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a b s t r a c t

Significant progress has beenmade towards understanding the global stability of slowly-developing shear
flows. The WKBJ theory developed by Patrick Huerre and his co-authors has proved absolutely central,
with the result that both the linear and the nonlinear stability of a wide range of flows can now be
understood in terms of their local absolute/convective instability properties. In many situations, the local
absolute frequency possesses a single dominant saddle point in complex X-space (where X is the slow
streamwise coordinate of the base flow), which then acts as a single wavemaker driving the entire global
linear dynamics. In this paper we consider the more complicated case in which multiple saddles may
act as the wavemaker for different values of some control parameter. We derive a frequency selection
criterion in the general case, which is then validated against numerical results for the linearized third-
order Ginzburg–Landau equation (which possesses two saddle points). We believe that this theory may
be relevant to a number of flows, including the boundary layer on a rotating disk and the eccentric
Taylor–Couette–Poiseuille flow.

© 2014 Elsevier Masson SAS. All rights reserved.
1. Introduction

Over the last twenty to thirty years, the investigation of the
long-time response of a shear flow to impulsive forcing has become
one of the most active areas of fluid mechanics research. In these
developments Patrick Huerre has played a huge and seminal role.

In the parallel-flow case, the theory of [1,2] leads to the
distinction between convective instability, in which disturbances
grow at the same time as being swept out of the system, and
absolute instability, in which an unstable Fourier mode with zero
group velocity grows in situ and eventually dominates the whole
fluid domain. This theory has been successfully applied to a wide
range of flows which exhibit a transition from convective to
absolute instability as some control parameter is varied, including
plane mixing layers [3], heated jets [4], and the boundary layer on
a rotating disk [5,6].

For non-parallel flow, much attention has focused on the case
in which the base flow evolves only slowly in space, allowing
the separation of scales between slow, X , and fast, x, streamwise
coordinates. We then have the concept of local convective and

∗ Corresponding author.
E-mail address: benoit.pier@ec-lyon.fr (B. Pier).

http://dx.doi.org/10.1016/j.euromechflu.2014.03.006
0997-7546/© 2014 Elsevier Masson SAS. All rights reserved.
absolute instability, in which the base flow at a given value of X is
used to compute a local absolute frequency as if for parallel flow,
ω0(X) say. Many flows contain regions of local absolute instability,
where1 ω0,i > 0, and adjacent regions of local convective
instability or local stability, where ω0,i < 0. An example of
such a flow is the wake of a bluff body, as noted by [7], with a
pocket of local absolute instability close to the body and a region
of local convective instability downstream. The key question here,
however, is how the local stability properties can be connected to
the behaviour of the whole system, and in particular how one can
construct from the local data a global mode, in which the whole
system oscillates with the same frequency, ωG say. A significant
step forward in this regard was made by [8], who showed how ωG
is given by the saddle point of ω0(X) in the complex X-plane: the
saddle point is then the effective location of a wavemaker which
drives the global oscillation of the whole flow. These ideas are
presented in detail in [9,10], while applications to thewake flow in
particular are given in [11,12]. Situations with more complicated
branch structures have been investigated by [13]. At this point
we should also mention that while the above analysis has been

1 Throughout this paper, subscripts i and r denote imaginary and real parts of a
complex quantity.
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concerned with linearized unsteady flow, the same ideas also
pertain in nonlinear systems. In particular, [14] shows that the
global nonlinear dynamics are again driven by a wavemaker, now
located close to the transition station from local convective to local
absolute instability, with solutions in the two regions connected
across a relatively sharp front region.

To date much of the work on the global stability of weakly non-
parallel flow has concentrated on the case in which there exists
just a single saddle point ω0(X) which controls the dynamics. In
terms of a simplemodel, this behaviour is replicated by the second-
order linearized Ginzburg–Landau equation. However, there are
other flows in which several saddle points are present, with
the possibility of the dynamics being driven by different saddles
depending on the value of some control parameter. We mention
two cases here. First, [15] shows that the rotating-disk boundary
layer possesses two separate branches of saddle points, which
for a particular Reynolds number (equivalently a particular disk
radius) collide at what is termed as a ‘super branch point’. The
role of these two saddle points in determining the linear global
behaviour of the rotating disk remains an open question. Second,
it has recently been shown [16] that the dispersion relation of the
eccentric Taylor–Couette–Poiseuille flow displays several saddle
points and that the absolute instability may switch between these
saddles when control parameters are varied. In typical oil-drilling
applications the eccentricity slowly changes with axial distance: a
global stability analysis of such a configuration is thus expected to
involve multiple saddle points.

In the light of the issues described in the previous paragraph,
our aim in this paper is to develop a linear global mode selection
criterion for problems containing multiple saddle points, and to
test this criterion on the simple model problem of the linearized
third-order Ginzburg–Landau equation (which possesses two
saddle points). The paper is set out as follows. The problem
formulation and basic theory is given in Section 2. In Section 3
we present our global frequency selection criterion, which is
then applied in Section 4 to the third-order Ginzburg–Landau
equation. Comparisons between our criterion and the results of a
full numerical integration are presented in Section 5, and excellent
agreement is found.

