dominant pinch may either
be s1, s2 or s3, and a careful analysis is required when parameters are varied.

Maps similar to figure 6 are drawn for each value of m, and a large number of
saddle points are identified each time. Saddle points with growth rate close to the
reference-saddle-point’s are systematically followed in parameter space. Over the
whole range of parameters, three different ‘pinch points’ are found to be relevant
for TV, two for LH1, LH2 and RH2, but surprisingly, just one for RH1, despite
numerous candidate saddle points.
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FIGURE 7. Zoom of the bottom-left corner of figure 6 for the same value of Rez, three
eccentricities around e≈ 0.3 and their associated critical ReΩ : (a) e= 0.285,ReΩ = 471.65,
s1 is the dominating pinch; (b) zoom of figure 6, s2 dominates; (c) e= 0.33,ReΩ = 468.00,
s3 dominates.

3.3. Critical azimuthal Reynolds number
In figure 8, the critical azimuthal Reynolds number is represented as a function of
eccentricity, for Rez= 0, 10, . . . , 60. We start by describing the curves in terms of m.
Solid lines correspond to m > 0, and dotted lines are for m< 0. Changes of critical
saddle point are indicated with a filled (resp. open) circle for m > 0 (resp. m < 0).
The most important result is that for any value of e and Rez, m= 0 always has the
lowest critical ReΩ , followed by |m| = 1, and finally |m| = 2. This observation gives
credence to the assumption that modes with |m| > 3 can be ignored in the analysis.
Curves in figures 8(b) and 8(c) also prove the importance of considering both positive
and negative m, as LH are not always more absolutely unstable than RH. Indeed, for
low eccentricities, RH1 is slightly more unstable than LH1, but the converse is true for
high eccentricities. The dynamics is even more subtle for |m|=2, as LH2 are generally
more unstable than RH2, except for a small range of eccentricities that varies with
Rez.

The effect of axial advection is to stabilize all the modes. For high enough Rez, the
critical ReΩ seems to increase almost linearly with Rez. The rate of increase is much
stronger for low eccentricities than for high eccentricities, regardless of the value of m,
as already mentioned. Critical ReΩ are typically one order of magnitude higher than
Rez, which means that the inner cylinder must be rotated much faster than the mean
axial velocity to have self-sustained oscillations. Indeed, axial flow prevents AI by
carrying perturbations downstream while rotation amplifies them.

The effect of eccentricity is more complex than that of Rez. For low eccentricities,
ReΩ increases slowly for m= 0, 1, but decreases for all other modes. For high enough
e, all the curves have the same shape: ReΩ decreases before reaching a minimum and
then increases again beyond this minimum. TV and LH1 display another similarity:
they switch critical saddle point between 0.2 6 e 6 0.4, for high enough Rez. This
change of saddle point coincides with the change in sign of the slope: critical ReΩ
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FIGURE 8. Critical azimuthal Reynolds number ReΩ versus eccentricity e for (a) m= 0,
(b) |m| = 1 and (c) |m| = 2. Curves are drawn for Rez = 0, 10, . . . , 60. Solid lines are for
m > 0, and dashed lines for m< 0. Filled/open dots indicate a change of saddle point.

increases with e for the first saddle point, but decreases for the second one. As was
already mentioned in § 3.2, TV even changes pinch point twice for Rez = 60. On
the other hand, the critical curves for RH1 are smooth, because they are obtained
by continuously following a single saddle point. Finally, two saddle points define the
critical curves of LH2 and RH2. For low values of Rez and e, the AI threshold is quite
complex, and the curves display folds. Folds in the critical curves mean that there
are finite ranges of AI in parameter space, surrounded by CI. This unusual behaviour
has already been pointed out by Altmeyer et al. (2011) in the concentric case, but it
seems important here to underline the fact that for high enough ReΩ , all the modes
eventually become absolutely unstable, regardless of any ‘island’ of AI occurring at
lower ReΩ (cf. figure 5).
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3.4. Critical absolute wavenumber k0,r

