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This paper concerns steady, high-Reynolds-number
flow around a semi-infinite, rotating cylinder placed
in an axial stream and uses boundary-layer type of
equations which apply even when the boundary-layer
thickness is comparable to the cylinder radius, as
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large streamwise distances is obtained as an expansion
in inverse powers of the logarithm of the distance.
It is found that the asymptotic radial and axial
velocity components are the same as for a non-rotating
cylinder, to all orders in this expansion.

1. Introduction

When a semi-infinite rotating cylindrical body is
placed in a high-Reynolds-number axial flow (figure 1),
an axisymmetric boundary layer develops along the
cylinder. Initially thin, this layer becomes of thickness
comparable with, then larger than the cylinder radius at
sufficiently large axial distances. Our original motivation
for studying this flow was to undertake a stability
analysis. However, it soon became clear that there
are very few existing studies of the underlying flow,
despite its interesting features, e.g. the appearance of
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Figure 1. Schematic diagram of the problem.

an axial wall jet beyond a certain threshold value of the rotation rate. The presence of curvature
and rotation means that the classical Prandtl equations need to be generalized to allow for
these effects. In particular, rotation leads to a centrifugal term which couples all three velocity
components. This results in significant qualitative changes in the flow structure, e.g. the wall jet,
compared with Blasius flow on a flat plate.

The non-rotating version of this problem was studied analytically by Seban & Bond [1] using
a series solution in powers of z1/2 where z is the axial coordinate, non-dimensionalized using
the cylinder radius. This series solution was limited to order 3, and thus only applicable close
to the inlet. Kelly [2] showed that the series solution for the displacement thickness provided
by Seban & Bond [1] was erroneous, and obtained the correct result. Glauert & Lighthill [3]
extended this work to obtain a solution at all z using the Pohlhausen approximation. At large
z, Glauert & Lighthill [3] also showed that the velocity profile had an asymptotic expansion in
inverse powers of log(z). Jaffe & Okamura [4] were the first to solve the boundary-layer equations
for this problem numerically, thus covering the entire range of z, from small to large values.
Boundary-layer velocity profiles have also been numerically determined by Tutty et al. [5] and
Vinod & Govindarajan [6] in the context of stability analysis.

Petrov [7] appears to be the first to have studied the rotating case. Axial velocity profiles
were obtained in the limit of small z and show the existence of a wall jet for sufficiently strong
rotation, though this interesting feature was not explained in the paper. Motivated as we were by
stability analysis of the flow, Kao & Chow [8] and Herrada ef al. [9] solved the present problem
numerically. However, both papers limit themselves to a range of rotation rates insufficiently
large to produce a wall jet. Furthermore, the centrifugal term is missing in the boundary-layer
equations of Kao & Chow [8], and so they are incapable of yielding a wall jet even at large
rotation rates.

In §2, we define the two non-dimensional control parameters of the problem, Re and S, the
Reynolds number and non-dimensional rotation rate. The boundary-layer equations, valid for
large Re, and allowing for boundary-layer thickness to be comparable with the cylinder radius are
given. These equations generalize the Prandtl equations and apply for arbitrary (not necessarily
small) ratios of boundary-layer thickness to cylinder radius. Suitable rescaling of the variables
renders the problem independent of Re, leaving only S as control parameter. Section 3 describes
the numerical scheme and its verification, while §4 gives results and discussion, in particular
focusing on the wall jet. Finally, §5 gives asymptotic analyses of the limits of large Z =z/Re and
large S. The boundary layer on the nose is discussed in the appendices. It is found that the precise
shape of the nose is unimportant: the input to the boundary-layer equations of §2 being the Blasius
flat-plate flow (generalized to include the azimuthal component due to rotation), independent of
the nose shape.

2. Boundary-layer equations

A semi-infinite cylinder of radius a rotates about its axis with angular velocity §2 and is placed in
an axial stream of incompressible fluid of velocity U and viscosity v (figure 1). Assuming large
Reynolds number, an initially thin boundary layer develops along the cylinder. If the cylinder
were sharply truncated at the nose, flow separation would occur as is usually the case at a salient
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edge [10]. To avoid this scenario, we assume that there is a smooth nose, as shown in figure 1.
Another way to avoid flow separation would be to consider a thin hollow cylinder. The boundary-
layer equations formulated in this section hold good for both these cases. A detailed analysis of
the nose region is given in appendix B.