2. Problem formulation

Consider a system governed by a one-dimensional linear partial
differential equation that is first-order in time of the form

∂tψ = L(∂x; X)ψ, (1)

where x and t represent space and time coordinates, respectively.
The differential operator L depends on the space through a slow
coordinate X to be defined shortly. The basic state is assumed to
be ψ = 0, and the complex-valued function ψ(x, t) represents
fluctuations riding on this basic state. Solutions to the linear
governing equation (1) may be sought as a superposition of global
modes of the form

ψ(x, t) = φ(x;ω) exp (−iωt) , (2)

where the spatial functions φ and the complex frequenciesω obey
the eigenvalue problem

− iωφ = L(∂x; X)φ, (3)

derived from (1). Many global modes are in general possible, and
themedium governed by (1) is stable ifωi < 0 for all global modes
or unstable if ωi > 0 for at least one global mode.

A crucial assumption of the present investigation is the slow
spatial development as exemplified by the introduction of the slow
spatial variable X in the operator L. The weak non-uniformity
hypothesis is fulfilled if the ratio ϵ = λ/L between the typical
instability length scale λ and the inhomogeneity length scale L
is small. As a result of this scale separation, the weak spatial
variations of the medium properties are described through the
slow variable

X = ϵx with ϵ ≪ 1, (4)

and the time-periodic global-mode solutions may be sought as
WKBJ approximations.

Such a line of thought has been successfully implemented in
situations where the entire medium is governed by a single local
absolute frequency ω0(X), with a dominant saddle point in the
complex X-plane [9,10]. The purpose of the present investigation
is to address more complex situations involving higher-order
dispersion relations and a competition between several saddle
points.

3. Theoretical analysis

3.1. Local characteristics

Under the assumption that the governing equation only
depends on space through the slow variable X , local characteristics
may be derived from (1) by freezing X to some arbitrary value
and studying the corresponding strictly uniform system. At this
local level of analysis, X and x may then be considered to
be independent: the fast x is involved in spatial differentiation
whereas the slow X plays the role of an independent control
parameter.

Any perturbation can then be sought as a superposition of
elementary waves ei(kx−ωt) where the wavenumber k and the
frequency ω satisfy the local linear dispersion relation

ω = Ω(k; X) ≡ iL(ik; X). (5)

This dispersion relation is assumed to be an analytic function of the
complex wavenumber k and it may be thought of as a polynomial
in k. (It is also assumed analytic in slow space X , but the parametric
dependence in X will be ignored in this section for simplicity.)
Solving (5) for a given frequency ω yields a set of spatial branches
kn(ω) indexed by n; with n = 1, 2, . . . ,N in the situation where
Ω(k) is an N-order polynomial in k.

By invoking causality and assuming that the temporal growth
rates are bounded, the spatial branches may be labelled as either
kn+ or kn− branches according to whether they are confined to the
upper or lower complex k-planes for sufficiently large imaginary
parts ofω. Whenωi is lowered, branch switching occurs when two
spatial branches meet at k = k0 for a frequency ω = ω0. Such a
wavenumber–frequency pair is defined by the saddle criterion

∂Ω

∂k
(k0) = 0 and ω0 = Ω(k0). (6)

In the situation where the dispersion relation (5) is an N-th order
polynomial in k, the criterion (6) yields a set of N − 1 solutions
k = kn0 (1 ≤ n ≤ N − 1) each associated with the corresponding
frequency ωn

0 ≡ Ω(kn0).
Let us assume here that the frequencies ωn

0 are sorted by
decreasing imaginary part:ω1

0,i > ω2
0,i > · · ·. Then, when lowering

ωi, the first branch switching occurs for ω = ω1
0 where two spatial

branches, say kn1(ω) and kn2(ω), meet at k10. If this collision is
between a + and a − branch, e.g. between kn1+(ω) and kn2−(ω),
it corresponds to the absolute instability of the system: absolute
frequency ωabs and absolute wavenumber kabs are then given by

ωabs = ω1
0 and kabs = k10. (7)

However, the branch switching at ω1
0 may be between two

branches of the same label, i.e., between kn1+(ω) and kn2+(ω)
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or between kn1−(ω) and kn2−(ω). In that situation, the (k10, ω
1
0)-

saddle of the dispersion relation is not a genuine pinch point and
lowering of the imaginary part of ω may be continued until, at
one of the frequencies ωn

0 , say ω
n0
0 , pinching between a k+ and a

k− eventually occurs. In any case, this procedure unambiguously
yields the absolute frequency and wave number as

ωabs = ω
n0
0 and kabs = kn00 , (8)

associated with one of the saddle points of the dispersion relation
defined by (6).

The above analysis can be carried out for eachX . Thus the spatial
branches kn±(X, ω) are obtained by solving the local dispersion
relation (5) for a given frequency ω, while the saddle-point
wavenumbers kn0(X) and frequencies ωn

0(X) are derived from the
condition

∂Ω

∂k
(k0; X) = 0 and ω0(X) = Ω(k0; X). (9)

Among the frequenciesωn
0(X), the local absolute frequencyωabs(X)

equals the one with largest imaginary part that corresponds to
pinching between downstream and upstream spatial branches.
Note that the frequencies ωn

0(X) are analytic functions of the
complex X-variable, while the local absolute frequency ωabs(X) is
not necessarily an analytic function of X since it may jump from
one ωn

0 branch to another as X is varied.

