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The dynamics of small-amplitude perturbations, as well as the regime of fully
developed nonlinear propagating waves, is investigated for pulsatile channel flows.
The time-periodic base flows are known analytically and completely determined by
the Reynolds number Re (based on the mean flow rate), the Womersley number Wo

(a dimensionless expression of the frequency) and the flow-rate waveform. This paper
considers pulsatile flows with a single oscillating component and hence only three
non-dimensional control parameters are present. Linear stability characteristics are
obtained both by Floquet analyses and by linearized direct numerical simulations.
In particular, the long-term growth or decay rates and the intracyclic modulation
amplitudes are systematically computed. At large frequencies (mainly Wo > 14),
increasing the amplitude of the oscillating component is found to have a stabilizing
effect, while it is destabilizing at lower frequencies; strongest destabilization is found
for Wo ≃ 7. Whether stable or unstable, perturbations may undergo large-amplitude
intracyclic modulations; these intracyclic modulation amplitudes reach huge values
at low pulsation frequencies. For linearly unstable configurations, the resulting
saturated fully developed finite-amplitude solutions are computed by direct numerical
simulations of the complete Navier–Stokes equations. Essentially two types of
nonlinear dynamics have been identified: ‘cruising’ regimes for which nonlinearities
are sustained throughout the entire pulsation cycle and which may be interpreted as
modulated Tollmien–Schlichting waves, and ‘ballistic’ regimes that are propelled into
a nonlinear phase before subsiding again to small amplitudes within every pulsation
cycle. Cruising regimes are found to prevail for weak base-flow pulsation amplitudes,
while ballistic regimes are selected at larger pulsation amplitudes; at larger pulsation
frequencies, however, the ballistic regime may be bypassed due to the stabilizing
effect of the base-flow pulsating component. By investigating extended regions of
a multi-dimensional parameter space and considering both two-dimensional and
three-dimensional perturbations, the linear and nonlinear dynamics are systematically
explored and characterized.
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1. Introduction

Pulsatile flows occur in a variety of engineering applications as well as in the
human body. Over the past fifty years many studies have addressed the linear
dynamics of oscillating flows over a flat plate or through channels or pipes, but
surprisingly few recent investigations have considered pulsatile flows, and the
development of finite-amplitude travelling waves has hardly ever been addressed.
While purely oscillatory flows are governed by a single characteristic time, based
on the oscillation period, pulsatile flows also depend on a second characteristic time
scale, related to the mean flow velocity. Another essential difference is that oscillating
configurations undergo global flow reversal and therefore the absolute value of the
flow speed increases and decreases twice per period, while pulsating flows generally
maintain the same flow direction and display only one phase of increasing flow
speed and one phase of decreasing flow speed in each cycle. Hence, the presence
of a non-vanishing mean-flow component leads to behaviour distinct from purely
oscillating situations. Using the classical channel geometry, the purpose of the present
work is to systematically establish both linear and fully nonlinear flow features
prevailing for fundamental pulsatile-flow configurations.

Among the few known exact solutions of the Navier–Stokes equations (Drazin &
Riley 2006), those which are time periodic and parallel are of particular interest (Davis
1976). The Stokes (1851) layer, i.e. the flow induced in a semi-infinite volume of fluid
by an infinite flat plate harmonically oscillating in its own plane, has served as the
archetypal configuration for the study of time-periodic flows near a solid boundary.
Similar velocity profiles prevail if the fluid is in contact with a fixed plate and is
brought into motion by an oscillating pressure gradient parallel to the plate. If the
flow is confined between two parallel plates, the exact base-flow profiles are still
obtained in terms of exponential functions, while periodic flows through a circular
pipe are known as Womersley (1955) solutions and may be expanded in terms of
Bessel functions.

All these time-periodic flows develop an oscillating boundary layer of characteristic
thickness

δ =
√

ν/Ω, (1.1)

where ν is the kinematic viscosity of the fluid and Ω the pulsation frequency. For
channels or pipes, the time-periodic flow profiles significantly depend on the ratio
of the diameter to the oscillating-boundary-layer thickness, known as the Womersley
number Wo. Thus, for large values of Wo, confinement or curvature effects are
expected to be negligible and the dynamics similar to that of a semi-infinite Stokes
layer. In contrast, at low values of Wo, pulsatile flows may be seen as slowly
modulated parabolic Poiseuille profiles. In physiological situations (Ku 1997; Pedley
2000), typical Womersley numbers prevailing in the main blood vessels are in the
range 5–15 which is neither small nor very large. Our recent study of flow through
model abdominal aortic aneurysms (Gopalakrishnan, Pier & Biesheuvel 2014a,b has
revealed the need to investigate in detail the dynamics of physiological flow conditions
even for simple parallel geometries. As will be shown in the present paper, it is
precisely in the range 5 < Wo < 20 that pulsatile channel flow undergoes transitions
between different characteristic regimes, both for small-amplitude perturbations as
well as fully developed nonlinear propagating waves.
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1.1. Literature review

Early theoretical and numerical work is mainly focused on the linear stability
of Stokes layers or the equivalent channel and pipe flows. For obvious reasons,
experimental investigations almost exclusively consider the flow through circular
pipes, but are able to address the fully developed dynamics prevailing in unstable
configurations. More recently, the linear stability of a range of time-periodic flows has
been revisited, using the now available numerical methods and facilities. Surprisingly,
apart from a few recent computations of turbulent periodic flows, the nonlinear regime
has not yet attracted much theoretical or numerical attention.

