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a b s t r a c t

The structural sensitivity shows where an instability of a fluid flow is most sensitive to changes in
internal feedbackmechanisms. It is formed from the overlap of the flow’s direct and adjoint global modes.
These global modes are usually calculated with 2D or 3D global stability analyses, which can be very
computationally expensive. For weakly non-parallel flows the direct global mode can also be calculated
with a local stability analysis, which is orders of magnitude cheaper. In this theoretical paper we show
that, if the direct global mode has been calculated with a local analysis, then the adjoint global mode
follows at little extra cost. We also show that the maximum of the structural sensitivity is the location at
which the local k+ and k− branches have the same imaginary value. Finally, we use the local analysis to
derive the structural sensitivity of two flows: a confined co-flow wake at Re = 400, for which it works
very well, and the flow behind a cylinder at Re = 50, for which it works reasonably well. As expected, we
find that the local analysis becomes less accurate when the flow becomes less parallel.

© 2014 Elsevier Masson SAS. All rights reserved.
1. Introduction

Many open flows have a steady solution to the Navier–Stokes
equations that becomes unstable above a critical Reynolds number.
Usually this instability is driven by one region of the flow, which
is called the wavemaker region. The rest of the flow merely re-
sponds to forcing from this region. The shape, linear growth rate,
and frequency of the instability can be calculated by considering
the evolution of small perturbations about the steady solution.
This is known as the direct global mode. The direct global mode
emanates from the wavemaker region and grows spatially down-
stream, reaching amaximumat the streamwise locationwhere the
spatial growth rate is zero. For example, in the case of the flow be-
hind a cylinder, this direct global mode is a sinuous flapping mo-
tion, whose nonlinear development is the familiar Kármán vortex
street [1].

The receptivity of the direct globalmode to harmonic open loop
forcing is given by the last term in Eq. (9) of Ref. [2] and Eq. (7)
of Ref. [3]. This term is proportional to the adjoint global mode,
which is calculated in the same way as the direct global mode,
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but from the adjoint (rather than direct) linearized Navier–Stokes
equations. If the perturbation magnitude is measured by the per-
turbation kinetic energy, which is the conventional approach, then
there are only two significant differences between the direct and
adjoint equations [2,4]. The first is the sign of the convection term,
Vj∂vi/∂xj, and is called convective non-normality. The second is the
appearance of a transconjugate operator, vj∂Vj/∂xi, and is called
component-type non-normality, For the flows in this paper, the
non-normality is almost entirely convective [4]. In a manner anal-
ogous to the direct global mode, the adjoint global mode emanates
from the wavemaker region but grows spatially upstream, reach-
ing a maximum at the streamwise location where the adjoint spa-
tial growth rate is zero, or when it meets the upstream boundary.
Physically, this reflects the fact that an open loop forcing signal will
have most influence on the flow if it impinges on the wavemaker
region, and if it is amplified by the flow before it does so.

The sensitivity of the direct global mode to changes in the lin-
earized Navier–Stokes (LNS) equations is given by the penultimate
term in Eq. (9) of Ref. [2]. This term is proportional to the over-
lap between the direct and adjoint global modes and is known as
the structural sensitivity. It is equivalent to the sensitivity of the
direct global mode to closed-loop feedback between the pertur-
bation and the governing equations in the special case where the
sensor and actuator are co-located. For example, in the case of the
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flow behind a cylinder, it can quantify the sensitivity of the flow
to the presence of a small control cylinder that produces a small
force on the flow in the opposite direction to the velocity pertur-
bation [5,6]. Given that the direct global mode grows downstream
of the wavemaker region and that the adjoint global mode grows
upstream, the structural sensitivity is clearlymaximal in thewave-
maker region itself. Indeed, the wavemaker region is often defined
as the position of maximum structural sensitivity, although alter-
native definitions exist [4, Section 4.2.1]. Physically, this reflects
the fact that, for a closed loop feedback mechanism to be effective,
it requires firstly that the perturbation has significant amplitude at
that point, which is quantified by the direct global mode, and sec-
ondly that the flow has significant receptivity at that point, which
is quantified by the adjoint global mode.

The above concepts were first introduced for the flow behind a
cylinder at Re = 50 by Hill [5] and Giannetti and Luchini [6,7] and
have been extended to include the sensitivity to steady forcing and
modifications to the base flow [8–10]. They have also been applied
to recirculation bubbles [11] bluff bodies, both incompressible [12]
and compressible [13], backward-facing steps [14], forward-facing
steps [15], confined wakes [16,17], and a recirculation bubble in a
swirling flow [18].

The direct global mode is usually found with a global stabil-
ity analysis. This typically proceeds in three steps: (i) the Navier–
Stokes (N–S) equations are linearized around a steady laminar
flow, which is called the base flow and which is usually unstable;
(ii) the equations are discretized and expressed as a 2D or 3D ma-
trix eigenvalue problem; (iii) the most unstable eigenmodes are
calculated with an iterative technique, such as an Arnoldi algo-
rithm or power iteration. Each eigenmode consists of a complex
eigenvalue, which describes the frequency and growth rate, and
an eigenfunction, which describes the 2D or 3D shape that grows
on top of the base flow until nonlinear effects become significant.
As more elaborate configurations are examined, the number of de-
grees of freedom rapidly approaches millions, so global stability
analyses can be extremely computationally expensive [4].

If the base flow varies slowly in the streamwise direction then
the global stability analysis can be replaced with a local stability
analysis [19]. The WKBJ approximation reduces the LNS equations
over the entire domain into a series of local LNS orOrr–Sommerfeld
(O–S) equations at each streamwise location. Each local equation
can be discretized and expressed as a small matrix eigenvalue
problem, which represents the dispersion relation between the
complex frequency, ω, and the complex wavenumber, k. At each
streamwise location, the value of ω is found for which the disper-
sion relation is satisfied and for which dω/dk = 0. This is known
as the absolute complex frequency, ω0 and its imaginary part, ω0i,
is the absolute growth rate. The flow is absolutely unstable in re-
gions in which ω0i is positive. These regions exist in every flow
that is globally unstable due to hydrodynamic feedback. The fre-
quency and growth rate of the linear global mode can be derived
from the streamwise distribution of ω0. This also gives a specific
spatial position for the region of the flow that, in the context of
the local analysis, is known as the wavemaker [20]. Local stability
analyses are much quicker and require much less computer mem-
ory than global stability analyses because they convert one large
matrix eigenvalue problem into several small independent matrix
eigenvalue problems. This is why they have been used so widely in
the past and why they are still used for flows that are beyond the
range of global analyses [21–23].

In all existing papers, the adjoint global mode is calculatedwith
a global stability analysis. The purpose of this paper is to show
that, if a local stability analysis is used to calculate the direct global
mode, then the adjoint globalmode follows at almost no extra cost.
Thismeans that, forweakly nonparallel flows, adjoint globalmodes
and structural sensitivities can be estimated quickly and cheaply,
without deriving the adjoint equations. After defining the form of
the direct and adjoint equations in Section 2, we derive this result
rigorously in Section 3 for the Ginzburg–Landau equation (G–L),
which is often used as a simplemodel for slowly-developing flows.
We then apply this to the linearized N–S equations in Section 4 and
demonstrate this on two flows in Section 5: a slowly-developing
confined wake, and the flow behind a cylinder at Re = 50.

2. General form of the direct and adjoint equations

Many different conventions are used to describe direct and ad-
joint globalmodes. The convention used here is similar to that used
for local stability analysis, so that it is easy to compare the local and
global approaches. It differs from that used in Hill [5,24] and Gian-
netti and Luchini [6] in three ways. The direct and adjoint govern-
ing equations (1) and (2) have the same form so that their k+ and
k− branches in the local analysis have the same physical meaning.
The adjoint variables are denoted with Ď, rather than + or ∗, so
that they are not confused with the k+ branch or with the complex
conjugate. The inner product contains a complex conjugate so that
the inner product of a complex state variable with itself is a real
number.