Figure 9 shows the evolution of the absolute wavenumber k0,r, spatial growth rate −k0,i
and frequency ω0,r associated with the dominant mode m = 0, at critical conditions.
As before, curves are plotted as functions of e, for Rez = 0, 10, . . . , 60. The absolute
wavenumber k0,r (figure 9a) evolves in different ways below and above e≈ 0.3. Below
e ≈ 0.3, critical modes have longer wavelengths as Rez increases, spanning up to 6
times the clearance for Rez= 60 and e≈ 0.3. When e is high enough, the trend is the
opposite, and critical modes have shorter wavelengths as Rez increases. Below e ≈
0.3, k0,r is almost constant, or slightly decreasing with e, whereas above e ≈ 0.3, it
is clearly increasing with e. For large enough e, the critical wavelength seems to be
controlled by the smaller clearance d(1− e). Small discontinuities in k0,r around e≈
0.3 indicate a change of critical saddle point.
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Comments on the curves obtained for other m, although not displayed here for
clarity, can be made. First, curves of k0,r for LH1 are very similar to those of TV,
except that LH1 only changes saddle point once for Rez= 60 instead of twice for TV.
Ignoring the change of saddle point, they are also qualitatively similar to those of RH1.
For all m, k0,r always increases with e for high enough eccentricities, showing that all
modes scale with the small gap at critical conditions. For |m| = 2, large values of k0,r

up to 8 and more are obtained for low eccentricites as well, provided Rez is high
enough. This behaviour is not found for other modes, where k0,r is always between 1
and 3.5 when e . 0.3. For LH2 and RH2, a large discontinuity of axial wavenumber
is observed upon switching saddle point. For example, k0,r of LH2 varies from ∼7.5
to ∼3.5 for Rez = 60 and e≈ 0.6.

3.5. Critical absolute spatial growth rate −k0,i

The absolute spatial growth rate −k0,i (figure 9b) measures the ‘steepness’ of the
stationary front of the impulse response wavepacket. For e . 0.3, it is slightly
increasing with e. It varies quickly for Rez . 20, and then slowly varies in the range
2.5.−k0,i . 4 for higher Rez. For e& 0.3, −k0,i increases with e, reaches a maximum
value, and then decreases again. For high enough e, −k0,i increases steadily with Rez.

Similar trends are noticed for LH1 and RH1, with comparable ranges of values. For
LH2 and RH2 however, the curves are quite different. For low eccentricities, −k0,i

increases significantly with Rez, whereas it is almost constant for other m. Therefore,
extreme front steepness occurs for LH2 at low e, with −k0,i > 12 for Rez = 60.

For RH1 and RH2 at low Rez, −k0,i can be negative over the whole range of
eccentricities. Physically, this means that the stationary front is the leading one in
this case V+ = 0 (cf. section § 2.4), and that the most temporally unstable RH wave
has a negative group velocity.

Finally, a common feature of all m is that −k0,i has a maximum as a function
of e.

3.6. Critical absolute frequency ω0,r

The absolute frequency ω0,r (figure 9c) is given here for reference. After nonlinear
saturation of the instability, self-sustained oscillations with frequency close to ω0,r are
expected for a supercritical transition. Therefore, the values of ω0,r can be used as a
good estimate of the hydrodynamic resonance frequency of the flow, and may be of
interest for engineering applications. The trends of the curves are very similar to those
obtained for the spatial growth rate. The frequency range is shifted towards higher
values as m increases. For RH1 and RH2, ω0,r can be negative (always the case for
RH2), indicating that the absolute phase speed c0 ≡ ω0,r/k0,r of the mode is negative
in this case. Finally, discontinuities in the absolute frequency occur for all modes but
RH1, because of changes in critical saddle point. Discontinuities are not clearly visible
for m = 0 and the change of saddle point is ‘smooth’, as will be discussed later in
§ 4.3.

3.7. Absolute temporal growth rate ω0,i maps
Critical curves in § 3.3 indicate the AI domain for each m. However, they do not
indicate which mode will be the most absolutely unstable if ReΩ is above two or
more thresholds. Indeed, the mode which bifurcates first as ReΩ is increased does not
necessarily have the highest absolute growth rate ω0,i for larger driving. Figure 10
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represents isocontours of ω0,i in the ReΩ–Rez plane for m= 0, 1, 2, and e= 0, 0.2, 0.7.
Curves for m=−1,−2 can be recovered upon applying the Π3-symmetry (2.5).