Grosch & Salwen (1968) were among the first to address the linear stability of
time-dependent plane Poiseuille flow, by expanding the disturbance streamfunction on
a small set of basis functions. They found that for weak pressure gradient modulations,
the resulting modulated flow was more stable than the steady flow, while a rather
drastic destabilization was observed at higher velocity modulations.

von Kerczek & Davis (1974) studied the linear stability of oscillatory Stokes layers,
using quasi-static theories and integration of the linearized time-dependent equations.
They were unable to find any unstable modes for the configurations considered. Using
semi-analytic methods, Hall (1978) also found this flow to be stable in the parameter
range investigated.

Yang & Yih (1977) considered axisymmetric perturbations to harmonic oscillating
pipe flow. All configurations for which calculations have been carried out are found to
be stable. Later, Fedele, Hitt & Prabhu (2005) also claimed that axisymmetric modes
in pulsatile pipe flow are stable, while, more recently, Thomas et al. (2011) were able
to obtain unstable axisymmetric modes and to establish critical conditions for this
flow.

In a landmark study of pulsating plane channel flow, von Kerczek (1982) considered
configurations with moderate pulsation amplitudes, mostly near the critical Reynolds
number for steady flow, and computed Floquet exponents by a series expansion, using
a perturbation analysis in the amplitude of the oscillating base velocity. It was found
that the sinusoidally pulsating flow is more stable than the steady plane Poiseuille
flow for a range of frequencies greater than approximately Wo = 12. Lower or much
higher frequencies were found to make the flow unstable, in contrast with the results
of Grosch & Salwen (1968). The perturbation analysis also confirmed the result
obtained by Hall (1975) that the growth rate depends quadratically on small pulsating
amplitudes.

Using numerical simulations, Singer, Ferziger & Reed (1989) found that the effect
of oscillation is generally stabilizing. However, at low frequencies, the perturbation
energy may vary by several orders of magnitude within each cycle. These authors
confirmed the findings by von Kerczek (1982) and suspect that those by Grosch &
Salwen (1968) are underresolved. They were also probably the first to attempt a
nonlinear simulation.

Rozhdestvenskii, Simakin & Stoinov (1989) appear to be the first to implement a
complete Floquet analysis, based on temporal integration of matrices. They were also
able to confirm results by von Kerczek (1982).

Using mainly analytical methods, Cowley (1987) and, more recently, Hall (2003),
suggested that the Stokes layers do not sustain linearly unstable modes in the limit of
very large Reynolds numbers.

In an experimental study, Merkli & Thomann (1975) investigated transition in
oscillating pipe flow and showed that turbulence occurs in the form of periodic bursts
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which are followed by relaminarization in the same cycle and do not necessarily lead
to turbulent flow during the whole cycle.

Using a similar experimental set-up, Hino, Sawamoto & Takasu (1976) identified
three types of regimes: weakly turbulent, conditionally turbulent and fully turbulent.
Decelerating phases are found to promote turbulence while the laminar flow may
recover during accelerating phases.

Adopting a physiological approach, Winter & Nerem (1984) reported similar
experimental observations and noted that fully turbulent flow is only found when a
mean flow is present.

Stettler & Hussain (1986) further investigated the transition occurring in a pulsatile
pipe flow experiment and documented the passage frequency of ‘turbulent plugs’ for
a wide range of control parameters and delineated the conditions when plugs occur
randomly or are phase locked with the pulsation.

Considering oscillatory pipe flow, Akhavan, Kamm & Shapiro (1991a,b) established
experimentally and numerically that turbulence appears explosively towards the end of
the acceleration phase and is sustained throughout the deceleration phase while being
restricted to the wall region. Using a quasi-steady transient growth analysis, it was
suggested that transition may be the result of a secondary instability mechanism.

Straatman et al. (2002) derived, by a linear stability analysis, that pulsating a plane
Poiseuille flow is always destabilizing. However, they seemed to associate stability
with decay throughout the cycle and it is therefore difficult to interpret the marginal
curves shown in that paper.

More recently, in a series of theoretical and numerical papers, Blennerhassett
and Bassom, with Thomas and Davies, have used Floquet analysis and linear
simulation to address the stability of a range of related time-periodic flows due
to an oscillating plate (Blennerhassett & Bassom 2002; Thomas et al. 2010, 2014,
2015), a streamwise oscillating channel (Blennerhassett & Bassom 2006; Thomas et al.
2011) or pipe (Blennerhassett & Bassom 2006; Thomas et al. 2011; Thomas, Bassom
& Blennerhassett 2012) as well as a torsionally oscillating pipe (Blennerhassett &
Bassom 2007; Thomas et al. 2012), thereby resolving some of the inconsistencies of
previous linear stability analyses and establishing, among others, curves of marginal
linear instability for this family of flows. The spatio-temporal impulse response of the
Stokes layer was studied by Thomas et al. (2014), and the fate of some disturbances
when they become nonlinear was also considered.