3.2. Global modes

The long-time response of (1) can be sought as a linear
superposition of global modes which are time-harmonic solutions
of the form (2) of complex global frequency ωG. Under the
assumption of weak spatial inhomogeneity (4) and resorting to
classical WKBJ approximations [17] such a global mode may be
obtained as

ψ(x, t) ∼ A(X) exp


i
ϵ

 X

k(u;ωG)du − iωGt

, (10)

where the slowly-varying local wavenumber k(X;ωG) is governed
by the local dispersion relation (5), and the slowly-varying
amplitude A(X) can be obtained by higher-order expansions.

The boundary conditions for this eigenproblem are that the
mode (10) follows an upstream k−-branch for X → −∞ and a
downstream k+-branch for X → +∞. This corresponds to the fact
that the modes are self-sustained and not triggered by boundary
conditions, i.e. their selection takes place in the central region and
the waves that propagate towards X = ±∞ are the consequences
of this self-sustained process. As shown by [9,10] in the context of
the spatially inhomogeneous complex Ginzburg–Landau equation,
the necessary connection of a k−-branch prevailing near X = −∞

to a k+-branch prevailing near X = +∞ can be achieved at a
saddle point of the absolute frequency in the complexX-plane. This
necessarily involves a dispersion relation which is second-order in
the spatial wavenumber. Wewill now show how to generalize this
theory to the case of a higher-order dispersion relation.

In the previous section we described how the saddle point
frequencies ωn

0(X) may be defined via a local analysis of the
dispersion relation for each value of X in the complex plane. Each
mapping X → ωn

0(X) is analytic and may be thought of as a
polynomial of order Nn. Then there are Nn pre-images, say ω →

X (n,p)(ω) for 1 ≤ p ≤ Nn, in the complex X-plane, obtained as
the inverse mapping


ωn

0

−1 of a given contour in the complex ω-
plane. We assume, as is standard, that the medium is stable, or
at most convectively unstable, towards X → ±∞, which means
that maxn Imωn

0(X) for X on the real axis exists. Now consider a
horizontal L-contour in the complex ω-plane (see Fig. 1b), above
allωn
0(X) for X along the real axis (M-contour). Then the associated

contours X (n,p)(ω) do not cross the real axis (the M-contour) for
ω along the L-contour and may therefore be labelled as X (n,p)+ or
X (n,p)− depending on whether they are confined to the upper or
lower half X-planes respectively (see Fig. 1a). When the L-contour
is lowered, it approaches the ωn

0(X) curves in the ω-plane, and the
X (n,p)±-curves move in closer to the M-contour in the X-plane. As
the L-contour is lowered further, it may be necessary to deform
theM-contour to avoid a collision with one of the X-branches, and
the ωn

0(X)-curves in the ω-plane are then deformed accordingly.
Eventually, however, this process cannot be continued as the M-
contour gets pinched between an X+-branch and an X−-branch
(Fig. 1c); this pinching in the X-plane corresponds, in the ω-plane,
to the L-contour passing through a cusp of one of the ωn

0-curves
(Fig. 1d).

The arrangement of theωn
0(X) and X (n,p)±(ω) curves for X along

the M-contour and ω along the L-contour is then as follows. In
the complex ω-plane (Fig. 1d), the horizontal L-contour lies above
all ωn

0(X)-curves and passes through a cusp at, say, ω1
s of the ω1

0-
curve. In the complex X-plane (Fig. 1c), the deformed M-contour
is pinched at, say, X1

s between the curves X (1,1)+ and X (1,2)−. All
other ωn

0(X)-curves (for n ≠ 1) are below the L-contour in the
ω-plane, and all other X (n,p)+-curves (respectively X (n,p)−-curves)
are above (respectively below) theM-contour in the X-plane. This
saddle point is characterized by X1

s andω1
s and obeys the condition

dω1
0

dX
(X1

s ) = 0 and ω1
s = ω1

0(X
1
s ), (11)

or equivalently

∂Ω

∂X
(k1s , X

1
s ) =

∂Ω

∂k
(k1s , X

1
s ) = 0 and ω1

s = Ω(k1s , X
1
s ), (12)

where k1s is the wavenumber value at which two spatial branches
k(X;ω1

s ) pinch when X = X1
s along the M-contour, and no other

connection between spatial branches is possible along the M-
contour.

If this connection at X1
s is between a k+- and a k−-branch, then

a global mode of the form (10) and frequency ωG = ω1
s has been

found. This is the classical result. It may, however, happen that
this connection is between two k+- or between two k−-branches,
which does not lead to a globalmode solution. Therefore, the above
saddle-point criterion in the complex X-plane yields a globalmode
solution only if the associated ω1

0(X) indeed corresponds to the
absolute frequency of the system for X = X1

s , i.e., if

ωabs(X1
s ) = ω1

0(X
1
s ). (13)

When condition (13) is not fulfilled, another saddle point must
be sought to connect a k−-branch to a k+-branch. Then, the process
is continued by lowering the L-contour further in the ω-plane
(except in a small region around ω1

s ). Via a similar scenario to
previously, this eventually leads to a newpinching of the deformed
M-contour at, say, X2

s between the curves X (2,1)+ and X (2,2)−, while
the L-contour passes through a cusp at, say, ω2

s of the ω2
0(X)-

curve (see Fig. 1e,f). This new saddle point obeys a criterion similar
to (12). Again, a connection between k+- and k−-branches has been
found if the additional condition similar to (13) is met. If not, the
process goes on by lowering the L-contour even further in the ω
plane (except in small regions aroundω1

s andω
2
s ) until, eventually,

a saddle point associated with the local absolute frequency is
found.