The first conclusion is that m= 0 remains the most unstable mode over the whole
range of parameters. However, for e = 0.7, isocontours of m = 1 are very close to
those for m= 0, and one may expect LH1 to become more absolutely unstable than
TV for larger eccentricities and large Rez.

Isocontours of ω0,i for m= 1 and m=−1 (using Π3-symmetry) are generally close.
For low eccentricity, RH1 is always more unstable than LH1, but for high eccentricity,
the converse is true. For a moderate eccentricity of e ≈ 0.5 (not shown here), the
dominant mode depends on the specific values of ReΩ and Rez.

For m = 1, 2, some isocontours have discontinuous slopes, as a consequence of
a change of dominant saddle point. In figure 10(aiii), the ‘island’ of instability
previously presented in figure 5 is shown to be connected to a ‘continent’, for higher
values of ReΩ , via a change of critical saddle point. Indeed, in their analysis of
m = 2 in the axisymmetric case, Altmeyer et al. (2011) restricted their analysis to
the reference saddle point defined in § 3.1, even though the authors mentioned the
existence of other saddle points. Figure 10(aiii) gives the complete AI boundary for
this case. For higher eccentricities, the ‘continent’ of instability absorbs the ‘island’,
and for e= 0.7, the saddle point associated with the ‘island’ is always sub-dominant.
When considering the saddle point associated with the ‘continent’, LH2 is generally
more unstable than RH2. On the other hand, for low e and very low Rez, RH2
can be more unstable than LH2 because of the ‘island’ of instability. For moderate
eccentricities, the ordering depends on the specific values of ReΩ and Rez.

4. Discussion
In this section, we study the critical modes and the production of perturbation

kinetic energy. We discuss the results and the instability mechanism in the light of
these elements.

4.1. Critical modes
In figure 11, we examine the spatial distribution of the mode m = 0 at critical
conditions for Rez = 60 and three representative eccentricities: e = 0.2, 0.4, 0.7.
The three-dimensional distribution of axial velocity is shown, together with the
corresponding time-averaged distribution of perturbation kinetic energy E = 1

2(‖ũ⊥‖2+
|w̃|2)/2 (the exp[−kiz] dependence of the mode amplitude is omitted).

Consider the polar angle θ of the maximum of energy, with respect to the inner
cylinder centre, indicated in figure 2. For low eccentricities or low Rez, the mode is
localized in the wide gap, at positive θ . However, for larger e or Rez, this maximum is
shifted upstream to the region −90◦6 θ 6 0◦. For e= 0.7, the mode is concentrated in
the vicinity of the inner cylinder, on the wide gap side, but has a radial extent scaling
with the small gap. When e increases for Rez = 60, the ratio between the maximum,
and the average value increases from less than 2 for e= 0 to almost 14 for e= 0.7,
indicating confinement of the mode into a smaller region of the annulus. Finally, the
only contribution of ũ⊥ to E accounts for 65 % to 85 % of the total perturbation
energy when e increases from 0 to 0.7.

Similar behaviour is found for LH1 at Rez = 60. For RH1 however, the energy is
less tightly concentrated. The maximum of E still occurs at negative angles, but does
not go beyond −45◦ in this case. It is concluded that the appearance of the peak of
perturbation energy at large negative angles is associated with the change of saddle
point occurring for both TV and LH1.



560 C. Leclercq, B. Pier and J. F. Scott

(a ()i b ()i ci)

(a ()ii b ()ii cii)

FIGURE 11. Critical mode m = 0 for Rez = 60: (a) e = 0.2, ReΩ = 465.82, (b) e = 0.4,
ReΩ = 432.74, (c) e = 0.7, ReΩ = 314.16. (i) Distribution of axial perturbation velocity
Re(w̃). Dark (resp. light) grey is for positive (resp. negative) values. (ii) Distribution of
perturbation kinetic energy E = 1

2 (‖ũ⊥‖2 + |w̃|2). Dark grey indicates high values, and
isocontours are equispaced.