The linearized governing equations are expressed in terms of
the direct state variable,ψ(x, t), the adjoint state variable,ψĎ(x, t),
the direct linear spatial operator L, and the adjoint linear spatial
operator LĎ:

∂ψ

∂t
− Lψ = 0, (1)

∂ψĎ

∂t
− LĎψĎ

= 0. (2)

(The relationship between the direct and adjoint quantities will be
specified in (8), after the inner product (7) has been defined.) So-
lutions to the initial value problems defined by (1) and (2) can be
expressed for t ∈ [0,∞) as the sumof the direct and adjoint global
modes:

ψ(x, t) =


m

ψ̂m(x) exp(−iωmt), (3)

ψĎ(x, t) =


n

ψ̂Ď
n (x) exp(−iωnt). (4)

Substituting (3) into (1) and (4) into (2) gives, for each mode,

−iωmψ̂m − Lψ̂m = 0, (5)

−iωnψ̂
Ď
n − LĎψ̂Ď

n = 0. (6)
An inner product between state variables f and g is defined as

⟨f , g⟩ ≡


+∞

−∞

f ∗g dx. (7)

If boundary terms are assumed to be zero, as in Giannetti and Lu-
chini [6], Hill [5], then the relationship between the direct operator,
L, and its adjoint, LĎ, is given by

⟨Lψ̂m, ψ̂
Ď
n ⟩ = ⟨ψ̂m, LĎψ̂Ď

n ⟩. (8)
These definitions determine the relationship between ωm and ωn:

⟨Lψ̂m, ψ̂
Ď
n ⟩ = ⟨ψ̂m, LĎψ̂Ď

n ⟩, (9)

⟨−iωmψ̂m, ψ̂
Ď
n ⟩ = ⟨ψ̂m,−iωnψ̂

Ď
n ⟩, (10)

iω∗

m⟨ψ̂m, ψ̂
Ď
n ⟩ = −iωn⟨ψ̂m, ψ̂

Ď
n ⟩, (11)

(ω∗

m + ωn)⟨ψ̂m, ψ̂
Ď
n ⟩ = 0. (12)

This is the bi-orthogonality condition: every adjoint mode is or-
thogonal to every direct mode, except for the pairs that satisfy
ωn = −ω∗

m.
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2.1. Structural sensitivity

Wewould like to find the change in the direct eigenvalue, δωm,
when there is a small change, δL, in the direct linear operator, L:

δωm =
lim
ϵ → 0


ωm(L + ϵδL)− ωm(L)

ϵ


. (13)

This perturbation causes perturbed eigenvalues, ωm + ϵδωm, per-
turbed direct eigenmodes, ψ̂m + ϵδψ̂m, and perturbed adjoint
eigenmodes, ψ̂Ď

n + ϵδψ̂
Ď
n . We premultiply (5) by ψ̂Ď

n and substitute
in the perturbed variables:

⟨(ψ̂Ď
n + ϵδψ̂Ď

n ), (iωm + iϵδωm)(ψ̂m + ϵδψ̂m)⟩

+ ⟨(ψ̂Ď
n + ϵδψ̂Ď

n ), (L + ϵδL)(ψ̂m + ϵδψ̂m)⟩ = 0. (14)

Retaining terms at order ϵ and making use of (5), (6), and the bi-
orthogonality condition (12) leads to

δωm = i
⟨ψ̂

Ď
m, δLψ̂m⟩

⟨ψ̂
Ď
m, ψ̂m⟩

. (15)

This is the penultimate term in Eq. (9) of [2], but expressed in the
notation of this paper. The operator δL describes a generic pertur-
bation to the operator, L. If one considers a perturbation that is
localized in space then the structural sensitivity [6, Section 8] is
defined as:

∇Lωm ≡ i
ψ̂∗

mψ̂
Ď
m

⟨ψ̂
Ď
m, ψ̂m⟩

, (16)

where the numerator is a function of x and the eigenfunctions are
usually normalized such that the denominator is 1. This is shown
graphically in [2, Fig 5 a,b].

3. Local analysis of the direct and adjoint Ginzburg–Landau
equations

For the Ginzburg–Landau (G–L) equation, the operator L acting
on ψ(x, t) in (1) is:

∂ψ

∂t
= Lψ ≡ a0(x)ψ + a1(x)

∂ψ

∂x
+ a2(x)

∂2ψ

∂x2
, (17)

where a0, a1 and a2 are complex coefficients that depend on the
spatial coordinate, x. The aim of this section is to perform WKBJ
analysis on the direct and adjoint G–L equations in order to de-
termine ωĎ

n in terms of ωm and kĎn in terms of km, and to confirm
that higher-order terms in the WKBJ analysis do not need to be
considered. In this section, the subscriptsm and nwill be dropped
because the adjoint mode constructed in Section 3.6 is always the
bi-orthogonal counterpart of the direct mode constructed in Sec-
tion 3.5.

3.1. Local dispersion relation of the direct G–L equation

In slowly-evolving flows, the coefficients a0, a1 and a2 in (17)
depend only on a slow spatial coordinate X = ϵx. The small
parameter ϵ ≪ 1 measures the ratio between typical instability
and typical inhomogeneity length scales. Implementing a WKBJ
analysis, a global-mode solution of (17) is sought in the form

ψ ∼ A(X) exp


i
ϵ

 X

k(u)du − iωt

, (18)

where the local complexwavenumber k(X) is a solution of the local
dispersion relation:

ω = Ω(k, X) ≡ ia0(X)− a1(X)k − ia2(X)k2. (19)
The dispersion relation can also be written in terms of the local
absolute frequency, ω0(X), the local absolute wavenumber, k0(X),
and the local curvature, ωkk(X):

Ω(k, X) = ω0(X)+
1
2
ωkk(X)


k − k0(X)

2
, (20)

whereω0 = ia0− ia21/4a2, k0 = ia1/2a2, andωkk = −2ia2. (Equiv-
alently, a0 = −iω0 − iωkkk20/2, a1 = ωkkk0, and a2 = iωkk/2.) This
showshow the coefficients of theG–L equation canbederived from
the dispersion relation associated with a given weakly developing
shear flow by taking a Taylor expansion around the saddle point,
which is at (ω0, k0) and by definition has dω/dk = 0. Eq. (20) can
be rearranged to give k as an explicit function of ω:

k±(X, ω) = k0(X)±


2
ω − ω0(X)
ωkk(X)

. (21)

Here, branch cuts of (21) are taken along positive real values of the
argument of the square root. This choice of branch cut ensures that,
in stable or convectively unstable regions of the complex X-plane,
the above definition coincides with the usual labelling of spatial
branches based on causality considerations, for which a k+-branch
corresponds to a downstream response to localized harmonic
forcing, and a k−-branch corresponds to an upstream response.

3.2. Calculation of the adjoint of the G–L equation

For the G–L equation, the adjoint operator, LĎ, is found by ex-
panding ⟨ψ̂Ď, Lψ̂⟩, using (7), and then integrating by parts:

⟨ψ̂Ď, Lψ̂⟩ =


+∞

−∞

ψ̂Ď∗


a0ψ̂ + a1

∂ψ̂

∂x
+ a2

∂2ψ̂

∂x2


dx (22)

=


+∞

−∞


a0ψ̂Ď∗

−
∂

∂x
(a1ψ̂Ď∗)+

∂2

∂x2
(a2ψ̂Ď∗)


× ψ̂ dx, (23)

in which the boundary terms have been set to zero with appropri-
ate boundary conditions. The adjoint operator is found by noting
that, from (8), ⟨ψ̂Ď, Lψ̂⟩ = ⟨LĎψ̂Ď, ψ̂⟩, and therefore that

LĎψ̂Ď
= a∗

0ψ̂
Ď
−
∂

∂x
(a∗

1ψ̂
Ď)+

∂2

∂x2
(a∗

2ψ̂
Ď) (24)

= aĎ0ψ̂
Ď
+ aĎ1

∂ψ̂Ď

∂x
+ aĎ2

∂2ψ̂Ď

∂x2
, (25)

where aĎ0 ≡ a∗

0 − ∂a∗

1/∂x + ∂2a∗

2/∂x
2, aĎ1 ≡ −a∗

1 + 2∂a∗

2/∂x, and
aĎ2 ≡ a∗

2 . These expressions are general and do not necessarily as-
sume weak spatial inhomogeneities.