A systematic implementation of this strategy leads to the
following criterion for the global mode frequency ωG:

ωG = ωabs(Xs), (14)
∂Ω

∂X
(ks, Xs) =

∂Ω

∂k
(ks, Xs) = 0 and Ω(ks, Xs) = ωabs(Xs).
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Fig. 1. (b,d,f) Loci of ωn
0(X) in the complex ω-plane for X along corresponding M-contour in the complex X-plane. (a,c,e) Loci of X (n,p)±(ω) in the complex X-plane for ω

along corresponding L-contour in the complex ω-plane.
The subtle difference between our new criterion (14) and the
classic result

ωG = ωabs(Xs) and
dωabs

dX
(Xs) (15)

lies in the fact that, in this more general case, there is no guarantee
that the local absolute frequency ωabs(X) is an analytic function
over the entire complex plane, even if the dispersion relation
Ω(k, X) is analytic in both k and X .

In the next section we will illustrate our general result
by designing the simplest possible partial differential equation
exhibiting a local dispersion relation with two saddle points.
4. Toy model

The requirement of more than one saddle point in the
dispersion relation leads us to consider a partial differential
equation with third-order spatial derivatives

∂ψ

∂t
= a0(X)ψ + a1(X)

∂ψ

∂x
+ a2(X)

∂2ψ

∂x2
+ a3(X)

∂3ψ

∂x3
, (16)

which corresponds to the dispersion relation

Ω(k, X) ≡ ia0(X)− a1(X)k − ia2(X)k2 + a3(X)k3. (17)
In the following subsections we will identify the possible choices
of the complex coefficients a0(X), . . . , a3(X), and discuss a range
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of interesting possible behaviours. Our theorywill be confirmed by
comparison with direct numerical simulation of (16).

4.1. Local dispersion relation

Let us first consider the local situation, by assuming a spatially
homogeneous configuration where the coefficients a0, . . . , a3 do
not depend on X .

Causality requires that temporal growth rates are bounded
above, i.e.Ωi(k) is bounded above when k → ±∞. This condition
is met when a3 is real and a2,r > 0. Without loss of generality, we
will use a3 = 1 from now on, which corresponds to a rescaling
of the temporal coordinate. Thus the dispersion relation is entirely
determined by the three complex parameters a0, a1 and a2 (with
a2,r > 0).

Since the dispersion relation is a third-order polynomial in k,
there are two saddle points that satisfy ∂kΩ = 0. The frequencies
and wavenumbers of these saddle points may be written as

ω1
0 = ω0 + δω0 and k10 = k0 + δk0, (18)

ω2
0 = ω0 − δω0 and k20 = k0 − δk0. (19)

Since only three of these four parameters are independent, the
local dispersion relation may be entirely specified by the three
complex parameters ω0, k0 and δk0 as

ω − ω0 = (k − k0)3 − 3(δk0)2(k − k0), (20)

which corresponds to

a0 = i

k30 − 3(δk0)2k0 − ω0


, (21)

a1 = 3

(δk0)2 − k20


, (22)

a2 = −3ik0, (23)
a3 = 1. (24)

The fourth (dependent) parameter follows as δω0 = −2(δk0)3, and
the causality condition a2,r > 0 is fulfilled for k0,i > 0.

In this sectionwewill not consider the detailed local behaviour,
in terms of local absolute/convective instability, which depends in
a complicated way on the local values of the complex coefficients
a0, . . . , a3. However, in the Appendix we will derive the Green’s
function for the constant-coefficient third-order equation with
general complex a0, . . . , a3, which we will then use to find
implicit conditions for local stability in the simplified case of real
coefficients.

4.2. Local absolute frequency

The dispersion relation (20) is characterized by the two saddle
pointsω0 ± δω0 at k0 ± δk0 (18) and (19), with δω0 = −2(δk0)3. In
order to work out which one of these saddle points yields the local
absolute frequency, the method outlined in the previous section
may be used.

The asymptotic behaviour of the dispersion relation (20) is that
ω ∼ k3 as |k| → ∞. Hence, for sufficiently large ωi > 0,
frequencies along a horizontal line ωi = const in the complex ω-
plane are associated with two spatial k+-branches and one spatial
k−-branch in the complex k-plane: say k1+, k2+ and k3− with
Arg(kn) → (n − 1)2π/3 for ωr → ∞.