Surprisingly, the critical modes of AI and CI peak in completely different regions of
the annulus for moderate eccentricities and high Rez. In comparison (cf. Leclercq et al.
2013), the maximum energy of the critical mode of CI for e= 0.5 is always localized
at large positive angles. No direct comparison should be made with AI because critical
modes of CI are obtained for different threshold values of ReΩ . It is nonetheless
interesting to observe that modes can be localized at either positive or negative polar
angles depending on the situation.

Finally, we enumerate characteristics common to all m. First, in-plane motion
accounts for the larger contribution to the total perturbation kinetic energy of all m
for Rez = 60. Also, as e approaches 0.7 for Rez = 60, all m tend to have similar
distributions of energy, with strong localization close to the inner cylinder, over
a radial extent scaling with the small gap. In addition, we recall that the critical
wavenumber of all modes takes on large values k0,r ∼ 6.5–8 when e = 0.7 and
Rez = 60. These observations indicate that for high eccentricities, the critical modes
for all m scale with the small gap.

4.2. Production of perturbation kinetic energy
To further investigate the instability mechanism, the production of perturbation kinetic
energy is calculated. In the well-known Reynolds–Orr equation, the local rate of
production of E is given by −u′ · (u′ · ∇U). Averaging in time and separating
velocities into in-plane and axial components, one can define two contributions
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FIGURE 12. Distribution of kinetic energy production for m= 0 and Rez = 60, at critical
conditions. (i) P⊥ and (ii) Pz. (a) e = 0.2, ReΩ = 465.82, (b) e = 0.4, ReΩ = 432.74,
(c) e= 0.7, ReΩ = 314.16. Dark grey indicates large contributions and white corresponds
to zero or negative contribution. Isocontours are equispaced.

(the spatial growth of the mode amplitude along z is ignored again)

P⊥ =− 1
2 Re

{
ũ?⊥ · (ũ⊥ · ∇⊥U⊥)

}
and Pz =− 1

2 Re {w̃?(ũ⊥ · ∇⊥W)} , (4.1)

corresponding to the work of the Reynolds stresses against the in-plane and axial shear
respectively. Expressions for the nonlinear terms in the modified bipolar coordinate
system are given in Leclercq et al. (2013). Because the basic flow is axially invariant,
these two terms are the only contributions to the production of E .

Figure 12 represents the distribution of P⊥ and Pz for m = 0 and Rez = 60, at
e= 0.2, 0.4, 0.7, as in figure 11. Only positive contributions are shown in grey shades,
as negative contributions inhibit temporal growth. Distributions of P⊥ and E look
very similar: P⊥ is maximum in the wide gap for low e, then at negative polar angles
for moderate e, then close to the inner cylinder on the wide gap side for e close to 1.
The dominant contribution to P⊥ comes from the Reynolds stress term involving the
pseudo-radial derivative of the azimuthal velocity V . The same calculation of P⊥ and
Pz has been performed for the critical mode of CI at Rez = 60 and e= 0.5 (m= 2).
P⊥ was also found to account for most of the kinetic energy production (81 %), but
the peak was located at a positive polar angle of 92◦.

Distributions of Pz show larger contributions near the walls, where ‖∇⊥W‖ is
larger. As eccentricity increases, production of kinetic energy close to the outer
cylinder decreases, as the mode is concentrated in the vicinity of the inner cylinder.
For e= 0.7, Pz peaks almost in the same region as P⊥ and E , namely close to the
inner cylinder in the wide gap.

Integration of P⊥ and Pz over the annular domain for Rez = 60 indicates that
in-plane shear dominates the production of kinetic energy, P⊥ always accounting
for more than 85 % of the total amount, and even more than 97 % for e = 0.7.
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The dominant contribution comes from the term involving pseudo-radial variations of
pseudo-azimuthal velocity, characteristic of a centrifugal instability.