Luo & Wu (2010) revisited the linear instability of finite Stokes layers, comparing
results obtained by instantaneous instability theory in a quasi-steady approach with
those from Floquet analysis. It was shown that during its amplification phase, a
Floquet mode closely follows the instantaneous unstable mode, and the results by
Blennerhassett & Bassom (2002) were confirmed.

Transition to turbulence has been investigated by direct numerical simulations
of the Stokes boundary layer by Vittori & Verzicco (1998), Costamagna, Vittori
& Blondeaux (2003) and Ozdemir, Hsu & Balachandar (2014). Tuzi & Blondeaux
(2008) have addressed the intermittent turbulent regime observed in a pulsating pipe.
These studies consider flow in wavy walled channels or pipes and it is observed
that turbulence generally appears around flow reversal, and that it displays statistical
properties similar to those prevailing in the steady case.

1.2. Objectives and organization of the paper

By considering the fundamental configuration of pulsatile channel flow, the aim of the
present study is to systematically document the temporal dynamics of small-amplitude
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perturbations and, in unstable situations, to characterize the resulting finite-amplitude
regime of travelling nonlinear modulated waves.

Revisiting the linear regime, using both Floquet analyses and linearized numerical
simulations, we confirm the earlier findings and analyse in full detail three-
dimensional perturbations over large parameter ranges.

The so-far neglected finite-amplitude travelling wave solutions prevailing for linearly
unstable base flows are computed by direct numerical simulations of the complete
Navier–Stokes equations, at prescribed total pulsating flow rates. Again, the purpose
is to identify and analyse the characteristic regimes and to systematically explore a
wide parameter space.

To this end, after introducing the governing equations and the geometry in § 2,
the base flow and non-dimensional parameters are specified in § 3. The different
mathematical approaches used in this work are formulated in § 4, while the associated
numerical solution methods and relevant validation steps are discussed in appendix A.
The main body of the paper consists of the results pertaining to the linear (§ 5)
and nonlinear (§ 6) dynamics. In both cases, we start by discussing the features of
characteristic examples, before progressively taking into account variations of more
parameters in order to explore how the dynamics unfolds over the complete parameter
space. The paper finishes (§ 7) with a summary and some suggestions for future work.

2. Governing equations and geometry

Throughout this study, the fluid flow is described by a vector velocity field u(x, t)
and a scalar pressure field p(x, t) that depend on position x and time t and are
governed by the incompressible Navier–Stokes equations

∂u

∂t
+ (u · ∇)u = ν1u − ∇p + f , (2.1)

0 = ∇ · u, (2.2)

where ν is the kinematic viscosity of the fluid (and the pressure has been redefined
to eliminate the constant fluid density from the equations). In the momentum
equation (2.1), the term f (x, t) represents an externally applied volume force.

The fluid domain is bounded by two fixed parallel plates, along which no-slip
boundary conditions prevail. Using a Cartesian coordinate system, position is given
by x = x0e0 + x1e1 + x2e2, where x0, x1 and x2 (respectively e0, e1 and e2) denote
wall-normal, streamwise and spanwise coordinates (respectively unit vectors), and the
domain corresponds to |x0| < h where 2h is the channel width.

3. Base flow and non-dimensional parameters

A pulsatile base flow, of frequency Ω , is an exact solution of the Navier–Stokes
equations that is temporally periodic and consists of a velocity field purely in the
streamwise direction that only depends on the wall-normal coordinate:

U(x, t) = U1(x0, t)e1 with U1(x0, t) =
∑

n

U
(n)
1 (x0) exp(inΩt). (3.1)

Such a base flow is associated with a spatially uniform and temporally periodic
streamwise pressure gradient of the form −G(t)e1, with

G(t) =
∑

n

G(n) exp(inΩt), (3.2)



440 B. Pier and P. J. Schmid

and corresponds to a temporally periodic flow rate

Q(t) =
∑

n

Q(n) exp(inΩt). (3.3)

In the above expressions, the conditions Q(−n) =[Q(n)]⋆, G(−n) =[G(n)]⋆, and U
(−n)
1 (x0)=

[U(n)
1 (x0)]⋆ ensure that all flow quantities are real (with ⋆ denoting complex conjugate).
Using these expansions in the Navier–Stokes equations shows that the different

harmonics of the base flow are decoupled and yields the linear relationship between
the flow-rate components Q(n) and the velocity components U

(n)
1 (x0) as

U
(n)
1 (x0) = Q(n)

2h
W
(x0

h
,
√

nWo
)

, (3.4)

where the Womersley number Wo is defined as

Wo ≡ h
√

Ω/ν, (3.5)

and the function W determines the profiles of the different velocity components and
is defined as

W(ξ , w) ≡















(

cosh(
√

iξw)

cosh(
√

iw)
− 1

)

/

(

tanh(
√

iw)√
iw

− 1

)

if w 6= 0

3
2(1 − ξ 2) if w = 0,

(3.6)

for |ξ |6 1, using
√

i ≡ (1 + i)/
√

2. These profiles (3.6) are normalized to unit cross-
sectionally averaged velocity.

Furthermore, the pressure and flow-rate components are related as

Q(n)

G(n)
= 2

h3

ν

i

nWo2

(

tanh(
√

inWo)√
inWo

− 1

)

if n 6= 0 and
Q(0)

G(0)
= 2

3

h3

ν
. (3.7a,b)

Hence it is obvious that the pulsatile base flow is entirely determined by its
frequency Ω and the Fourier components Q(n) of the flow rate (or the components
G(n) of the associated pressure gradient).