The natural length and velocity scales are a and Us. These scales are used to non-
dimensionalize the axisymmetric, steady Navier-Stokes equations in cylindrical coordinates,
z,1,0. There are two non-dimensional parameters, namely the Reynolds number

Re= U= @.1)
v
and the rotation rate
2a
S=—. 2.2
0 22)

Assuming a large Reynolds number, the length scale for axial variation of the flow is much
longer than that for radial variation. This separation of scales leads to the boundary-layer
approximation. Thus,

ouy ouy ap 1 (0%u, 10u,
e IV S il 23
tz 9z + or 9z  Re \ or2 r or 23)
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Uy _op (2.4)
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d 1 oru,
and Mz 2 (2.6)
0z r or

are obtained by dropping terms of higher order from the Navier-Stokes equations in the usual
manner. Note that we have not assumed the boundary layer to be thin compared with the radius.
The boundary conditions are

u, =0, u,=0, up=S z>0, r=1 (2.7)

and

u;—~1, ug—0, p—0 z>0, r— oo. (2.8)

The above equations contain the azimuthal component, uy, of the velocity. This is due to
rotation of the cylinder, which induces the centrifugal term on the left-hand side of equation (2.4),
leading to a significant radial pressure gradient. Such an effect is not present in classical
boundary-layer theory, which predicts near constancy of the pressure across the layer. Compared
to the Prandtl equations of a classical boundary layer, equations (2.3)—(2.6) allow for the additional
effects of both rotation and curvature. Near the nose the boundary layer is thin compared with
the cylinder radius and curvature effects are negligible. But at large z, boundary-thickening
eventually makes the thickness comparable to, then larger compared with the radius, and the
full set of equations is required.

The above problem needs to be completed by inlet conditions. At distances from the nose of
O(a), the boundary layer is thin compared with the radius and is described by the axisymmetric
Prandtl equations given in appendix B. On the cylinder (after leaving the nose), these equations
become the flat-plate Prandtl equations, and as z increases, we expect the flow to forget the
precise initial conditions and to approach the Blasius solution, independent of the nose shape
(here, we implicitly suppose the nose length to be of the same order as its diameter). There are, in
fact, two asymptotic regions, z = O(1), where the equations of appendix B apply, and z = O(Re),
where the boundary-layer thickness is comparable to the cylinder radius and equations (2.3)—(2.8)
hold. Matching between these regions requires that the inlet condition be the Blasius solution
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(generalized to include the azimuthal component due to rotation). The same is true for the case
of the hollow cylinder. In either case, equations (2.3)—(2.8) are supplemented by Blasius initial
conditions as z — 0.

Introducing the scaled variables

R=r, Z=-—, (2.9)

and
U,=u;, U,=Ru,Re, Uy=Ruy, P=R?p, (2.10)
equations (2.3)-(2.8) become

ou, U, aU, 1 9P 3*U, 10U,

- iy 2.11
Yo7 YRR3R~ Raz TR TRIR (2.11)
aP
2
—R— _2p, 2.12
Uy IR (2.12)
aly U, aly 02Uy 19Uy
37 YRR ~9r2 R R’ (2.13)
a, 19U,
~ 2y, 2.14
3Z ' R AR (2.14)
U,=U,=0, Uyj=S R=1 (2.15)
and U,—1, Up=0, P=0 R— oo. (2.16)

It is apparent that, using these scalings, Re has disappeared from the problem, leaving S as
the only non-dimensional parameter. This result indicates, among other things, that the natural
scaling of the axial coordinate is z= O(Re). Thus, as noted earlier, the distance needed for the
boundary-layer thickness to become comparable with the radius is Re times the radius. The factors
of R appearing in equation (2.10) have been introduced to improve numerical convergence.