3.3. Local dispersion relation of the adjoint problem

Under the quasi-parallel-flow assumption, the coefficients of
the direct G–L equations depend only on the slow spatial coordi-
nate X = ϵx. Eq. (24) becomes:

LĎψ̂Ď
= a∗

0ψ̂
Ď
− a∗

1
∂ψ̂Ď

∂x
− ψ̂Ďϵ

∂a∗

1

∂X

+ a∗

2
∂2ψ̂Ď

∂x2
+ 2ϵ

∂a∗

2

∂X
∂ψ̂Ď

∂x
+ ψ̂Ďϵ2

∂2a∗

2

∂X2
. (26)

When performing a WKBJ analysis of the adjoint G–L equation (2),
the adjoint operator (24) must be expanded in powers of ϵ as

LĎ

∂

∂X
; X


= LĎ0


∂

∂X
; X


+ ϵLĎ1


∂

∂X
; X


+ ϵ2LĎ2


∂

∂X
; X

, (27)
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By inspection of (26), LĎ0, L
Ď
1, and LĎ2 are:

LĎ0


∂

∂X
; X


= a∗

0(X)− a∗

1(X)
∂

∂x
+ a∗

2(X)
∂2

∂x2
, (28)

LĎ1


∂

∂X
; X


= −
∂a∗

1(X)
∂X

+ 2
∂a∗

2(X)
∂X

∂

∂x
, (29)

LĎ2


∂

∂X
; X


=
∂2a∗

2(X)
∂X2

. (30)

A solution of the adjoint problem is then sought in the form

ψĎ
∼


AĎ0(X)+ ϵAĎ1(X)+ ϵ2AĎ2(X)+ · · ·


× exp


i
ϵ

 X

k(u)du − iωĎt

. (31)

Substituting (28)–(31) into the governing adjoint equation (2)
gives, at leading-order,

− iωĎ
= a∗

0(X)− a∗

1(X)ik(X)− a∗

2(X)k
2(X) = LĎ0(ik; X). (32)

In a manner similar to the direct problem, the adjoint dispersion
relation can be rewritten as

ωĎ
= Ω

Ď
0 (k, X) ≡ ia∗

0(X)+ a∗

1(X)k(X)− ia∗

2(X)k
2(X) (33)

= ω
Ď
0(X)+

1
2
ω
Ď
kk(X)


k − kĎ0(X)

2
, (34)

where

ω
Ď
0(X) = ia∗

0(X)−
i
4
a∗2
1 (X)/a

∗

2(X) = −ω∗

0(X), (35)

kĎ0(X) = −
i
2
a∗

1(X)/a
∗

2(X) = k∗

0(X), (36)

ω
Ď
kk(X) = −2ia∗

2(X) = −ω∗

kk(X). (37)

The higher-order terms LĎ1 and LĎ2 do not appear in this adjoint
dispersion relation, because it is obtained at leading order in the
WKBJ analysis. The LĎ1 component enters only when working out,
at O(ϵ1), the solvability condition that governs the leading-order
amplitude term AĎ0(X) in (31). This amplitude equation is

Ω
Ď
0,k


k(X), X

dAĎ0
dX

+
1
2
Ω

Ď
0,kk


k(X), X

 dk
dX

AĎ0(X)

+ iΩĎ
1


k(X), X


AĎ0(X) = 0, (38)

where ΩĎ
1 (k, X) ≡ iLĎ1(ik, X). Higher-order expansions will not

be derived further, however, because the results of this paper re-
quire only the local dispersion relations. Turning points, where
∂Ω

Ď
0/∂k = 0, are not affected by the higher-order expansions.
The key point of this section is that, at leading order, the disper-

sion relation of the adjoint G–L equation is the same as that of the
direct G–L equation but with the substitutions (35)–(37).

3.4. Adjoint of a generic polynomial PDE

The development in Sections 3.1–3.3 is for a parabolic PDE but
holds for any polynomial PDE in one spatial dimension, as shown
in this section. For a generic polynomial PDE, the direct operator
(17) can be written as

∂ψ

∂t
= Lψ ≡


j

aj(x)
∂ jψ

∂xj
, (39)
and, after integration by parts, the adjoint operator can be written
as

∂ψĎ

∂t
= LĎψĎ

≡


j

(−1)j
∂ j

∂xj

a∗

j (x)ψ
Ď

. (40)

If the coefficients a∗

j do not depend on x then LĎψĎ
=


j(−1)ja∗

j

∂
j
xψ

Ď and (35)–(37) follow immediately. If the coefficients a∗

j de-
pend on x, then the x-derivatives of a∗

j (x)ψ
Ď produce extra terms:

LĎψĎ
=


a∗

0(x)−
∂a∗

1(x)
∂x

+
∂2a∗

2(x)
∂x2

−
∂3a∗

3(x)
∂x3

+ · · ·


ψĎ (41)

+


−a∗

1(x)+ 2
∂a∗

2(x)
∂x

− 3
∂2a∗

3(x)
∂x2

+ · · ·


∂ψĎ

∂x
(42)

+


a∗

2(x)− 3
∂a∗

3(x)
∂x

+ · · ·


∂2ψĎ

∂x2
(43)

+

−a∗

3(x)+ · · ·
 ∂3ψĎ

∂x3
+ · · · (44)

However, under the assumption of slow spatial development, the
nth derivatives of the coefficients aj are of order ϵn, so the local dis-
persion relation that is obtained at leading order is the same as
that obtained for constant coefficients. This proves that the rela-
tions ωĎ

0(X) = −ω⋆0(X), k
Ď
0(X) = k⋆0(X) and ω

Ď
kk(X) = −ω⋆kk(X)

in (35)–(37) hold for systems governed by any dispersion relation
that is polynomial in k. We therefore expect this result to remain
generally valid in the case of dispersion relations that are analytic
in k over large parts of the complex k-plane. We assume that dis-
persion relations derived from the linearized Navier–Stokes equa-
tions in slowly-varying flows fall into this category.

3.5. Global mode of the direct G–L equation with a local analysis

A linear global mode is a global solution of the governing equa-
tion (1) with the form ψ(x, t) ∼ exp(−iωg t) for a complex
global frequencyωg . Assuming that the slowly-varying coefficients
ω0(X), k0(X) and ωkk(X) are known along the real X-axis, a WKBJ
approximation of the global mode can be sought as in (18) with
ω = ωg . This integral is most easily evaluated in the complex
X-plane, as shown in the top half of Fig. 1a. (The bottom half is
for the adjoint mode.) The point Xs is a saddle point of ω0(X)
and the diagonal lines have the same value of ω0i as the saddle
point. Huerre and Monkewitz [19] have shown that the frequency
of the dominant global mode, ωg , is equal to ωs + O(ϵ), where
ωs = ω0(Xs).