The mathematical and numerical methods implemented in the present study can
handle flow rates of the form (3.3) with an arbitrary number of Fourier components,
but this would correspond to a tremendously large multi-dimensional parameter space,
impossible to explore exhaustively. Since, the aim here is to systematically analyse the
behaviour of fundamental pulsating-flow configurations, the control-parameter space is
restricted by investigating only base flow rates with a single oscillating component,
i.e. for which Q(n) =0 as |n|>2. Without loss of generality, Q(1) may then be restricted
to real values. As only flows with a non-vanishing mean-flow component Q(0) will be
considered, it is then convenient to write

Q(t) = Q(0)(1 + Q̃ cos Ωt), (3.8)

where the relative amplitude Q̃ of the oscillating flow-rate component is defined as

Q̃ ≡ 2Q(1)/Q(0). (3.9)
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FIGURE 1. Snapshots of typical base-flow profile associated with a flow rate of the form
Q(t)/Q(0) = 1 + Q̃ cos Ωt. In this example, Wo = 10 and Q̃ = 0.6 and ten profiles over one
complete pulsation cycle are shown.

After defining a Reynolds number

Re ≡ Q(0)/ν, (3.10)

based on the mean velocity Q(0)/2h, the channel width 2h and the viscosity ν, the base
flow is entirely specified by three non-dimensional control parameters: the Womersley
number Wo (3.5), the Reynolds number Re (3.10) and the relative amplitude of the
oscillating flow-rate component Q̃ (3.9).

Snapshots of typical base-flow profiles are given in figure 1. Remember that the
oscillating profiles develop a boundary layer near the walls of thickness δ = √

ν/Ω .
The relative thickness of this boundary layer is governed by the Womersley number
since Wo = h/δ. Throughout this paper, reference is often made to acceleration
(respectively deceleration) phases of the base flow, here defined as phases during
which the flow rate Q(t) increases (respectively decreases). Note that since the
boundary layers near the walls are out of phase with the bulk flow, the actual fluid
accelerations or decelerations at different positions in the channel cross-section do
not coincide exactly with such a global definition based on the sign of dQ/dt.

4. Mathematical formulation

In this entire study, the total instantaneous flow fields are separated into basic and
perturbation quantities as

utot(x, t) = U1(x0, t)e1 + u(x, t), (4.1)
ptot(x, t) = −G(t)x1 + p(x, t), (4.2)

whether the perturbation is of small amplitude (for linear stability analyses) or not (for
investigating the fully developed nonlinear dynamics). The momentum and continuity
equations for the perturbation quantities u(x, t)≡ u0(x, t)e0 + u1(x, t)e1 + u2(x, t)e2 and
p(x, t) then read, in dimensional form,

∂u

∂t
+ U1

∂u

∂x1
+ u0

∂U1

∂x0
e1 + (u · ∇)u = ν1u − ∇p + f , (4.3)

0 = ∇ · u. (4.4)

The external volume force f (x, t) is mainly used in nonlinear evolution problems for
maintaining the prescribed total pulsatile flow rate; it will be specified and discussed
below (§ 4.3). Also, the initial perturbation in both linear and nonlinear evolution
problems is triggered by a small-amplitude impulsive f , and it has been checked that
the resulting dynamics does not depend on the details of this initial impulse.
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4.1. Linear temporal evolution problem

When carrying out a linear stability analysis for small-amplitude perturbations, the
quadratic terms (u · ∇)u in the previous equation (4.3) may be neglected. Since the
base flow is homogeneous in directions parallel to the channel walls, infinitesimally
small velocity and pressure disturbances may then be written by resorting to spatial
normal modes of the form

u(x, t) = ul(x0, t) exp i(α1x1 + α2x2), (4.5)

p(x, t) = pl(x0, t) exp i(α1x1 + α2x2), (4.6)

where α1 and α2 are the streamwise and spanwise wavenumbers, respectively.
Substitution of (4.5), (4.6) into the linearized version of the governing equations
(4.3), (4.4) yields

∂tu0 + iα1U1u0 = ν(∂00 − α2
1 − α2

2)u0 − ∂0p, (4.7)

∂tu1 + iα1U1u1 + (∂0U1)u0 = ν(∂00 − α2
1 − α2

2)u1 − iα1p, (4.8)

∂tu2 + iα1U1u2 = ν(∂00 − α2
1 − α2

2)u2 − iα2p, (4.9)

0 = ∂0u0 + iα1u1 + iα2u2, (4.10)

with the notation ∂t ≡ ∂/∂t, ∂0 ≡ ∂/∂x0 and ∂00 ≡ ∂2/∂x2
0. Together with no-slip

boundary conditions along the channel walls, this system of partial differential
equations consists of a temporal evolution problem for the complex-valued functions
u0, u1, u2 and p that depend on a single spatial coordinate, x0, and is numerically
solved using the method outlined in § A.3 of the appendix.