3. Numerical scheme and validation

The boundary-layer thickness goes to zero like ZV2 and U, » oo like Z71/2 as Z=0 is
approached. To maintain numerical accuracy in the presence of such singular behaviour, we
introduce the variables

R-1
= (ZZ)l/zr o= .’ Vi=¢U,, V:=U; Vg=Uy. (3.1)

Here, the boundary-layer thickness is prevented from going to zero in the radial coordinate o by
dividing R — 1 by ¢. V, is kept finite by use of the factor ¢, and ¢ is used in place of Z to make the
solution a smooth function of the axial coordinate. Using these variables in the boundary-layer
equations (2.11)—(2.16) results in

;vfavf +<VVR_C _”VZ> %=%<"g_§%>+ aazczz’ 62
%(vg +2P) = % (3.3)
and C% -0 % % aazr =0, (3.5)

with the boundary conditions
V,=V,=0, Vg=5 o=0 (3.6)

and
V.—>1, Ve=0, P=0 o— oo. (3.7)
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Figure 2. Comparison of U, for $ = 0 at two values of Z with [5] and comparison of skin friction t for S = 1with [9].

These equations govern the axial evolution of the flow. The inlet condition (Blasius solution) is
obtained by setting ¢ = 0 and solving the resulting equations.
The radial coordinate o is discretized using Chebyshev collocation points:

nmw
Xp = COS <m) 0<n<N (3.8)

and )
_o(1+xp)

op =

, xe[-1,1]— o €]0, 00]. (3.9)
1—x,
The parameter 6 controls the distribution of points such that half of them lie between 0 <o <¢.
The velocities V; and Vj are represented by their values at all collocation points. However, since
there is no boundary condition for the pressure at the surface, it is represented at all points except
o =0. Similarly, there is no boundary condition for V, at 0 = oo and so it is represented at all
points apart from o = co. The Chebyshev derivative matrices for P and V, are correspondingly
modified (e.g. appendix A in [11]).

The coordinate ¢ is discretized using small, equally spaced steps, ¢; =iA, and the variables
V2, V;, Vg, P are represented by their values at ¢;. Equations (3.2), (3.4) and (3.5) are evaluated at
mid-step, ;4 1,2, using an implicit scheme that employs centred finite differencing to represent the
¢-derivatives. Equation (3.3) is evaluated at the step position ¢;, rather than at the midstep. At each
step, the equations are solved using Newton-Raphson iteration, thus allowing forward marching.
The inlet solution is obtained from equations (3.2)—(3.7) using ¢ = 0. Following discretization in o
using the collocation points, the result is again obtained by Newton—-Raphson iteration.

The code was first tested by changing the numerical parameters N, &, A, and observing the
dependence of the solution on these parameters. Based on the convergence results, we decided to
use N =128, 6 =5, A =0.001 in our computations. These values gave convergence to better than
seven decimal places. The code was also tested using the volume-flux and momentum balance
equations. The results respect these equations to seven decimal places. Although use of the Blasius
solution at the inlet has earlier been justified by an asymptotic argument, it is interesting to see
the effect of a change in inlet profile on the solution. Thus, we modified the inlet profile to be
Uy = U, + Ao exp(—0.50), where U, is the Blasius profile. Taking A =2, it was found that the
change in U, at Z =2 was in the sixth decimal place. This illustrates the fact that the flow forgets
the initial condition as Z increases and becomes insensitive to the precise inlet profile used.

We also validated the code by comparing our results with the existing literature. Tutty et al. [5]
studied the case without rotation. The axial (x;) and radial (o;) coordinates used by Tutty et al. [5]
are related to those used here via x¢/Re = Z and ot = +/20. Figure 2 shows good agreement with
our results for Re=10%, x; =0.01 and x; = 10°. Herrada et al. [9] considered the problem of the
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Figure 3. Velocity profiles V; (o), Vo (o) and V, (o) for different axial positions Z at S = 0.1.

rotating cylinder. They do not give velocity profiles, but rather the skin friction on the cylinder:

L UL (Z)
~ 4R

_ 1aVz(9)
rR=1 ¢ 0o

. (3.10)
o=0

Figure 2 shows 7 as a function of Z for S =1 and good agreement is apparent.