At a givenωg , there are two valid solutions to k, known as the k+

and k− spatial branches, and there are therefore two independent
WKBJ approximations

ψ+
∼ A+(X) exp


i
ϵ

 X

Xs
k+(u, ωg)du − iωg t


(45)

and

ψ−
∼ A−(X) exp


i
ϵ

 X

Xs
k−(u, ωg)du − iωg t


. (46)

These two WKBJ approximations are singular at the saddle point
Xs, which is a double turning point of the dispersion relation. From
this double turning point, four Stokes lines emerge, defined by

Im
 X

Xs
[k+(u, ωs)− k−(u, ωs)]du = 0. (47)

Along these Stokes lines both WKBJ approximations remain of the
same order of magnitude, while inside the sectors delimited by
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Fig. 1. (a) Left frame: integration paths in the complex X-plane for the direct (top) and adjoint (bottom) cases. The diagonal lines represent the boundaries between valleys
(left and right of the lines) and hills (above and below the lines). The integration paths must pass through the valleys in order to obey causality. (b) Right frame: branch cuts
(dashed lines) in the complex X-plane.
the Stokes lines one approximation is exponentially larger than
the other. Following classical WKBJ theory [25] the global mode
must be sought as a linear combination of the two independent
solutions, ψ = C+ψ+

+ C−ψ−, within each sector delimited by
these Stokes lines.

When X → +∞, the solution must be dominated by a k+

branch and is therefore made up of the subdominant ψ+ approxi-
mation. The global mode is therefore of the formψ = C+ψ+ (with
C−

= 0) in the region starting from the Stokes lines issuing from Xs
and extending to X = +∞. (See Pier [26] for a detailed analysis of
a similar case.) For similar reasons, the global mode is of the form
ψ = C−ψ− (with C+

= 0) in the region starting from the Stokes
lines issuing from Xs and extending to X = −∞.

Consequently, the global mode is approximated by the WKBJ
approximation C−ψ− along the semi-infinite path from Xs to−∞,
and by C+ψ+ along the semi-infinite path from Xs to +∞. Since
the global mode must be continuous at Xs, the coefficient C+ on
the path from Xs to+∞must equal C− on the path from Xs to−∞

(this includes higher-order terms; asymptotic matching of the two
WKBJ-expansions prevailing on each side of the saddle point can be
rigorously carried out via an inner layer). After rescaling the solu-
tion so that C+

= C−
= 1, the direct global mode is approximated

byψ+ along the semi-infinite path from Xs to X = +∞ and byψ−

along the semi-infinite path from Xs to X = −∞.
Finally, the approximations of the direct global mode obtained

along the path from X = −∞ to X = +∞, passing through
the saddle point Xs, must be continued onto the real X-axis. When
crossing a Stokes line, a subdominant WKBJ solution becomes
dominant but remains a valid asymptotic approximation. There-
fore the global mode is approximated by ψ− in the sectors adja-
cent to the sector extending to X = −∞, and byψ+ in the sectors
adjacent to the sector extending to X = +∞. Since there are four
Stokes lines and two branch cuts emanating from the saddle point,
Xs, one may safely assume that one branch cut crosses the real axis
at Xc and that nomore than one Stokes line crosses the real axis on
either side of Xc . It follows that the global mode is approximated
by ψ− for X < Xc along the real axis and by ψ+ for X > Xc . At
Xc there is a smooth relabelling of the k-branches, but otherwise
nothing special happens across the branch cut. This division of the
integration path becomes important in Section 3.7.

3.6. Global mode of the adjoint G–L equation with a local analysis

Following the same development as Section 3.5, the adjoint
global mode is sought as

ψĎ
∼ AĎ(X) exp


i
ϵ

 X

kĎ(u;ωĎ
g)du − iωĎ

g t

. (48)

We again assume that the coefficients ω0(X), k0(X) and ωkk(X)
can be continued analytically into the complex plane and use the
relationships (35)–(37). This is represented in the bottom half of
Fig. 1(a). We obtain the result that ωĎ

g = ω
Ď
s + O(ϵ), where ωĎ

s =
ω
Ď
0(X

Ď
s )with dωĎ

0/dX |XĎs
= 0. The localwavenumber in (48) follows

the kĎ− branch for X → −∞ and the kĎ+ branch for X → +∞.
Here, these branches are obtained from the local adjoint dispersion
relation (36) as

kĎ±
(X, ωĎ

g) = kĎ0(X)±


2
ω
Ď
g − ω

Ď
0(X)

ω
Ď
kk(X)

. (49)

For real values of X , substituting (35)–(37) into (49) leads to the
following relationship between the local branches of the adjoint
and the direct global modes:

kĎ±
(X;ωĎ

g) =

k∓(X;ωg)

∗
. (50)

This relationship guarantees that a branch cut of the adjoint kĎ±

crosses the real X-axis at the same location, Xc , as a branch cut of
the direct k±.

The two adjoint spatial branches kĎ± lead to two independent
WKBJ approximations

ψĎ+
∼ AĎ+

(X) exp


i
ϵ

 X

XĎs

kĎ+
(u, ωĎ

g)du − iωĎ
g t


(51)

and

ψĎ−
∼ AĎ−

(X) exp


i
ϵ

 X

XĎs

kĎ−
(u, ωĎ

g)du − iωĎ
g t

. (52)

Following similar arguments to those in the previous section, it can
be shown that the adjoint global mode is approximated along the
real axis byψĎ− for X < Xc and byψĎ+ for X > Xc . For X < Xc , the
direct global mode follows k− and the adjoint global mode follows
kĎ−, which is (k+)∗. For X > Xc , the direct global mode follows
k+ and the adjoint global mode follows kĎ+, which is (k−)∗. At Xc ,
there is a smooth re-labelling of the k-branches.

The final result, that the adjoint mode follows (k+)∗ upstream
of the wavemaker and (k−)∗ downstream, is simple andmay seem
trivial. However, we are not aware of this result being stated or
used before in stability analysis, despite its potential usefulness.

3.7. Calculating the structural sensitivity of the G–L equation with a
local analysis

The structural sensitivity (16) is the product of the direct and
adjoint global modes. For X along the real axis, the direct global
mode found from the local analysis takes the form

ψ ∼


A+(X) exp


i
ϵ

 X

Xs
k+du


for X > Xc,

A−(X) exp

i
ϵ

 X

Xs
k−du


for X < Xc .

(53)

After splitting the integrals from Xs to X into two integrals from Xs
to Xc and from Xc to X , and using the fact that the k+-branch on the
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right of the branch cut is identical to the k−-branch on the left of
the branch cut, the linear global mode may be renormalized as

ψ ∼


A+(X) exp


i
ϵ

 X

Xc
k+du


for X > Xc,

A−(X) exp

i
ϵ

 X

Xc
k−du


for X < Xc .

(54)

Similarly, the adjoint global mode found from the local analysis
takes the following form along the real axis

ψĎ
∼


AĎ+

(X) exp

i
ϵ

 X

Xc
kĎ+du


for X > Xc,

AĎ−
(X) exp


i
ϵ

 X

Xc
kĎ−du


for X < Xc .

(55)

With the identity (50), it follows that

ψĎ
∼


AĎ+

(X) exp

i
ϵ

 X

Xc
k−∗du


for X > Xc,

AĎ−
(X) exp


i
ϵ

 X

Xc
k+∗du


for X < Xc .

(56)

The structural sensitivity∇Lωm from (16) may now be obtained
by computing the product ψ∗ψĎ. Noting that


exp(iz)

∗
=

exp(−iz∗) yields

∇Lωm ∝


AĎ+

(X)

A+(X)

∗ exp  i
ϵ

 X

Xc


k−

− k+
∗ du

for X > Xc,

AĎ−
(X)


A−(X)

∗ exp  i
ϵ

 X

Xc


k+

− k−
∗ du

for X < Xc .

(57)

Themagnitude of the structural sensitivity is therefore obtained as

|∇Lωm| ∝



B(X) exp

1
ϵ

 X

Xc
Im

k−

− k+

du


for X > Xc,

B(X) exp

1
ϵ

 X

Xc
Im

k+

− k−

du


for X < Xc,

(58)

where B(X) is a slowly varying coefficient.
The wavenumbers k+ and k− are given by (21) with ω = ωs. In

a configuration that, when X → ±∞, is stable or at most convec-
tively unstable, Im(k+

− k−) > 0 for sufficiently large |X | on the
real axis. Therefore the structural sensitivity necessarily decays for
X → ±∞ and the maximum structural sensitivity corresponds to
the locationwhere Im(k+

−k−) = 0. For theG–L equation, Im(k+
−

k−) is always positive, due to our definition of the branch cut, and
vanishes only at Xc . This means that |∇Lωm| is a maximum at Xc . In
general, it is true that the maximum structural sensitivity is found
where Im(k+

− k−) = 0. However, it is not necessarily located on
the branch cut, because the location where Im(k+

− k−) = 0 does
not necessarily coincide with the (arbitrary) choice of branch cut.