4.2. Floquet analysis

Instead of integrating the previous linear temporal evolution problem by starting with
a given initial condition, the linear stability of pulsating channel flow can also be
studied by solving the eigenproblems arising from a Floquet analysis, thus obtaining
the complete spectrum and the associated eigenfunctions.

Since the base flow is time periodic with pulsation Ω , perturbations are sought in
normal-mode form as

u(x, t) =
[

∑

n

û
(n)

(x0) exp inΩt

]

exp i(α1x1 + α2x2 − ωt), (4.11)

p(x, t) =
[

∑

n

p̂(n)(x0) exp inΩt

]

exp i(α1x1 + α2x2 − ωt), (4.12)

where the complex frequency ω is the eigenvalue, and the eigenfunctions

û(x0, t) ≡
∑

n

û
(n)

(x0) exp inΩt and p̂(x0, t) ≡
∑

n

p̂(n)(x0) exp inΩt (4.13a,b)

have the same temporal periodicity as the base flow.
Substitution of these expansions, with û

(n)
(x0) ≡ û

(n)
0 (x0)e0 + û

(n)
1 (x0)e1 + û

(n)
2 (x0)e2,

into (4.7)–(4.10) yields the Floquet eigenvalue problem. This system of linear coupled
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ordinary differential equations in the x0-coordinate may be written, for each integer n,
as

ωû
(n)
0 = nΩ û

(n)
0 + α1

∑

k

U
(k)
1 û

(n−k)
0 + iν(∂00 − α2

1 − α2
2)û

(n)
0 − i∂0p̂(n), (4.14)

ωû
(n)
1 = nΩ û

(n)
1 + α1

∑

k

U
(k)
1 û

(n−k)
1 − i

∑

k

∂0U
(k)
1 û

(n−k)
0

+ iν(∂00 − α2
1 − α2

2)û
(n)
1 + α1p̂(n), (4.15)

ωû
(n)
2 = nΩ û

(n)
2 + α1

∑

k

U
(k)
1 û

(n−k)
2 + iν(∂00 − α2

1 − α2
2)û

(n)
2 + α2p̂(n), (4.16)

0 = −i∂0û
(n)
0 + α1û

(n)
1 + α2û

(n)
2 , (4.17)

together with no-slip boundary conditions along the channel walls

û
(n)
0 = û

(n)
1 = û

(n)
2 = 0 for x0 = ±h. (4.18)

In the above momentum equations (4.14)–(4.16), the coupling of the different Fourier
components of the velocity eigenfunctions occurs through the base-flow velocity
components. Note that, since U

(k)
1 = 0 for |k| > 2 in the configurations under

investigation (3.8), the coupling of the eigenvelocities through the base flow only
occurs between n and n − 1, n or n + 1. The numerical solution of this generalized
eigenvalue problem (4.14)–(4.18) is outlined in § A.2 of the appendix.

The long-term evolution of a given mode is dictated by the complex frequency ω,
or equivalently by the Floquet multiplier µ ≡ exp(−iωT) which accounts for the gain
after one complete pulsation period. The complex frequency of the most unstable or
least stable mode depends on all parameters through a linear dispersion relation as

ω = ωlin(α1, α2; Re, Wo, Q̃). (4.19)

Whenever ωi > 0, or equivalently |µ| > 1, the perturbation is unstable and grows
exponentially over a large number of pulsation periods. Note, however, that within a
pulsation period the dynamics differs from such an exponential behaviour due to the
base-flow pulsation.

4.3. Nonlinear temporal evolution problem

In unstable situations, an initial small-amplitude perturbation of wave vector α1e1 +
α2e2 may be amplified and eventually reach finite amplitudes so that the nonlinear
term in (4.3) can no longer be neglected. Expanding the finite-amplitude disturbance
as

u(x, t) =
∑

n

u(n)(x0, t) exp in(α1x1 + α2x2), (4.20)

p(x, t) =
∑

n

p(n)(x0, t) exp in(α1x1 + α2x2), (4.21)
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and replacing these expansions with u(n)(x0, t)≡ u
(n)
0 (x0, t)e0 + u

(n)
1 (x0, t)e1 + u

(n)
2 (x0, t)e2

into (4.3), (4.4) results in a nonlinear temporal evolution problem consisting of a
system of coupled partial differential equations for the different flow components

∂tu
(n)
0 + inα1U1u

(n)
0 +

∑

k

N(n,k)u
(k)
0 = ν∆(n)u

(n)
0 − ∂0p(n), (4.22)

∂tu
(n)
1 + inα1U1u

(n)
1 + (∂0U1)u

(n)
0 +

∑

k

N(n,k)u
(k)
1 = ν∆(n)u

(n)
1 − inα1p(n), (4.23)

∂tu
(n)
2 + inα1U1u

(n)
2 +

∑

k

N(n,k)u
(k)
2 = ν∆(n)u

(n)
2 − inα2p(n), (4.24)