4, Results

Flow profiles were obtained for different values of S and Z. Figure 3 shows velocity profiles for
S=0.1 and different values of Z. For Z=0, V(o) corresponds to the Blasius flat-plate solution.
As Z increases, V(o) deviates from the Blasius profile due to cylinder curvature and rotation.
It should be borne in mind that the boundary-layer thickness increases with Z, although this is
not apparent in the figure because the scaled radial coordinate o = (R — 1)/¢ has been used. Note
that the azimuthal velocity at Z=01is V(o) = S(1 — V(0)). As Z increases, small departures from
this profile arise. Figures 4 and 5 show results for Z=0.5 and different values of S. When S <1,
V(o) is a modified Blasius profile. However, for S > 4, V,(o) is no longer monotonic having a
maximum at finite 0. At large S, the maximum is large and the profile is better described as an
axial wall jet, rather than a boundary layer. At first sight, it is perhaps surprising that increasing
the rotation rate leads to a stronger and stronger axial flow. Increasing S causes Vj to increase
(figure 4). This in turn produces an increasing radial pressure gradient due to the centrifugal force.
Since the pressure is constant outside the boundary layer, the pressure within the layer drops
(figure 5) with Z. The development of the flow means that the axial pressure gradient becomes
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Figure 5. Pressure profile P(o') at Z = 0.5 for different values of S.

larger and larger, thus driving a strong axial wall jet. Whereas for lower values of S, boundary-
layer thickening leads to positive V,, at large S entrainment by the wall jet gives negative V,
outside the layer (figure 4).
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Figure 6. Comparison of U™ as a function of Z'/% obtained by the present study with [7] for the case of S = 5and § = 10.
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Figure 7. Greyscale plot of U™ alongside a contour plot of U)™. The figure also shows the boundary (solid line) between
UM =1and U7™ > 1.

The existence of a wall jet at large S is apparent in the axial velocity profiles given by Petrov [7].
However, that article only gives such profiles for the case of small Z (thin boundary layer) and no
explanation is provided. Petrov [7] also gives the maximum axial velocity U"™ = maxg (U;(R)) as
a function of Z. Figure 6 shows a comparison with our results. A small difference is apparent, the
origin of which is unclear.

Figure 7 shows contours of constant U"®* in the (S, ¢)-plane as well as the boundary (solid
line) separating the region in which U"®™ =1 from that in which U"®* > 1 (which we interpret
as indicating a wall jet). It will be seen that there is a threshold, S =4.15, below which U**™ =1.
Above this value, the wall jet exists for some range of axial position. Note that, whatever the
strength of rotation, the wall jet eventually disappears sufficiently far downstream.

The thickness of the boundary layer/wall jet can be measured using

1

= max
uz

o0
5 J |1 — U.|dR. 4.1)
1
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Figure 8. Boundary-layer/wall-jet thickness & versus Z for different values of .

The absolute value is taken to make the integral always positive and the division by U"®* allows
for the strong wall jets which arise at large S. Figure 8 shows §(Z) for different values of S.
The layer thickness is seen to increase with Z in a roughly parabolic manner (recall that the
thickness behaves as Z!/? for small Z). Thickening of the layer is due to viscous diffusion in
the usual manner. Increasing S causes the layer to become thinner. At large S, the wall jet is of
increasing strength. Viscous diffusion competes with axial convection, the latter being of growing
importance, hence the decrease of § with increasing S.

5. Asymptotic analysis
(a) Large-Z asymptotics

Suitable coordinates are

- ? X =In(©). (5.1)

Here, we have followed Glauert & Lighthill [3], who used a logarithmic axial coordinate for the
non-rotating cylinder problem. This coordinate reflects slower and slower evolution of the flow in
the streamwise direction as Z increases. Using these coordinates, equations (2.11)—(2.16) become

ol ou U, au, e2x/ aP oP 92U, 1aU
uz< = Z>+—’ Z=—2<n———> > +-—, (5.2)
ax an n an n an  dx an n on
aP
U2 +2P=n—, (5.3)
an
ou ou U, ol, 02U, 109U
u (—"—n—@)+—r—"= b 19to (5.4)
ax an n an an n an
all, AU, 14U,
-7 4+ = =0, (5.5)
X an  n Iy
U,=U,=0, Uy=S n=e* (5.6)

and u,—-1, Uy—>0, P—->0 n—oo. (5.7)
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Figure 9. Comparison of x (U, — 1) and ug = U, /R for different values of Z at § = 0.1 with the Z — oo solution.