This result, which is for flows with infinite streamwise extent,
should not be confused with the Kulikovskii criterion [27, Sec-
tion 65], which is for flows with finite streamwise extent. In those
flows, the downstream travelling waves, k+, reflect off the down-
stream boundary and the upstream travelling waves, k−, reflect off
the upstream boundary. The function describing the wave must
be singly-valued between the boundaries, which means that only
certain combinations of k+ and k− are permitted. For long (but
streamwise-confined) systems, this constraint reduces to Im(k+

−

k−) = 0. In those flows, the permitted global mode frequen-
cies are then calculated by combining this constraint with the
local dispersion relation. For flows with finite extent, the relation
Im(k+

− k−) = 0 therefore serves as an additional constraint on
the global complex frequency, ωg , of the flow. For flows with infi-
nite extent, on the other hand, there is no corresponding restriction
on ωg and the point where Im(k+

− k−) = 0 merely indicates the
centre of the structural sensitivity.

The wavemaker in a local analysis and the structural sensitivity
in a global analysis differ both in concept and in outcome. Never-
theless, the two regions lie close to each other and there is a link
between the two, which can be summarized as follows. The com-
plex frequency of the global mode, ωg , is the absolute frequency
at the saddle point Xs of ω0(Xs) in the complex X-plane. The re-
gion around the saddle point in the complex X-plane is the wave-
maker region in the local sense given by Huerre and Monkewitz
[19]. It could be tempting to assume that the real component of
Xs has physical significance. However, this is only an approxima-
tion to the position of the maximum of the structural sensitivity
(i.e. the global concept) in cases where Im(Xs) is small. Instead, to
work out the position of maximum structural sensitivity from a lo-
cal analysis, the spatial branches, k+ and k−, must be calculated at
the global mode frequency, ωg . Because Im(ωg) < Im(ω0) along
the real X axis, the point of maximum structural sensitivity, in the
global sense given by [6], is the point at which Im(k+

− k−) = 0.

4. Local analysis of the direct and adjoint Linearized Navier–
Stokes equations

The planar linearized Navier–Stokes (LNS) equations for a per-
turbation q̃(x, z, t) ≡ [ṽ1(x, z, t), ṽ2(x, z, t), p̃(x, z, t)]T are ex-
pressed as three PDEs in the three primitive variables, (ṽ1, ṽ2, p̃).
TheWKBJ analysis is performed, reducing these three PDEs to three
ODEs for the Fourier/Laplacemodes q̂m(z) exp{i(kmx−ωmt)}. These
ODEs are then expressed as the generalized eigenvalue problem:

− iωmBq̂m − Aq̂m = 0. (59)

The problem is discretized by replacing the operators A(km) and
B(km), which act on the continuous field q̂m(z), withmatricesA(km)
and B(km), which act on a state vector ϕm. This state vector holds
the values of q̂m at N gridpoints at zj, j ∈ [1,N]. The local direct
LNS equations (59) are thereby expressed as the generalized ma-
trix eigenvalue problem

− iωmBϕm − Aϕm = 0, (60)

which serves as the dispersion relation for the calculation of
ω0(X), (ωs, Xs), ωg , k+(X) and k−(X). Computing the dispersion
relation for the Navier–Stokes problem is technically more diffi-
cult than for the Ginzburg–Landau problem, for which it is explicit.
However, once the dispersion relation is expressed numerically,
the subsequent calculations and derivations of quantities such as
spatial branches and local absolute frequencies are carried out in a
similar manner.

The direct global mode is constructed with the technique de-
scribed in Section 3.5 and [28]. In summary, the absolute complex
frequency, ω0(X), is calculated by finding the valid saddle point
of ω(k) at each streamwise location, X . An 8th order Padé polyno-
mial is fitted to ω0(X) and then extrapolated into the complex X-
plane, as will be described in Section 5.1. The saddle point ofω0(X)
is identified in the complex X-plane and its value of ω0 gives the
global mode complex frequency, ωg . Then, at the streamwise lo-
cation of the saddle point in the X-plane, two values of k(ωg) are
found on either side of the saddle point ω0 in the k-plane. These
are labelled k+ and k− and they are followed upstream and down-
stream from this point. The local values of k+(X) and k−(X) are
then integrated according to (54) in order to obtain the amplitude
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and phase of the global mode in the X-direction. The eigenfunc-
tions of k+(X) and k−(X) are required in order to obtain the z-
dependence of the global mode. At this point there is an apparent
contradiction: the local eigenfunctions can bemultiplied by any ar-
bitrary constant, yet the amplitude and phase of the global mode
in the X-direction should be dictated by (54). To avoid this contra-
diction, the eigenfunctionsmust be normalized consistently. This is
analogous to the normalization requiredwhen handling the Parab-
olized Stability Equation [29, Eq. (9a,b)]. In this paper, the eigen-
functions are normalized such that the v2-eigenfunctions have the
same amplitude and phase at z = 0. This is chosen because, for
the sinuous perturbations considered here, the v2-eigenfunction
always has a large absolute value at z = 0. In principle, any value
of z could be chosen, and for flows that are nearly parallel, such as
that in Section 5.1, the choice of z has only a small effect on the
predicted shapes of the direct and adjoint global modes.

The adjoint global mode is calculated using the substitution
derived in Section 3.3 for a parabolic dispersion relation and in
Section 3.4 for a generic polynomial PDE: ωĎ

g = −ω∗
g , k

Ď+
= (k−)∗

and kĎ−
= (k+)∗. This substitution requires the base flow to

vary slowly in the streamwise direction. In this paper, this result
has been shown for a generic PDE with one spatial dimension
and it can be generalized (after lengthy developments) to a PDE
with two spatial dimensions. For the z-dependence, however, the
eigenfunctions of kĎ+ and kĎ− are not the same as those of k−

and k+, and need to be calculated from the discrete adjoint of
the LNS equations. To do this, the generalized matrix eigenvalue
problem (60) is post-multiplied by the adjoint eigenfunction ϕĎ

n
and re-arranged using the discretized version of the inner product:
⟨ϕm, ϕ

Ď
n⟩ ≡ ϕH

mMϕ
Ď
n , where H denotes the Hermitian transpose and

M is the mass matrix, whose diagonal elements are the volume of
space attributed to each gridpoint:

−iωmBϕm − Aϕm = 0,
⟨−iωmBϕm, ϕ

Ď
n⟩ − ⟨Aϕm, ϕ

Ď
n⟩ = 0,

⟨ϕm,M−1(iω∗

m)B
HMϕĎ

n⟩ − ⟨ϕm,M−1AHMϕĎ
n⟩ = 0,

iω∗

m(M
−1BHM)ϕĎ

n − (M−1AHM)ϕĎ
n = 0. (61)

The local adjoint LNS equations are written as

− iωnBĎϕĎ
n − AĎϕĎ

n = 0, (62)

so, by comparing (61) and (62),

ωn = −ω∗

m, (63)

AĎ = M−1AHM, (64)

BĎ = M−1BHM, (65)

and it can be shown that the bi-orthogonality condition becomes
(ωn − ω∗

m)ϕ
H
mB

HMϕĎ
n = 0. The adjoint eigenvalue, ωn, is known

from (63), so there is no need to solve (62) as a generalized
eigenvalue problem. The fastest method is to calculate the adjoint
matrices of the discretized problemwith (64)–(65) and then to find
the null space of −iωnBĎ − AĎ with a QR decomposition.