0 = ∂0u
(n)
0 + inα1u

(n)
1 + inα2u

(n)
2 , (4.25)

where the operators N(n,k) and ∆(n) are defined as

N(n,k) ≡ u
(n−k)
0 ∂0 + u

(n−k)
1 ikα1 + u

(n−k)
2 ikα2 and ∆(n) ≡ ∂00 − n2α2

1 − n2α2
2 . (4.26a,b)

This is akin to performing a direct numerical simulation in a finite domain
with periodic boundary conditions in the wall-parallel coordinates. The initial-value
problem of interest here is the temporal development of a streamwise and spanwise-
periodic small-amplitude perturbation, characterized by real values of α1 and α2. The
initial evolution is dictated by the linear temporal growth rate ωi, obtained from a
linear stability analysis. Whenever ωi > 0, modulated exponential temporal growth
takes place until nonlinear effects come into play. The quadratic nonlinear terms
of the Navier–Stokes equations then promote higher spatial harmonics of the form
u(n)(x0, t) exp in(α1x1 + α2x2) as well as a spatially homogeneous flow correction
u(0)(x0, t). Terms of the form exp i(nα1x1 + mα2x2) with m 6= n would only be
generated by secondary instabilities; therefore, finite-amplitude flow fields may be
expanded here as a single spatial Fourier series (4.20), (4.21) since the aim is to
obtain finite-amplitude primary solutions. A complete secondary stability analysis of
these primary nonlinear waves is beyond the scope of the present investigation.

The development, through nonlinear interactions, of a spatially homogeneous flow
correction u(0)(x0, t) results in a modification of the streamwise total flow rate by

q1(t) =
∫ +h

−h

u
(0)
1 (x0, t) dx0, (4.27)

and three-dimensional oblique waves may also give rise to a non-vanishing spanwise
flow rate

q2(t) =
∫ +h

−h

u
(0)
2 (x0, t) dx0. (4.28)

Since there is no mean pressure gradient associated with a perturbation of the
form (4.21), the governing equations (4.3), (4.4) for perturbations of the form (4.20),
(4.21) without an external volume force f correspond to a temporal evolution
problem at prescribed total pressure gradient. In order to simulate a temporal
evolution at prescribed total flow rate, the assumed form of the pressure (4.21)
is not sufficiently general: one must allow for the development of a spatially
homogeneous pressure gradient, which is equivalent to an external volume force
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of the form f = −g1(t)e1 −g2(t)e2 and entails the additional terms −g1(t) and −g2(t)
on the right-hand side of (4.23) and (4.24) when n = 0. This additional force, or
pressure gradient, in the streamwise and spanwise directions may be tuned so that
disturbances develop without modifying the base flow rate, which is purely in the
streamwise direction. The numerical computation of the required g1(t) and g2(t) will
be discussed in § A.3.

5. Linear dynamics

The configurations under investigation are completely determined by three
non-dimensional control parameters: the Womersley number Wo (3.5), the Reynolds
number Re (3.10) and the relative amplitude of the oscillating flow-rate component
Q̃ (3.9). Numerical results, however, depend on the choice of units for space and
time. In the sequel, distances are measured in units of the channel diameter (here
2h) and velocities in units of mean base-flow velocity (here Q(0)/2h). The associated
time scale of 4h2/Q(0) then leads to a non-dimensional frequency of Ω = 4Wo2/Re,
which corresponds to a pulsation period of T = πRe/2Wo2.

With the non-dimensionalization adopted in this work, the steady Poiseuille flow is
known to become linearly unstable for Re > Rec with Rec ≃ 7696, and the marginal
perturbation at criticality is two-dimensional with a streamwise wavenumber of α1,c ≃
2.041 and a frequency of ωc ≃ 0.808 (see e.g. p. 73 of Schmid & Henningson (2001)
and references therein).

The approach used here is to investigate how the instability features are influenced
by the presence of an additional pulsatile component. Starting from Poiseuille flow,
the instability characteristics are monitored as the amplitude Q̃ of the oscillating base
flow-rate component is increased. For most results presented below, the reference
configuration is the steady Poiseuille flow at Re = 10 000, which is linearly unstable.
Depending on the pulsation frequency, measured by the Womersley number, the aim
is to work out whether the pulsating component promotes or reduces the instability
and how the linear dynamics is affected within a pulsation period and in the long
term.

The linear stability analysis is introduced with typical temporal evolution problems,
increasing only Q̃ while all other parameters are kept constant. Subsequently, more
general situations are considered, varying the Womersley number Wo, streamwise and
spanwise wavenumbers α1 and α2 and eventually the Reynolds number Re to obtain
the critical conditions for onset of linear instability in the most general case.

5.1. Typical temporal evolution problems

To illustrate the temporal dynamics of small-amplitude perturbations developing in
pulsatile channel flow, we first consider perturbations of streamwise wavenumber α1 =
2 at Re = 10 000.