It is shown in appendix A that Uz, Uy, Uy and P have asymptotic expansions in powers of x 1.
The factor of e~2X in equation (5.2) is exponentially small and is hence negligible at all algebraic
orders. Without the corresponding term in equation (5.2), U, and U, decouple from Uy and P,
though the latter depends on the former. Thus, we expect such decoupling to hold at all orders.
This is indeed what is found in appendix A, where the governing equations for the coefficients
of the expansions in powers of x ! are obtained for all orders. Given decoupling, rotation
does not enter into the asymptotics of U, and U,, which are consequently the same as for the
non-rotating case.

Glauert & Lighthill [3] studied the case without rotation and obtained the expansions of U, and
U,. Appendix A extends the analysis to include rotation and gives detailed results up to order 5.
At first order, the asymptotic solution can be obtained analytically and is given by

(™ 6—52/2
n
Uy~ x~1(1—e/?), (5.9)
Uy ~ Se~"'/2 (5.10)
g2
and P [T g 5.11
n P §. (5.11)
n

In figure 9, the results for U, show convergence to the asymptotic form (5.8), while those for
ug = Uy /R converge to 1y ~ S/R, which is the flow due to a rotating cylinder, infinite in both axial
directions (rather than semi-infinite) and without axial flow.

(b) Large-S asymptotics

As we saw in the previous section, the numerical results show the existence of a wall jet at large S.
In this limit, appropriate scaled variables are

Z
7% = 5 R*=R (5.12)
and
u. Uy P
U;=?Z/ u;kzurr U§= S’ P*zﬁ- (5.13)

The scaling of Z reflects the increasing distance required for flow development as the rotation
rate increases. The scaling of U, and Uy indicates the strengthening flow velocity as S increases.
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Figure 10. Comparison of U; and Uy for different values of S and Z* = 0.1with the § — oo asymptotic solution.
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Figure 1. u,/S = U} and uy /S at different values of 7* for a rotating cylinder in the limit § — oo.

The large-S asymptotic expansions of Uz, Uj, U and P* proceed as powers of S~1. At leading

order (S9), we find

o S e

uz2 =R* gg * —2P*, (5.15)

2 E S L

and 2;% % ({;g{ =0, (5.17)
with the following inlet and boundary conditions:

u;=0, U;=0 Z*=0, (5.18)

u;=0, Uf=0, U;=1 R*=1 (5.19)

and u;=0, U;=0, P*=0 R*—ooc. (5.20)

Figure 10 shows the solution of the above problem (solid line) compared with the numerical
results discussed before for Z* = 0.1 and different values of S. It is apparent that the asymptotics
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are indeed approached as S — oo. Figure 11 shows the leading-order asymptotic solution for
different values of Z*. We see that the large-Z limit (uy ~ SR71)is approached by ug as Z* — oo.
Note that the limit S — oo can be reached in two ways: either by increasing the rotation rate, or
by decreasing the velocity Ux to zero. Note also that u,/S and ug/S are the velocity components
non-dimensionalized by §2a, rather than Uy, and that Z* =z/Reg, where Rep = Qa%/v is the
Reynolds number based on the rotational velocity §2a. Thus, figure 11 can be interpreted as
showing the flow due to a rotating, semi-infinite cylinder in a still fluid (Ux = 0). It can be shown
that the separation of radial and axial length scales, which underlies the boundary-layer type
approximation we have used, is valid if either of the Reynolds numbers, Re or Reg, is large.

6. Conclusion

In this paper, we have presented a study of the flow around a rotating cylinder in an axial stream.
We have assumed a smooth nose to avoid flow separation. The two non-dimensional control
parameters of the problem are: Reynolds number (Re) and rotation rate (S). The flow equations are
formulated using a boundary-layer type approximation, appropriate at large Reynolds numbers
and in which the flow is assumed to evolve slowly in the streamwise direction in comparison to
the radial direction. The resulting equations are not limited to the case in which the boundary
layer is thin compared with the cylinder radius. By using appropriate scalings, we remove Re
from the problem.

The results show that the boundary-layer thickness increases with axial distance, becoming
comparable with the cylinder radius a at distances of O(Rea). Prior to this, the layer is thin
compared with the radius and the flow is close to the Blasius profile of a flat plate. However, it
differs from the Blasius solution due to the effects of curvature and rotation at larger downstream
distances. As S increases, the centrifugal force creates an increasing radial pressure gradient,
which combined with axial development, implies an increasing axial gradient of pressure. Above
S =4.15, the maximum velocity exceeds the free-stream velocity for a range of Z and we say that
a wall jet exists. This jet becomes stronger and stronger as S — oo.