5. Demonstrations

5.1. Slowly-developing confined wake flow

We test the procedure described in Section 4 on a slowly-
developing flow, using the planar linearized Navier–Stokes equa-
tions. Fig. 2(a) shows the streamlines and vorticity of a confined
co-flow wake at Re = 400, with perfect slip at the top and bot-
tom boundaries. The flow is identical to that in [28], except that it
has a sharper inlet velocity profile, which makes it slightly more
unstable. It is similar to the flows studied by Tammisola [17].

Fig. 2(b) shows the absolute growth rate ω0i(X). This is calcu-
lated at each axial station, X , by finding saddle points of ω(k) in
the complex k-plane, using the dispersion relation formed from the
matrix eigenvalue problem (60). This flow has a recirculation bub-
ble between 2.26 < X < 22.42 and is absolutely unstable over the
slightly wider range of 0.05 < X < 28.70.

In order to find the complex frequency of the linear globalmode,
ωg , the saddle point of ω0(X) must be found in the complex X-
plane. Its position is labelled (ωs, Xs). For the G–L equation (17),
the coefficients were expressed in terms of this saddle point posi-
tion via (20), but for the LNS equation there is no such analytical
solution. Instead, 8th order Padé polynomials are fitted to ω0(X)
using the procedure described in [28]. Saddle points of this poly-
nomial are then found in the complex plane, as shown in Fig. 2(c).
There are several saddle points but the main one is easy to iden-
tify because it lies close to the real X-axis and moves very little as
the order of the polynomials increases. The range of ω0(X) over
which the points are fitted must encompass the peak of ω0(X) but
is otherwise arbitrary. We performed eight calculations, fitting be-
tween all points that satisfiedω0i > 0.15, 0.10, 0.05, 0.00,−0.05,
−0.10,−0.25,−0.20 and found that ωs varied by less than 1% be-
tween all these calculations.

For this flow, the polynomial is fitted through all points that
have ω0i > 0.00; i.e. the absolutely unstable region. The saddle
point is at ωs = 0.6570 + 0.1409i, Xs = 11.05 + 4.251i. As ex-
plained in Section 3.5, ωs equals ωg to within order ϵ, which is the
degree of non-parallelism in the flow. For this flow, a global anal-
ysis gives ωg = 0.6631 + 0.1239i. The local analysis is seen to
over-predict the growth rate of the linear global mode, which is a
common feature of local analyses of wake flows [6,28]. In order to
investigate the influence of this discrepancy on the direct and ad-
joint global modes, we calculate the k+ and k− branches at both
values of ωg . These branches are shown in Fig. 2(d,e) for forc-
ing at ωg (loc) and ωg (glob). They can be compared with the lo-
cal wavenumbers, k and kĎ, extracted from the direct and adjoint
global modes from the global analysis. These were extracted from
the v1-eigenfunction at z = 0.79, where the global mode has the
highest absolute value. There are four important points.

Firstly, we confirm that the wavenumber of the direct global
mode, k (solid black line), follows k− upstream of Xc and k+

downstream, as already known, and that the wavenumber of the
adjoint global mode, kĎ (dashed black line), follows k+ upstream of
Xc and k− downstream, as predicted in Section 3.6.

Secondly, the match is closest where the flow is more parallel.
For example, when the flow is forced atωg (glob), k+ and k− follow
k and kĎ very closely for X > 22.4,where the flow is nearly parallel,
but follow k and kĎ less closely for X < 22.4, where the flow is less
parallel. Also, the local analysis predicts that the crossing point of
the k+ and k− branches is slightly further upstream than that given
by the global analysis. This is the case whether or not the flow is
forced atωg (loc) orωg (glob) so is due to the flow’s non-parallelism,
or to the effect describednext, andnot due to the discrepancy inωg .

Thirdly, k− and k+ diverge from k and kĎ around the upstream
boundary. This is not a defect in the local analysis. It is because
the global analysis has a Dirichlet boundary condition at X = 0,
while the local analysis assumes that the flow is homogeneous to
X = −∞.

Fourthly, the position ofmaximum structural sensitivity, where
k+

i − k−

i = 0, is at X = 10.50 when using ωg (loc) and X = 10.30
when using ωg (glob). These values differ from 11.05, which is the
streamwise position of the saddle point in the complex X-plane.
This small difference is to be expected, for the reasons given in
Section 3.7.

The direct global modes obtained from the local analysis at
ωg (loc) are compared with those obtained from the global analysis
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Fig. 2. (Colour online) (a) Streamlines (black lines) and vorticity (colour) of a confined co-flow wake at Re = 400 with perfect slip at the top and bottom boundaries. (b)
Absolute growth rate, ω0i . (c) Contours of ω0i in the complex X-plane, formed by fitting an 8th order Padé polynomial to the points in (b) for which ω0i > 0.0. The saddle
point (black dot) is at ωs = 0.6570 + 0.1409i, Xs = 11.05 + 4.251i. (d) The imaginary component of the local wavenumber (i) calculated from the local analysis performed
with ωg equal to the saddle point position ωs , labelled k+

i (loc) and k−

i (loc); (ii) calculated from the local analysis performed with ωg taken from the global analysis, labelled
k+

i (glob) and k−

i (glob); (iii) extracted from the direct global mode, labelled ki and from the adjoint global mode, labelled kĎi . (e) The real component of the local wavenumber
with the same nomenclature as (d).
in Fig. 3(a)–(c). Their structure is identical but the local analysis
predicts that the maximum amplitude is reached slightly further
upstream than it is in the global analysis. This is due to the over-
prediction of the growth rate,ωg , as noted by [28]. This can be seen
in Fig. 2(d) by the fact that the k+ branch from the local analysis
at ωg (loc) crosses the ki axis before the k branch from the global
analysis, while that at ωg (glob) crosses at the same place.

The adjoint global modes obtained from the local analysis
are compared with those obtained from the global analysis in
Fig. 3(d)–(f). They have a similar structure to each other but there
are some clear differences around X = 0, which are due to the
different boundary condition there.

The structural sensitivity, as defined by [6] is shown in 3(g).
From the global analysis, themaximumof the structural sensitivity
is at the position where Im(k − kĎ) = 0, which is at X = 11.00.
From the local analysis, the maximum of the structural sensitivity
is at the position where Im(k+

− k−) = 0, which is at X =

10.50. The local analysis predicts the maximum of the structural
sensitivity to be slightly further upstream than is predicted by the
global analysis. This is the case for both ωg (loc) and ωg (glob) and
is therefore due to the non-parallelism of the flow or the effect of
the upstream boundary condition, and not due to the discrepancy
between ωg (loc) and ωg (glob). Apart from this small difference,
the structural sensitivities are almost indistinguishable. This shows
that, for this slowly-developing flow, the structural sensitivity can
be estimated easily and accurately with a local stability analysis. If
the direct global mode has been calculated with the local analysis,
then, apart from a quick calculation to find the eigenfunction in the
cross-stream direction, the adjoint has already been calculated.

5.2. The flow behind a cylinder at Re = 50

Hill [5] and Giannetti and Luchini [6] calculated the direct and
adjoint global modes of the two-dimensional flow around a circu-
lar cylinder at Re = 50, based on the cylinder diameter. This is an-
other good test case for the local analysis because there are several
published results and it is less parallel than the previous test case.