Figure 2(a) shows the temporal evolution of a perturbation developing in steady
Poiseuille flow (with Q̃ = 0), computed by time marching of (4.7)–(4.10). An
exponentially growing linear travelling wave is seen to develop, where ul(x0, t) ∼
exp(−iωt) with a complex frequency of ω = 0.7497 + 0.0067i. This frequency is
numerically determined by computing e.g. i(∂tu0)/u0, and its value is also confirmed
by solving the corresponding eigenvalue problem (4.14)–(4.18). The energy contained
in the perturbation grows exponentially as E ∼ exp(2ωit), see figure 3. Throughout
this section on linear dynamics, the instantaneous energy E(t) of a perturbation is
defined as the spatially averaged value of |u(x, t)|2 per unit volume.
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FIGURE 2. (Colour online) Temporal evolution of a small-amplitude perturbation with
α1 = 2 at Re = 10 000 and Wo = 10. Perturbation velocity time series for base flow with
(a) Q̃ = 0 (Poiseuille flow), (b) Q̃ = 0.02, (c) Q̃ = 0.04, (d) Q̃ = 0.06, (e) Q̃ = 0.08 and
( f ) Q̃ = 0.10 over 4 base-flow pulsation cycles. In this linear dynamics, the velocity scale
is arbitrary but identical for all cases shown, and the same initial perturbation has been
used throughout to trigger the perturbation.

Adding to this base flow a pulsatile component of different magnitudes Q̃ =
0.02, 0.04, . . . , 0.10, at Wo = 10, the perturbation is observed to undergo a
modulated exponential growth (figure 2b–f ), where the modulations occur at
the frequency of the base flow. The temporal evolution of the corresponding
fluctuating energy is shown in figure 3. The long-term growth of the perturbation
is governed by the Floquet multiplier µ ≡ exp(−iωT) and may be derived in
the direct numerical simulations by monitoring e.g. u0(x0, t + T)/u0(x0, t) (see
§ A.3 for more details on the numerical implementation). Here, for Q̃ = 0.02, 0.04,
0.06, 0.08 and 0.10, the perturbation grows exponentially according to a complex
frequency of ω = 0.7495 + 0.0068i, ω = 0.7490 + 0.0072i, ω = 0.7481 + 0.0077i,
ω = 0.7468 + 0.0085i and ω = 0.7852 + 0.0095i respectively. Again, these values
are confirmed by solving the corresponding Floquet eigenproblems. Thus, the weak
periodic component of the base flow is here responsible for a slight increase in
growth rate (ωi).
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FIGURE 3. (Colour online) Temporal evolution of perturbation energy for Q̃ = 0.00,
0.02, . . . , 0.08, 0.10 at α1 = 2, Re = 10 000 and Wo = 10 (same configurations as figure 2).
Intracyclic modulation amplitude rapidly increases with the pulsation amplitude Q̃, and
it is observed that intracyclic growth (respectively decay) approximately coincides with
base-flow deceleration (respectively acceleration) phases, as indicated by solid sinusoidal
line representing Q(t) (not to scale).

In these examples, the pulsatile component of the base flow only weakly affects
the long-term perturbation growth: all energy curves in figure 3 display a similar
mean slope in these logarithmic plots. However, the dynamics within each cycle
significantly changes with increasing values of Q̃. Indeed, the amplitude of the
intracyclic modulations increases by approximately three orders of magnitude as Q̃ is
increased from 0.02 to 0.1.

Comparison of the energy curves with the base flow rate (solid grey curve in
figure 3) shows that enhanced growth occurs in the deceleration phase of the base
flow, while decay occurs during the acceleration phase. Although time dependent,
this behaviour is similar to what is known for steady boundary layers developing
along a flat plate, for which an adverse pressure gradient promotes transition while
a favourable pressure gradient delays it (Kachanov 1994). The importance of this
intracyclic growth and decay rapidly increases with Q̃, while the net growth over an
entire base-flow cycle in these examples is of the same order as the growth prevailing
for the equivalent steady Poiseuille configuration.

In order to characterize the intracyclic dynamics, it is convenient to compensate the
computed quantities by removing the asymptotic long-term exponential growth, i.e. to
consider

u(x0, t) ≡ u(x0, t) exp(−ωit) and E(t) ≡ E(t) exp(−2ωit). (5.1a,b)

Note that the compensated flow fields u, obtained by processing data from direct
numerical simulations, differ from the Floquet eigenfunctions only by a phase velocity
term exp(iωrt). The ratio

Emax
min ≡ maxt E(t)

mint E(t)
(5.2)
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FIGURE 4. (Colour online) Spectra of compensated velocity time series for Q̃ =
0.00, 0.02, . . . , 0.08, 0.10 at α1 = 2, Wo = 10 and Re = 10 000. The peak in these
spectra near ω/Ω = −19 is associated with the dominant frequency −ωr of the travelling
fluctuations. The width is related to the number of Fourier modes that are required in a
Floquet analysis and is seen to rapidly increase with the base-flow pulsating amplitude Q̃.

is then a direct measure of the amplitude of the intracyclic modulations. While Emax
min =

1 for steady Poiseuille flow, it rapidly grows with the pulsatile component and reaches
Emax

min = 8042 for Q̃ = 0.10 in the above example. More results for Emax
min over a large

parameter space are presented below.
The velocity time series shown in figure 2 illustrate that the dynamics is governed

by two distinct time scales: fast oscillations (associated with ωr) are due to the
spatially travelling wave, while the slower modulations are tuned to the frequency Ω
of the base flow. In these examples, ωr/Ω ≃ 19 as Ω = 4Wo2/Re = 0.04. This
discrepancy of frequencies explains why a stability analysis in terms of Floquet
eigenmodes (4.13) requires a large number of Fourier components to be successful,
and the required number of modes rapidly increases with Q̃. In theory, a Floquet
analysis is preferable to a linearized direct numerical simulation since it yields the
entire spectrum and not only the dominant mode. In practice, however, the size
of the associated eigenproblems becomes rapidly unmanageable as Q̃ is increased,
while the resolution requirements for a direct numerical simulation (DNS) are largely
independent of Q̃.