We will now show that the choice of the local absolute
frequency, i.e. ωabs = ω1

0 or ωabs = ω2
0 , only depends on the value

of δk0. Wewrite δk0 = κeiφ with κ > 0, so that δω0 = 2κ3ei(3φ+π),
and consider the different ranges of values of φ as follows:
(i) First consider the case 0 < φ < π/3, which gives ω1
0,i < ω2

0,i.
When lowering the horizontal line ωi = const in the complex
ω-plane, the first saddle-point frequency to be crossed isω2

0 ≡

ω0 − δω0 (see Fig. 2a). For ω = ω2
0 , two spatial branches meet

at k20 ≡ k0 − δk0. Since π < Arg(−δk0) < 4π/3, the pinch
at k20 is between the k3− and the k2+ branches (see Fig. 2b).
Therefore, ωabs = ω2

0 and kabs = k20, in this case.
(ii) Next consider the case π/3 < φ < 2π/3, which corresponds

to ω2
0,i < ω1

0,i. When lowering the horizontal line ωi = const
in the complexω-plane, the first saddle-point frequency to be
crossed is ω1

0 (see Fig. 2c). For ω = ω1
0 , two spatial branches

meet at k10 ≡ k0 + δk0. Since π/3 < Arg(+δk0) < 2π/3,
the saddle at k10 is between the k1+ and k2+ branches (see
Fig. 2d). Thus, the (k10, ω

1
0)-saddle does not yield the absolute

frequency of the system, and the lowering of the contourωi =

const may be continued until ω2
0 is reached. For ω = ω2

0 ,
two spatial branches meet at k20 ≡ k0 − δk0. The pinch at
k20 is between the k3−-branch and a branch that results from
the recombination of the two k+-branches. Therefore, one has
again that ωabs = ω2

0 and kabs = k20.
(iii) The case 2π/3 < φ < π is similar to the case 0 < φ < π/3,

and yieldsωabs = ω2
0 and kabs = k20 by pinching of k

1+ and k3−.
(iv) Analysing in turn the three remaining cases π < φ < 4π/3,

4π/3 < φ < 5π/3 and 5π/3 < φ < 2π , it can be shown
that they all yield ωabs = ω1

0 and kabs = k10.

In summary, for dispersion relation (20) the absolute frequency
is obtained by the following criterion:

ωabs = ω1
0 when δk0,i < 0, (25)

ωabs = ω2
0 when δk0,i > 0. (26)

Note also that the absolute frequency is the saddle-point frequency
of larger imaginary part, unless π/3 < Arg(δk0) < 2π/3 or
4π/3 < Arg(δk0) < 5π/3 (in which cases the saddle point
corresponding to the saddle-point frequencywith larger imaginary
part is not a pinch point).

4.3. Global modes

For weakly inhomogeneous systems, the coefficients of the
governing Eq. (16) depend on the slow spatial variable X . As
shown in the previous section, the selection criterion of self-
sustained global-mode solutions is based on the double saddle-
point criterion (14) in the complex k- and X-planes for the
local dispersion relation. We will now further specify the spatial
variation of the coefficients (21)–(24) so as to check this criterion
for different situations.

For the application of the spatial saddle-point criterion it is
convenient to use

ω1
0(X) = ω1

s +
1
2
ω1

s,XX


X − X1

s

2
, (27)

ω2
0(X) = ω2

s +
1
2
ω2

s,XX


X − X2

s

2
, (28)

so that each of ω1,2
0 (X) displays exactly one saddle point at X1,2

s
with frequency ω1,2

s . The use of second-order polynomials in X for
ω

1,2
0 (X) guarantees that the associated ω0(X) and δω0(X) are also

second-order polynomials.
After specifying the frequencies (27) and (28), the spatial

distribution of δk0(X) follows from δω0(X) = −2[δk0(X)]3, and
so evaluation of δk0(X) involves a third-order root. Since δω0(X)
is a second-order polynomial in X , it displays two zeroes in the
complex X-plane, which correspond to two branch points for
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Fig. 2. Temporal branches in complex frequency plane (a,c) and spatial branches in complex wavenumber plane (b,d) for local third-order dispersion relation.
(a,b) Configuration with 0 < Arg(δk0) < π/3, (c,d) with π/3 < Arg(δk0) < 2π/3.
δk0(X). After choosing the associated branch cuts to lie away from
the real X-axis, Eqs. (27) and (28) completely specify the three
possible analytic distributions of δk0(X) along the real X-axis, and,
for simplicity, the remaining unspecified parameter k0(X) will be
chosen to be a constant in this study.

Tackling the problem the other way round, i.e., by specifying
an analytic distribution of δk0(X), would have led to complicated
expressions forω1,2

0 (X), preventing the closed-formdetermination
of saddle points in the complex X-plane. Thus the introduction
of a third-order root for δk0(X) seems a small price to pay to
retain the simplest possible model. It would have been even more
complicated to have started by writing down analytic expressions
for the coefficients a0(X), . . . , a3(X), and we therefore assert that
our approach of starting with quadratic expressions for ω1,2

0 (X) is
the best way to understand the behaviour of our system.

So in summary, we have ended up with a particular class of
spatially inhomogeneous system (16) that is entirely determined
by the seven complex parameters

ω1
s , ω

2
s , X

1
s , X

2
s , ω

1
s,XX , ω

2
s,XX and k0, (29)

and by the additional choice of one among the three possible
δk0(X)-branches. Causality requires that k0,i > 0, and the
conditions Imω1,2

s,XX < 0 prevent the medium from being locally
absolutely unstable when Xr → ±∞. The method outlined in
the previous subsection and based on Arg(δk0(X)) is then used
to determine the different regions of the complex X-plane where
the local absolute frequency ωabs(X) equals either ω1
0(X) or ω

2
0(X).