4.3. Instability mechanism
The striking destabilization occurring at moderate eccentricities remains difficult to
explain even after examining the basic flow, the critical mode and the production of
kinetic energy. The transition from a stabilizing to a destabilizing effect of eccentricity
occurs around 0.2 6 e 6 0.4 for both TV and LH1, through a change of critical
saddle point when Rez is large enough. The recirculation region appears for e ≈ 0.2
for ReΩ ≈ 500 so it seems that the change of behaviour occurs after the recirculation
zone has reached a critical size. The basic flow is then significantly different from
a classical Couette flow. Indeed, while energy of the mode mostly localizes in the
vicinity of the inner cylinder, it also partially spans over the recirculation region for
moderate eccentricities (cf. figure 11b). Surprisingly, a region of the flow located at
negative polar angles seems to drive AI for moderate eccentricities, whereas kinetic
energy production always peaks at positive angles for CI at criticality. Arguments
based on local stability of the flow, however tempting in a quest for explanation,
should be avoided here because of strong non-parallelism of the basic flow in
the pseudo-azimuthal direction. Indeed, assuming the flow to be locally parallel
in φ leads to completely wrong predictions of instability thresholds of eccentric
Taylor–Couette flow (DiPrima 1963; Ritchie 1968). The most temporally unstable
velocity profile, theoretically located at φ= θ = 0◦, does not coincide with the location
of maximum vortex activity found in the experiments (Vohr 1968). On the other hand,
global analyses yield good results in this geometry (DiPrima & Stuart 1972, 1975;
Eagles, Stuart & DiPrima 1978), showing the limits of the local approach. Therefore,
localization of the modes and kinetic energy production at moderate eccentricities
should be regarded as a global property of the entire flow field.

The consecutive switchovers of dominant saddle point for e ≈ 0.3 and Rez = 60
occur very near collisions of the distinct pinches into third-order saddle points (Davies
1989) or ‘super branch points’ (Healey 2004), satisfying simultaneously ∂ω/∂k = 0,
∂2ω/∂k2 = 0 and ωi = 0. Indeed, s1 and s2 collide while being neutral for e= 0.2839,
Rez = 50.115, ReΩ = 403.21 while s2 and s3 coalesce with ωi = 0 for e = 0.3032
and Rez = 43.188, ReΩ = 353.60. As a result, the saddle points swap dominance but
the absolute wavenumber, frequency, and spatial growth rate vary almost continuously
through the exchange (see figure 9a–c). Consequently, the spatial distribution of the
critical mode is little changed and the physical reason for the switchover remains
unclear.

As e approaches 1, all m tend to behave in a similar way. After reaching a minimum
value, the critical ReΩ increases again as e becomes larger. Instability thresholds of all
m > 0, and even their respective absolute growth rate for any Rez–ReΩ combination,
become close at high e and less sensitive to variations of Rez. More similarities are
found by inspecting the critical modes. For Rez=60, all m have absolute wavenumbers
k0,r in the range 6.5–8, indicating a similar length scale. Indeed, the kinetic energy
of all these modes is localized around the inner cylinder, on a radial extent of the
order of the smallest gap d(1− e), consistent with a small wavelength. The localization
is so strong that the difference between toroidal and helical structure of the modes
is partially ‘blurred’. These similarities between m at high e is reminiscent of small
gap Taylor–Couette–Poiseuille flow, where critical thresholds associated with different
m are very close (Ng & Turner 1982; Leclercq et al. 2013). Indeed, as eccentricity
increases, the Couette-like flow associated with rotation of the inner cylinder scales as
d(1− e), curvature effects become less important, and m behaves more and more like
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FIGURE 13. Absolute (solid lines) and convective (dashed lines) instability thresholds:
critical ReΩ versus Rez, for e= 0, 0.1, . . . , 0.7. Open circles indicate a change of critical
m for CI. For AI, the critical mode is always m= 0.

a continuous real wavenumber, as when η→ 1. Matching between localization of the
modes and the Couette-like part of the basic flow may also explain the weaker effect
of axial advection on the instability thresholds. Indeed, for large eccentricities, most
of the axial volume flux passes through the wide gap, and the maximum value of W
is located in the recirculation region, far from the inner cylinder. Hence, the region
where perturbations are most amplified is spatially separated from the region where
they are most rapidly ‘blown away’. This observation could explain why critical ReΩ
are less sensitive to Rez for e close to 1.