Fig. 4(a) shows the streamlines and vorticity of this flow and
Fig. 4(b) shows the absolute growth rateω0i as a function of down-
stream distance. Fig. 4(c) shows the position of the saddle point ωs
in the complex X-plane, whichwas calculated by fitting Padé poly-
nomials through all points downstream of the cylinder with ω0i >
0.03. The saddle point is at ωs = 0.791 + 0.083i, Xs = 1.297 +
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Fig. 3. (Colour online) Direct and adjoint global modes calculated from the global analysis (left) and the local analysis (right). The top halves of frames (a–f) show
the real component. The bottom halves show the imaginary component. (a) Direct streamwise velocity component, v1 . (b) Direct cross-stream velocity component, v2 .
(c) Direct pressure, p. (d) Adjoint streamwise velocity component, vĎ1 . (e) Adjoint cross-stream velocity component, vĎ2 . (f) Adjoint pressure, p

Ď . (g) Structural Sensitivity

∇Lωm =


(v21 + v22)× (v

Ď2
1 + v

Ď2
2 )
1/2

.

0.699i. The threshold of 0.03 was chosen because a threshold
of 0.00 gave rise to too many nearby saddle points. For compari-
son, the global analysis of [6] gives ωg = 0.750 + 0.013i and the
local analysis of [30] gives ωg = 0.785 + 0.091i. The k+ and k−

branches are shown in Fig. 4(d)–(e) usingωg (local) andωg (global).
Fig. 5(a)–(b) shows the vorticity of the direct global mode

obtained from the local analysis and can be compared directlywith
Fig. 2 of [5], which is obtained from the global analysis. Fig. 5(c)–(d)
shows the vorticity of the adjoint global mode obtained from the
local analysis and can be compared directly with Fig. 3 of [5]. The
local results are close to the global results in the region behind the
cylinder but differ in the region around the cylinder. This is not
surprising because the flow is strongly non-parallel there.

The structural sensitivity is shown in Fig. 6, and can be com-
pared directly with Fig. 17 of [6]. Both frames are calculated from
the local analysis but the left frame is calculated atωg (local), while
the right frame is calculated at ωg (global). The local analysis pre-
dicts the same features as the global analysis but there are some
noticeable differences. Firstly, the centre of the structural sensitiv-
ity is too far upstreamwhenωg (local) is used. Thiswas also seen for
the wake flow in Section 5.1 and is because the local analysis over-
predicts the growth rate. Secondly, the z-dependence of the global
mode is poorly predicted in regionswhere the flow is strongly non-
parallel, such as at the end of the recirculation zone. Nevertheless,
this shows that the local analysis can estimate the structural sen-
sitivity in this type of flow, at very little computational cost.

It is worth mentioning that we also attempted to use this
method to compute the globalmodes for the swirling vortex break-
down bubble in [31], which is very non-parallel around the vor-
tex breakdown bubble. It was impossible to identify the k+ and
k− branches in the non-parallel region and therefore impossible
to generate direct and adjoint global modes.

6. Conclusions

In an unstable open flow, it is useful to know which regions
are most receptive to forcing and which regions are most sensitive
to changes in internal feedback. These regions can be found
easily if the direct and adjoint global modes have been calculated.
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Fig. 4. As for Fig. 2 but for the flow around a cylinder at Re = 50.
a b

c d

Fig. 5. Direct (top) and adjoint (bottom) global modes calculated from the local analysis at ωg (local): (a, c) real component, (b, d) imaginary component. These frames can
be compared with Figs. 2 and 3 of [5].
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Fig. 6. The structural sensitivity calculated from the local analysis at (a) ωg (local) and (b) ωg (global). These frames can be compared with Fig. 17 of [6].
These modes are usually calculated with a global linear stability
analysis, meaning that small perturbations on top of a base flow
are discretized on a 2D or 3D grid. This creates a generalizedmatrix
eigenvalue problem, which is then solved numerically. These
matrices can havemillions of degrees of freedom, so this procedure
is computationally expensive and is impractical for many flows.

An alternative approach, which is applicable to weakly non-
parallel open flows, is to calculate the direct global mode with a
local stability analysis. This is orders of magnitude cheaper than a
global analysis. The main result of this paper is to show that the
adjoint global mode then follows at almost no extra cost. We show
this formally for the Ginzburg–Landau equation and find that the
direct globalmode is formed from the k−-branch upstream and the
k+-branch downstream, while the adjoint global mode is formed
from the k+-branch upstream and the k−-branch downstream.We
include higher order terms of the WKBJ analysis in order to show
that these analytical relationships are valid up to order ϵ, which
measures the non-parallelism of the flow. Furthermore, we show
that the maximum of the structural sensitivity, as defined by [6], is
the point at which the spatial branches, k+ and k−, have identical
imaginary components.

We apply this to the linearized Navier–Stokes (LNS) equations
and show that, if the direct global mode has already been calcu-
lated, the only extra cost in calculating the adjoint mode is in cal-
culating the adjoint eigenfunction at each point in the flow. This
cost is small because the adjoint eigenvalue is already known.

We compare the local and global results for two flows: a con-
fined wake flow at Re = 400, and the flow behind a cylinder at
Re = 50. The procedure works very well for the confined wake
flow: the localwavenumbers of the direct and adjoint globalmodes
closely follow the k+ and k− branches of the local analysis, as
expected, and the structural sensitivity calculated with the local
analysis is almost indistinguishable from that calculated with the
global analysis. The procedure works less well for the cylinder: al-
though the local and global results are qualitatively similar, the lo-
cal analysis over-predicts the growth rate and therefore predicts
that thewavemaker region lies too far upstream.We conclude that
the procedure works less well for the cylinder because the wave-
maker sits in a region that is less parallel.

Some flows, such as those in a gas turbine fuel injector [23],
contain more than one unstable global mode. Each of these global
modes has, in a local analysis, an associated saddle point of ω(k)
in the k-plane and an associated saddle point of ω0(X) in the X-
plane. Therefore the technique in this paper can be applied to each
of these saddle points individually and can identify multiple global
modes in a flow, if they exist.

In many real flows, the assumptions underlying the WKBJ ap-
proach are notmet very closely. Nevertheless, the techniques of lo-
cal stability analysis haveproved to be remarkably robust, probably
because the wavemaker region often lies in a region of nearly par-
allel flow. In such cases, a local stability analysis will give reason-
able estimates of the direct and adjoint global modes at much less
computational cost than a global analysis. For example, the global
modes of a 3D flow that evolves slowly in the streamwise direction
could be calculated by combining the results of several 2D calcula-
tions. This opens the door to the application of sensitivity analysis
to flows that are currently beyond the reach of global analysis.

Acknowledgements

We gratefully acknowledge the help of Outi Tammisola, who
provided the confinedwake flow and the corresponding global sta-
bility analysis. This work was supported by the European Research
Council under Project ALORS 2590620 and byMPJ’s visiting Profes-
sorship at École centrale de Lyon.

References

[1] P.A. Monkewitz, The absolute and convective nature of instability in two-
dimensional wakes at low Reynolds numbers, Phys. Fluids 31 (1998)
999–1006.

[2] J.-M. Chomaz, Global instabilities in spatially developing flows: non-normality
and nonlinearity, Annu. Rev. Fluid Mech. 37 (2005) 357–392.

[3] J.-M. Chomaz, Linear and nonlinear, local and global stability analysis of open
flows, in: Turbulence in Spatially Extended Systems, Nova, ISBN: 1-56072-
120-0, 1993.

[4] D. Sipp, O. Marquet, P. Meliga, A. Barbagallo, Dynamics and control of global
instabilities in open flows: a linearized approach, Appl. Mech. Rev. 63 (2010)
030801.

[5] D.C. Hill, A theoretical approach for analyzing the restabilization of wakes,
AIAA Paper 92-0067, and NASA Tech. Mem. 103858, 1992.

[6] F. Giannetti, P. Luchini, Structural sensitivity of the first instability of the
cylinder wake, J. Fluid Mech. 581 (2007) 167–197.

[7] F. Giannetti, P. Luchini, Receptivity of the circular cylinders first instability, in:
5th Eur. Fluid Mech. Conf., Toulouse, 2003.

[8] P. Luchini, F. Giannetti, J.O. Pralits, Structural sensitivity of linear and nonlinear
global modes, AIAA Paper 2008-4227, 2008.