In the limit of large Z, we find that the axial and radial components of velocity decouple from
the azimuthal velocity component and pressure. All these quantities are found to have asymptotic
expansions in inverse powers of In(Z), a result already obtained for the non-rotating case by
Glauert & Lighthill [3], and here extended to include rotation. The leading-order term in the
ug expansion is ug ~ SR™1, which is the flow expected for a rotating cylinder, infinite in both
directions. Because Up becomes independent of Z, the same is true of the pressure field resulting
from the centrifugal force, hence the absence of an axial pressure gradient to drive the axial/radial
flow. This is the reason for the decoupling.

When S is large, we introduce appropriate scalings for Z, U, Uy and P. The asymptotic
expansions of the scaled velocity and pressure proceed as inverse powers of S, beginning with S°.
The leading-order term describes an axial wall jet due to a rotating cylinder in a fluid at rest.
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Appendix A. Large Z asymptotic expansions

The flow variables are expressed as asymptotic expansions in inverse powers of x:

o0
U~1+ > x"u ), (A1)

n=1
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o0
U~ x"u ), (A2)

n=1
o0
Us ~S Y x ") (A3)
n=1
o0
and P~S2Y "y PG (A4)
n=1

Introducing these expansions into equations (5.2)—(5.5) gives

(n) (1)
1d ( duj du; ()
n dn ( dn ) dn : 9
d (p™
3 4 A () A
7 dn ( n? ) v (R
(n) ()
d (1dUy duy )
~— |z +n—2 = A7
ndn (n dn ) 7 dn % (A7)
(1) (n)
1
and LA AT, a8)
n dn dn
where
(m) (n—m)
_ u du n—
=@ —mu P 43— - put”) S mu™u ) (A9)
m n dn
(m) qut=m
¢g4) - n)uén—l) n Z u— nugm) =0 _(m- 1)u§,m)u,§_”_m_l) (A10)
m n dn
and ¢ =-nulY, YO =3 uug . (A1)
m

Equations (A 5)-(A 8) are to be solved, along with appropriate boundary conditions (which will
be derived shortly), for the nth-order coefficients of the expansions, Uén), Uﬁ"), Ug') and P™
(n = 1). It should be noted that, in equations (A 9)—(A 11), ug’”), uS’”) and Uém) are to be interpreted
as zero when m <0. The governing equations for U§”) and Uﬁn) are independent of Uén) and
P™. Thus, the asymptotics of U§") and Uim are the same as for a non-rotating cylinder and are
governed by equations (A 5), (A 8), (A 9) and the first of the equations (A 11). Ug”) is determined
by equations (A7) and (A 10), while P follows from equation (A 6) and the second of the
equations (A 11). Note that ([)é"), ﬁ”) and ¢én) depend only on the solution at lower orders than 1,
suggesting a method which proceeds from n =1 to successively higher values of 7.
The boundary conditions at 7 — oo are

ul =u =p» =, (A12)
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Application of the boundary conditions (2.15) at the cylinder surface requires the introduction
of an inner region, R = O(1), represented by the expansions

o0
Uz~ Y x "0 ®), (A13)
n=1
o0
U~ x "I R), (A 14)
n=1
o0
Up~S Y x U (R) (A 15)
n=1
o0
and P~S2Y " ) MHPI(R). (A 16)
n=1

Equations (2.11), (2.13) and (2.14) are rewritten using the axial coordinate x in place of Z. Equation
(2.14) yields

o™
aR

=0, (A17)

which, together with the boundary conditions (2.15) gives l:lﬁ") =0. Equations (2.11) and (2.13)
imply
220" 190

_ Al
oRZ TR oR (A18)
and
20" 100
oRZ R R "V (A19)
hence
U"(R)=A, InR + By, (A 20)
and
1"(R) = C,R? + D A21
Uy’ (R) = CyR* 4 Dy (A21)