Then, according to the theoretical result (14), the frequencies ω1
s

and ω2
s are possible global mode frequencies if ω1

s = ωabs(X1
s ) or

ω2
s = ωabs(X2

s ). If both are possible, the mode of larger growth
rate is expected to dominate in the long term. In the next section
wewill confirm these results by comparison with direct numerical
simulation.

5. Numerical confirmation

In order to confirm the theoretical results of Section 3,
direct numerical simulations of the third-order partial differential
equation discussed in Section 4 were carried out for a variety of
parameter settings.

The simulations presented below were performed with saddle
point frequencies ω1,2

0 (X) determined by

ω1
s = 1 + i, X1

s = −i, ω1
s,XX = −0.02 − 0.10i, (30)

and

ω2
s = 2, X2

s = −2 + i, ω2
s,XX = −0.05i. (31)

Using k0 = i, each of the three possible δk0(X)-branches was
investigated.

Fig. 3 shows isolines of ω1,2
0,i (X) in the complex X-plane. For

this configuration, the branch points of δk0(X) (where ω1
0(X) =
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Fig. 3. Isolines of (a) ω1
0,i and (b) ω2

0,i in the complex X-plane. Thick line: ω0,i = 0, thin solid lines: ω0,i = 1, 2, . . . , thin dashed lines: ω0,i = −1,−2, . . ..
Fig. 4. Isolines of ωabs,i(X) for (a) branch A, (b) branch B and (c) branch C. Thick line: ω0,i = 0, thin solid lines: ω0,i = 2, 4, . . . , thin dashed lines: ω0,i = −2,−4, . . . . Thick
dotted curve represents boundary where the local absolute frequency ωabs(X) switches between ω1

0(X) and ω
2
0(X).
ω2
0(X)) are located at X ≃ 8.51 + 0.95i and X ≃ −3.68 − 5.02i.

Upon choosing the associated branch cuts away from the real X-
axis, there are three possible choices for δk0(X) along the real axis
(hereafter called branches A, B and C). For each case, the resulting
local absolute frequency ωabs(X) is illustrated by isolines of its
imaginary part in the complex X-plane in Fig. 4.

For branch A, it is seen in Fig. 4(a) that ωabs(X) = ω1
0(X)

in the entire domain although ω1
0 is the dominant saddle only

in the central region. In this situation, the expected global mode
frequency is therefore ω1

s .
For branch B (Fig. 4b), the local absolute frequency ωabs(X) is

seen to follow ω2
0(X) over a large domain including the real X-

axis and both saddles X1
s and X2

s . It is only in the two wedge-shape
regions, starting at the two branch points, that the local absolute
frequency equals ω1

0(X). The expected global mode frequency is
therefore ω2

s .
For branch C (Fig. 4c), it is seen that the complex X-plane is

partitioned into three regions:ωabs(X) followsω1
0(X) in the central

region andω2
0(X) in the regions extending towardsX = ±∞. Since

ωabs(X1
s ) = ω1

s , the expected global mode frequency is ω1
s in this

configuration.
A numerical simulation of (16) performed with coefficient

settings corresponding to branch A leads to the globalmode shown
in Fig. 5(a). Here, the inhomogeneity parameter (4) was chosen
as ϵ = 0.1; therefore the interval −100 < x < 50 corresponds
to −10 < X < 5. The numerically determined global frequency
ωG = 0.98 + 0.97i is very close to the expected ω1

s = 1 + i.
Numerically, the local wavenumber is computed as −i∂xψ/ψ , and
its real and imaginary parts are plotted as thick dashed lines in
Fig. 5(b) and (c) respectively. The three analytical spatial branches
associated with the frequency ω1

s are shown by thin lines in the
same plots. It is seen that the local wavenumber obtained by direct
numerical simulation very closely follows the expected analytical
branches. The imaginary parts of ωabs(X), ω1
0(X) and ω

2
0(X) along

the real X-axis are plotted in Fig. 5(d).
Numerical results corresponding to branchB are shown in Fig. 6.

The mode plotted in Fig. 6(a) is synchronized to a global frequency
ωG = 2.01 − 0.02i, in close agreement with the expected ω2

s = 2.
Its numerically derived local wavenumber follows the associated
analytical branches, as shown in Fig. 6(b,c). For this configuration,
the local absolute frequency follows ω2

0(X) over the entire real X-
axis, see Fig. 6(d).

Numerical results corresponding to branchC are shown in Fig. 7.
The mode plotted in Fig. 7(a) is synchronized to a global frequency
ωG = 1.01 + 0.98i, again in close agreement with the expected
ω1

s = 1 + i. Its numerically derived local wavenumber follows
the associated analytical branches, as shown in Fig. 7(b,c). For
this configuration, the local absolute frequency switches between
ω1

0(X) and ω
2
0(X) along the real X-axis, as shown in Fig. 7(d).