4.4. Convective versus absolute instability
We conclude this section by comparing the thresholds of CI (Leclercq et al. 2013) and
AI in the eccentric Taylor–Couette–Poiseuille flow. Figure 13 represents the critical
ReΩ for CI (dashed lines), and for AI (solid lines), as a function of Rez for e =
0, 0.1, . . . , 0.7. For Rez = 0, the two thresholds for m = 0 coincide, as expected
for a steady bifurcation. The critical ReΩ increases with Rez for both CI and AI, but
with a much larger rate for AI. This was expected as axial advection tends to carry
the perturbations away from the source, so a larger driving is required to reach AI.
The critical mode is always m = 0 for AI, corresponding to closed pseudo-toroidal
Taylor vortices, propagating when Rez 6= 0. For CI, LH modes of increasing m become
critically unstable as Rez increases. Open circles indicate a change of critical m on the
CI thresholds. The effect of eccentricity is clearly stabilizing for CI, but the effect on
AI is more complex. For high enough Rez, as eccentricity increases, the critical ReΩ
of AI slightly increases for low e, but then decreases before reaching a minimum and
increases again for larger values of e.

5. Conclusions
In this paper, an absolute instability analysis has been performed for the flow

between eccentric cylinders, with rotation of the inner one and a superimposed
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pressure-driven axial flow. The ratio between cylinder radii was fixed at η = 0.5,
a value representative of an oil-well-drilling configuration. Five modes of instability
have been considered, m=−2,−1, 0, 1, 2, thus including the most temporally unstable
modes up to Rez = 50 found in Leclercq et al. (2013). Throughout the range of Rez
and e considered in the present study, the mode with the largest absolute growth
rate is always the pseudo-toroidal vortex flow corresponding to m = 0. Unlike the
temporal growth rate, the absolute growth rate of left-handed pseudo-helical modes
(m> 0) is not always larger than that of right-handed ones (m< 0).

Increasing Rez tends to hinder absolute instability because axial flow sweeps
perturbations downstream. As a rule of thumb, the rotational velocity of the inner
cylinder needs to be approximately one order of magnitude larger than the mean
axial velocity to trigger absolute instability.

The effect of eccentricity is more complex and increasing e can result in
destabilization for large enough Rez and moderate eccentricities 0.3 . e . 0.6. In
this case, the critical mode has a complex structure, and the production of kinetic
energy peaks at a well-defined region of the annulus, located in the diverging gap
region. Outside this range of eccentricities, increasing e has a stabilizing effect,
increasingly so as the limit of touching cylinders is approached.

The instability mechanism is purely centrifugal in nature and the critical-mode
axial wavelength and radial extent scale as the smallest gap d(1 − e). For large
eccentricities, all the modes localize in the vicinity of the inner cylinder, and their
spatial distributions become more and more similar. The effect of Rez on absolute
instability thresholds becomes weaker, and the distance between thresholds associated
with different m diminishes.

Overall, many valid saddle points were found for the different instability modes,
and the critical pinch point switches upon varying the flow parameters. The physical
interpretation of the switchovers of saddle point occurring near e≈ 0.3 for m= 0 and
Rez=60 is unclear, because the saddle points are associated with modes having almost
the same spatial distribution and spatio-temporal properties. Indeed, when they swap,
the saddle points almost collide into third-order saddle points, where they would be
impossible to distinguish.

We believe that the most crucial outlook of this work is additional experiments
to confirm our findings on convective and absolute instabilities, since the last
measurements made on such a configuration are older than the introduction of
absolute instability theory to fluid mechanics (Huerre & Monkewitz 1985)! Even in
the convectively unstable régime, the literature is very lean, and only one apparatus
seems to have ever existed, whereas the domain of application is vast. From a
theoretical viewpoint, it would be particularly interesting to investigate the properties
of nonlinear global modes, partly based on local absolute instability properties (Pier,
Huerre & Chomaz 2001), when eccentricity varies slowly along the axis. Indeed,
bending of the long drillstring results in axially varying eccentricity. Moreover, such
weakly non-parallel open flows are believed to be good candidates to confirm the
potential existence of hat modes (Pier & Huerre 1996, 2001), theoretically predicted
for model equations, but yet to be identified in a real configuration.
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