The boundary conditions (2.15) imply B, =0,C; + D1 =1,and C, + D;,; =0 for n > 1.
Recalling that R = {n = eXn, the inner expansions give

o0
U, ~A; + Z Xﬁn(An Inn + Ant1), (A22)
n=1
o0
Ug~S (1 + ) Cax (e - 1)) (A 23)
n=1
and u,~0, (A24)

when expressed in terms of the outer coordinate, . Matching requires A1 =1, C;; =0 and

U™ ~ Ay Ing + Apsa, (A 25)
llél) —1 and Uén) —0for n>1 (A 26)
and
u™ o, (A27)
as n — 0. It follows from (A 25) that
A, (A28)
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Figure 12. First five coefficients of the large-Z asymptotic expansions of U, Uy and U,.

and

Aps1 = lim W™ — A,lny). (A 29)
7]—)

Assuming A, is known, equations (A 5)-(A11) and the boundary conditions (A 12) and
(A 26)—(A 28) can be solved for Ug"), Uﬁ"), Ugl) and PM™. Ay =1 gets the process started and
leads to the leading-order outer solution, (5.8)—(5.11), in agreement with [3]. Equation (A 29)

gives A, at the next order, allowing solution at successively higher orders. It can be
shown that

UL = Ay I + Aysr + 002 ), USY =1—g,+00R), U =0@*nPn),  (A30)

asn — 0, where g, =py+1 — 1, p1 =0, p2 =1 and p,, = 2 for n > 3. The terms in (A 30) indicated by
the O() notation are exponentially small in the inner region, while the remaining ones reproduce
the inner solution. Thus, the outer expansions in fact apply in the inner region.

The above procedure has been implemented numerically and results up to n =5 are presented
in figure 12. Figure 13 shows the comparison of numerical solution of U, at Z=5000 and S =1
with the asymptotic solution obtained by truncating at different orders n. Although this result
shows good convergence, and therefore further confirms both numerical and analytical results, it
should be borne in mind that the expansions (A 1)—(A 4) are, in fact, asymptotic as Z — oo, rather
than necessarily convergent at any finite Z.
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Figure 13. Comparison of the numerical solution of U, with the large-Z asymptotic solution truncated at different orders for
Z=15000atSs =1.

Appendix B. Flow over the nose

Large Reynolds number implies a thin boundary layer over the nose. Schlichting [12] gives
the axisymmetric boundary-layer equations in terms of curvilinear coordinates, x,y,60, where
x is distance along the surface, and y is distance normal to the surface. Here, we use the
non-dimensional coordinates, velocity components and pressure:

R1/2
j=—-, =7 (B1)
a a
and 12
Re'/“u u u

~ v ~ X ~ 6 ~

Uy = , Uy = , ug = —, =Pp. B2

y Un x Un 0 Un p=p (B2)

The boundary-layer equations in these variables are

_ 3y _ iy #2dR ap 9%y
= e T = 3= T T = <5 7 B3
hgr T 9y R dx ax t 932 ®3)

_ 0llg . Otlg  Ugliy dR 32ﬁ9
Uy——= +

770 = B4
LB TW T TR - B4
9%
o
ay
dily iy dR 0Ly
d = = = — =Y, B
an 85C+Rdx+8y 0 (B5)
with the boundary conditions
ily=iy=0, ilg=SRE) §=0 (B6)
and
ity > Uext(X), 1ig >0 7— o0, (B7)

where the nose geometry is represented by r = R(¥) and Uex(¥) is the velocity just outside the
boundary layer. Equations (B 3)-(B5) can, in principle, be solved to obtain the flow over the nose.
Note the centrifugal term in equation (B 3), which will no doubt produce a wall jet on the nose at
sufficiently large S. The terms containing dR/dx vanish on the constant-radius cylinder (where ¥
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and z coincide to within an additive constant) and equations (B 3)—(B5) then become those of a
flat-plate. Thus, we expect the flow to approach the Blasius solution as X — oco. There are, in fact,
two asymptotic regions, ¥ = O(1) and x = O(Re), the former being described by equations (B 3)-
(B5) and the latter by equations (2.11)—(2.14). Matching of the regions requires the Blasius flow
as inlet conditions to the latter equations, as noted in the main text. Thus, the flow in the region
Z = 0O(1), which is the subject of this paper, is insensitive to the geometry of the nose. Note that a
wall jet may appear on the nose, subsequently disappearing on the cylinder, later reappearing in
the region Z = O(1).
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