In order to study the influence of the inhomogeneity parameter,
simulations were carried out for a range of ϵ-values, while keeping
the samedependence of the complex coefficients an(X) on the slow
spatial variable X = ϵx. Reducing ϵ while keeping the same X-
interval thus corresponds to simulations over larger x-intervals.
For all three configurations, Table 1 indicates the numerically
obtained global mode frequencies ωG as a function of ϵ and
demonstrates that they nicely converge to the theoretical value as
ϵ → 0.

Finally, results are presented for a configuration where the
global frequency is determined by ω2

s , while the local absolute
frequency is largely dominated byω1

0(X). Usingω
1
s = 0.5+ i, X1

s =

10 − 8i, ω1
s,XX = −0.02 − 0.10i, ω2

s = 1 + 2i, X2
s = −5, ω2

s,XX =

0.02 − 0.05i and k0 = i, the absolute frequency distribution
shown in Fig. 8 is obtained. The saddle X1

s lies within the region
where ωabs(X) = ω1

0(X) and the X2
s lies within the region where

ωabs(X) = ω2
0(X). Since ω

2
s,i > ω1

s,i, the theory predicts a dominant
global mode of frequency ωG ≃ ω2

s = 1 + 2i. Plotting the local
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Fig. 5. Structure of global mode obtained by direct numerical simulations for
configuration A. (a) Envelope |ψ | and real part ψr as functions of streamwise
distance. (b) Real part of analytically computed spatial branches (thin lines)
together with local wavenumber of simulation (thick dashed line). (c) Imaginary
part of analytically computed spatial branches together with local wavenumber of
simulation. (d) Imaginary parts ofωabs(X) (thick dashed line), togetherwithω1,2

0 (X)
(thin lines).

Table 1
Dependence of numerically obtained global mode frequency ωG on inhomogeneity
parameter ϵ.

ϵ Branch A Branch B Branch C

1.0 0.818 + 0.683i 2.133 − 0.217i 1.125 + 0.754i
0.5 0.924 + 0.833i 2.064 − 0.108i 1.059 + 0.878i
0.2 0.969 + 0.934i 2.026 − 0.042i 1.025 + 0.952i
0.1 0.984 + 0.967i 2.013 − 0.021i 1.013 + 0.977i
0.05 0.992 + 0.984i 2.007 − 0.011i 1.007 + 0.990i
0.02 0.997 + 0.994i 2.003 − 0.004i 1.003 + 0.998i

ωs 1 + i 2 1 + i

absolute growth rate along the real X-axis (Fig. 8b) shows that the
absolute instability of this system is largely dominated by the ω1

0-
branch. Nevertheless, a direct numerical simulation confirms that
a global mode of frequency ωG ≃ 0.92 + 1.97i is indeed selected
in this configuration (with ϵ = 0.2).
Fig. 6. Same as Fig. 5, using coefficient settings corresponding to branch B.

6. Concluding remarks

In this paper we have developed a global frequency selection
criterion, Eq. (14), for weakly non-parallel systems whose local
dynamics are controlled by more than one pinch point. Our
result differs from the classical condition (e.g. [8]) in that when
more than one pinch point must be considered the local absolute
frequency, ωabs(X), is no longer necessarily an analytic function.
Of course, our condition has been derived within the context of
asymptotically slow variation of the base flow (ϵ → 0), whereas in
practice ϵ will be small, but nonzero. For the third-order linearized
Ginzburg–Landau equation we have therefore compared our
criterion with a full numerical solution, and excellent agreement
has been obtained for small ϵ (and qualitative agreement even for
ϵ = 1).

There are a number of possibilities for further investigation.
First, our criterion can be applied to a range of fluid flows, in-
cluding the rotating-disk boundary layer and the eccentric Tay-
lor–Couette–Poiseuille, as mentioned in the introduction. Second,
interesting questions arise about the behaviour of the equivalent
signalling problem, in which waves emitted by a fixed-frequency
source propagate through the spatially-developing medium. [18]
has shown that for the case of a single X-saddle (second-order
Ginzburg–Landau) the system response depends on the size of the
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Fig. 7. Same as Fig. 5, using coefficient settings corresponding to branch C.

forcing frequency relative to the marginal frequencies at either
end of the single region (if it exists) of local absolute instability.
As soon as more than one saddle is present, even richer dynamics
are presumably possible. Third, nonlinear analysis in the style of
[19] could also be considered. In the nonlinear case, the dynamics
are controlled by the local absolute frequency on the real X-axis,
but again richer behaviour is presumably possible when multiple
regions of local absolute instability are present, especially when
those regions become closely spaced relative to the spatial extent
of the nonlinear global modes.

It is a great pleasure to dedicate this article to Professor Patrick
Huerre. Patrick’s contribution to fluid mechanics and to the fluid
mechanics community has been, and continues to be, enormous. In
particular, hiswork onhydrodynamic instability theory has shaped
the development of the subject for a generation. We also wish to
record our gratitude to Patrick for his great personal kindness to
us, stretching over many years.
Fig. 8. (a) Isolines of local absolute growth rates in complex X-plane. Thick line:
ωabs,i = 0, thin solid lines: ωabs,i = 2, 4, . . . , thin dashed lines: ωabs,i =

−2,−4, . . . . Thick dotted curve represents boundary where the local absolute
frequencyωabs(X) switches betweenω1

0(X) andω
2
0(X). (b) Cut along the real X-axis.