[9] O. Marquet, D. Sipp, L. Jacquin, J.-M. Chomaz, Multiple Time Scale Analysis and
Sensitivity Analysis for the Passive Control of the Cylinder Flow, AIAA, 2008,
pp. 2008–4228.

[10] O. Marquet, D. Sipp, L. Jacquin, Sensitivity analysis and passive control of
cylinder flow, J. Fluid Mech. 615 (2008) 221–252.

[11] O. Marquet, M. Lombardi, J-M. Chomaz, D. Sipp, L. Jacquin, Direct and adjoint
global modes of a recirculation bubble: lift-up and convective nonnormalities,
J. Fluid Mech. 622 (2009) 1–21.

[12] P.Meliga, J-M. Chomaz, D. Sipp, Unsteadiness in thewake of disks and spheres:
Instability, receptivity and control using direct and adjoint global stability
analyses, J. Fluids Struct. 25 (2009) 601–616.

[13] P. Meliga, D. Sipp, J-M. Chomaz, Open-loop control of compressible afterbody
flows using adjoint methods, Phys. Fluids 22 (2010) 054109.

[14] A. Barbagallo, G. Dergham, D. Sipp, P. Schmid, J.-C. Robinet, Closed-loop control
of unsteadiness over a rounded backward-facing step, J. Fluid Mech. 703
(2012) 326–362.

[15] L. Marino, P. Luchini, Adjoint analysis of the flow over a forward-facing step,
Theor. Comput. Fluid Dyn. 23 (2009) 37–54.

[16] O. Tammisola, F. Lundell, P. Schlatter, A. Wehrfritz, L.D. Söderberg, Global
linear and nonlinear stability of viscous confined plane wakes with co-flow,
J. Fluid Mech. 675 (2011) 397–434.

http://refhub.elsevier.com/S0997-7546(14)00098-3/sbref1
http://refhub.elsevier.com/S0997-7546(14)00098-3/sbref2
http://refhub.elsevier.com/S0997-7546(14)00098-3/sbref3
http://refhub.elsevier.com/S0997-7546(14)00098-3/sbref4
http://refhub.elsevier.com/S0997-7546(14)00098-3/sbref6
http://refhub.elsevier.com/S0997-7546(14)00098-3/sbref9
http://refhub.elsevier.com/S0997-7546(14)00098-3/sbref10
http://refhub.elsevier.com/S0997-7546(14)00098-3/sbref11
http://refhub.elsevier.com/S0997-7546(14)00098-3/sbref12
http://refhub.elsevier.com/S0997-7546(14)00098-3/sbref13
http://refhub.elsevier.com/S0997-7546(14)00098-3/sbref14
http://refhub.elsevier.com/S0997-7546(14)00098-3/sbref15
http://refhub.elsevier.com/S0997-7546(14)00098-3/sbref16


M.P. Juniper, B. Pier / European Journal of Mechanics B/Fluids 49 (2015) 426–437 437
[17] O. Tammisola, Oscillatory sensitivity patterns for global modes in wakes,
J. Fluid Mech. 701 (2012) 251–277.

[18] P. Meliga, F. Gallaire, J-M. Chomaz, A weakly nonlinear mechanism for mode
selection in swirling jets, J. Fluid Mech. (2012) http://dx.doi.org/10.1017/jfm.
2012.93.

[19] P. Huerre, P.A.Monkewitz, Local and global instabilities in spatially developing
flows, Annu. Rev. Fluid Mech. 22 (1990) 473–537.

[20] P.A. Monkewitz, P. Huerre, J-M. Chomaz, Global linear stability analysis of
weakly non-parallel shear flows, J. Fluid Mech. 251 (1993) 1–20.

[21] B. Pier, Local and global instabilities in the wake of a sphere, J. Fluid Mech. 603
(2008) 39–61.

[22] K. Oberleithner, M. Sieber, C.N. Nayeri, C.O. Paschereit, C. Petz, H.-C. Hege, B.R.
Noack, Three-dimensional coherent structures in a swirling jet undergoing
vortex breakdown: stability analysis and empirical mode construction, J. Fluid
Mech. 679 (2011) 383–414.

[23] M.P. Juniper, Absolute and convective instability in gas turbine fuel injectors,
ASME Turbo Expo. June 2012, Copenhagen, Denmark, GT2012-68253, 2012.
[24] D.C. Hill, Adjoint systems and their role in the receptivity problem for
boundary layers, J. Fluid Mech. 292 (1995) 183–284.

[25] C.M. Bender, S.A. Orszag, Advanced Mathematical Methods for Scientists and
Engineers: Asymptotic Methods and Perturbation Theory, Springer, 1978.

[26] B. Pier, Signalling problem in absolutely unstable systems, Theor. Comput.
Fluid Dyn. 25 (2011) 7–17.

[27] L.D. Landau, E.M. Lifshitz, Physical Kinetics, Butterworth-Heinenann, 1981.
[28] M.P. Juniper, O.L. Tammisola, F. Lundell, The local and global stability of

confined planar wakes at intermediate Reynolds number, J. Fluid Mech. 686
(2011) 218–238.

[29] T. Herbert, Parabolized stability equations, Annu. Rev. Fluid Mech. 29 (1997)
245–283.

[30] B. Pier, On the frequency selection of finite-amplitude vortex shedding in the
cylinder wake, J. Fluid Mech. 458 (2002) 407–417.

[31] U. Qadri, D. Mistry, M.P. Juniper, Structural sensitivity of spiral vortex
breakdown, J. Fluid Mech. 720 (2013) 558–581.

http://refhub.elsevier.com/S0997-7546(14)00098-3/sbref17
http://dx.doi.org/10.1017/jfm.2012.93
http://dx.doi.org/10.1017/jfm.2012.93
http://dx.doi.org/10.1017/jfm.2012.93
http://dx.doi.org/10.1017/jfm.2012.93
http://dx.doi.org/10.1017/jfm.2012.93
http://dx.doi.org/10.1017/jfm.2012.93
http://dx.doi.org/10.1017/jfm.2012.93
http://dx.doi.org/10.1017/jfm.2012.93
http://dx.doi.org/10.1017/jfm.2012.93
http://refhub.elsevier.com/S0997-7546(14)00098-3/sbref19
http://refhub.elsevier.com/S0997-7546(14)00098-3/sbref20
http://refhub.elsevier.com/S0997-7546(14)00098-3/sbref21
http://refhub.elsevier.com/S0997-7546(14)00098-3/sbref22
http://refhub.elsevier.com/S0997-7546(14)00098-3/sbref24
http://refhub.elsevier.com/S0997-7546(14)00098-3/sbref25
http://refhub.elsevier.com/S0997-7546(14)00098-3/sbref26
http://refhub.elsevier.com/S0997-7546(14)00098-3/sbref27
http://refhub.elsevier.com/S0997-7546(14)00098-3/sbref28
http://refhub.elsevier.com/S0997-7546(14)00098-3/sbref29
http://refhub.elsevier.com/S0997-7546(14)00098-3/sbref30
http://refhub.elsevier.com/S0997-7546(14)00098-3/sbref31

	The structural sensitivity of open shear flows calculated with a local stability analysis
	Introduction
	General form of the direct and adjoint equations
	Structural sensitivity

	Local analysis of the direct and adjoint Ginzburg--Landau equations
	Local dispersion relation of the direct G--L equation
	Calculation of the adjoint of the G--L equation
	Local dispersion relation of the adjoint problem
	Adjoint of a generic polynomial PDE
	Global mode of the direct G--L equation with a local analysis
	Global mode of the adjoint G--L equation with a local analysis
	Calculating the structural sensitivity of the G--L equation with a local analysis

	Local analysis of the direct and adjoint Linearized Navier--Stokes equations
	Demonstrations
	Slowly-developing confined wake flow
	The flow behind a cylinder at  Re = 5 0 

	Conclusions
	Acknowledgements
	References