(c) Structure of numerically selected global mode, for ϵ = 0.2.

Appendix. Green’s function

In this Appendix we will derive the Green’s function of the
forced constant-coefficient third-order equation

∂ψ

∂t
= a0ψ + a1

∂ψ

∂x
+ a2

∂2ψ

∂x2
+ a3

∂3ψ

∂x3
+ δ(x)δ(t). (A.1)

We will then use the Green’s function to investigate the local
stability of the system.

By taking the Fourier transformof Eq. (A.1) in x, which is defined
by

ψ(k, t) =


∞

−∞

ψ(x, t) exp(−ikx)dx, (A.2)

and noting that ψ(k,+0) = 1, thanks to the presence of the δ(t)
term in Eq. (A.1), it is easy to show that theGreen’s function is given
as a Fourier inversion integral in the form

ψ(x, t)

=
exp(a0t)

2π


∞

−∞

exp

ika1 − k2a2 − ik3a3


t + ikx


dk. (A.3)
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In order for this integral to converge, we note that we require a3 to
be real and the real part of a2 to be positive — these are exactly the
necessary causality conditions already set out in Section 4.1.

The trick now is to complete the cube within the exponential.
This is done by making the substitution k = z + c , for some
constant c , and then choosing c so that the coefficient of z2 within
the exponential is zero. This leads to

ψ(x, t) =
exp(a0t + At)

2π

×


C
exp


iz


x + a1t −

a22t
3a3


− ia3tz3


dz, (A.4)

where

A =


2a32
27a23

−
a1a2
3a3


−

a2x
3a3t

, (A.5)

and the contour C runs parallel to the z axis. Finally, deforming the
contour back to the real axis, we can write the Green’s function in
terms of thewell-knownAiry function (see [20] page 447, 10.4.32),

ψ(x, t) =
exp(a0t + At)
(3|a3|t)1/3

Ai

×

−

sgn(a3)

x +


a1 −

a22
3a3


t


(3|a3|t)1/3

 . (A.6)

This is our closed-form expression for the Green’s function—note
that herewehave taken a3 to be real, but the remaining coefficients
may be complex. Inwhat followswe set a3 = 1, aswas done earlier
in the paper.

The limiting behaviour of the Green’s function follows from the
well-known asymptotic behaviour of Ai(s) for large |s| (see [20]
page 448, 10.4.59, 60):

Ai(s) ∼
exp(−2s3/2/3)

2
√
πs1/4

as s → ∞ with | arg(s)| < π,

Ai(−s) ∼

sin


2s3/2
3 +

π
4


√
πs1/4

as s → ∞ with | arg(s)| < 2π/3. (A.7)

For fixed t the Green’s function decays exponentially as x →

∞ and oscillates and decays algebraically (like |x|−1/4) as x →

−∞. The behaviour for large t is more complicated, but can be
determined by setting x = Vt and sending t → ∞ with V fixed
(for simplicity we now consider the special case of the coefficients
a0, a1, a2 being real). We define

χ =
a22
3

− a1 − V . (A.8)

There are then two separate cases to be considered:

1. If χ < 0 then the Airy function oscillates as t → ∞ (i.e. the
second asymptotic behaviour in (A.7)), and the stability of the
Green’s function is determined only by the exponential term
exp(a0t + At) in (A.6). It then follows that the Green’s function
grows exponentially in time if

a2χ >
a32
9

− 3a0. (A.9)

2. If χ > 0 then the Airy function decays exponentially as t → ∞

(i.e. the first asymptotic behaviour in (A.7)), and the growth or
otherwise of the Green’s function is then determined by the
behaviour of the product of the exponential term exp(a0t +At)
and the Airy function in (A.6). After some algebra it follows that
the Green’s function grows exponentially in time if

a2χ −
2χ3/2

√
3
>

a32
9

− 3a0. (A.10)

This provides a sufficient condition for instability when χ >
0, but a necessary condition can be found by noting that the
maximum value of the left hand side of (A.10) over all χ is a32/9,
which occurs when χ = a22/3. This then leads to the necessary
condition

a0 > 0 (A.11)

for instability.

To summarize, the condition for the Green’s function to grow
exponentially as t → ∞ for a given value of observer velocity
V is given by the combination of conditions (A.9) and (A.10). In
order to detect the occurrence of absolute instability, we simply
need to use conditions (A.9) and (A.10) in the case V = 0; when
this is done, the results are identical to what is obtained using the
standard Briggs–Bers procedure of locating the k pinch point and
requiring the imaginary part of the corresponding pinch frequency
to be positive.

Finally, we note that the Green’s function we have derived is
only valid in the case of constant coefficients, and is therefore
only relevant to the local properties of a spatially inhomogeneous
system. Ideally, one would like to be able to determine the
Green’s function in a spatially-varying case so as to analyse
global behaviour, as was done by [21] for the usual second-order
linearized Ginzburg Landau equation with linear and quadratic
spatial variation of the criticality parameter. Unfortunately, this
has not proved possible to date for our third-order equation.
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