The number of Floquet harmonics that is required for a sufficient resolution of
the modes may be estimated from DNS data. Indeed, a Fourier analysis of the
compensated flow fields u yields the spectra shown in figure 4. These spectra are
centred around the dominant frequency in the signal, which corresponds to −ωr,
and their width (e.g. the number of modes above the dashed line at 1/20 of the
maximum) is directly related to the number of Fourier modes required to approximate
the intracyclic dynamics. The rapid broadening of the spectra in figure 4 with Q̃ is
associated with the increase of the intracyclic modulation amplitude, and highlights
the sensitivity of the dynamics to the pulsating component of the base flow.

5.2. Temporal instability at α1 = 2 and Re = 10 000

The influence of the base-flow pulsating magnitude and frequency on disturbance
growth has been systematically investigated at Re = 10 000 and (α1, α2) = (2, 0) for
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FIGURE 5. (Colour online) Linear temporal growth rate at Re = 10 000 and α1 = 2 for
0 6 Q̃ 6 0.6 and Wo = 5, 6, . . . , 25.

56Wo6 25 and 06 Q̃6 0.6. The temporal growth rate ωi has been computed both by
direct numerical simulations of the linearized evolution equations and by solving the
Floquet eigenproblems. For each value of the Womersley number Wo = 5, 6, . . . , 25,
the pulsating magnitude Q̃ has been increased from 0 to 0.6 (in steps of 0.002) to
illustrate the effect of an increasing oscillating component, starting with a Poiseuille
flow, which is unstable in this configuration. For small values of Q̃, the growth
rate is seen to depend quadratically on the pulsating magnitude (figure 5a), and the
instability is enhanced at low frequencies (Wo = 5, . . . , 13) while it is reduced at
higher frequencies (Wo = 14, . . . , 25); strongest destabilization occurs for Wo = 9. Note
that the quadratic dependence in small values of Q̃ has been analytically established
by Hall (1975) and von Kerczek (1982). At larger values of Q̃, perturbations are
found to decay (ωi < 0) for Womersley numbers beyond Wo = 14, and the decay rate
may display a non-monotonic dependence on Q̃ (figure 5b).

The intracyclic modulation amplitudes Emax
min computed for the same parameter

ranges are given in figure 6. Whatever the Womersley number Wo, the ratio Emax
min

increases almost exponentially with Q̃ starting from Poiseuille flow (Q̃ = 0). At
larger pulsation amplitudes Q̃, the growth of Emax

min is seen to saturate; however, at
low Womersley numbers, the exponential growth of Emax

min continues to astronomical
values as Q̃ increases. Since the intracyclic amplification Emax

min is related to the
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FIGURE 6. (Colour online) Amplitude of intracyclic modulation Emax
min at Re = 10 000 and

α1 = 2 for 0 6 Q̃ 6 0.6 and 5 6 Wo 6 25.

deceleration and acceleration phases of the base flow, its growth may be understood
in the following manner. Increasing Q̃ at constant Wo, corresponds to stronger
deceleration and acceleration of the base flow without modifying their durations
and therefore enhances the ratio Emax

min that is reached within each pulsation cycle.
Moreover, reducing Wo corresponds to increasing the pulsation period as Wo−2, and
therefore stretching the duration of both deceleration and acceleration phases. Hence,
Emax

min grows much faster with Q̃ at smaller values of Wo.
As discussed previously, in situations where significant intracyclic modulations take

place, a large number of Fourier components is required when carrying out a stability
analysis based on Floquet eigenproblems. From the DNS results, after computing
Fourier spectra of the compensated velocity fields, the approximate number of
Fourier modes required in a Floquet analysis can be determined: the data plotted
in figure 7(a) correspond to the number of modes in the compensated spectrum
with energy above 1/20 of the maximum (above dashed line in figure 4). This plot
may be used as a guideline for estimating the parameter region amenable to Floquet
analysis. The relevance of this criterion is demonstrated in figure 7(b), comparing
temporal growth rates computed both by linearized DNS (lines) and Floquet analysis
(symbols) retaining Nf = 30 Fourier components to expand the eigenmodes (4.13). As
expected, both methods yield indistinguishable results up to Q̃ = 0.6 for moderate to
large values of Wo. It is only at lower pulsation frequencies, i.e. lower Wo, that a
truncated Floquet method is seen to fail beyond some value of Q̃.

5.3. Two-dimensional instability analysis at Re = 10 000

A complete two-dimensional instability analysis has been performed by exploring a
range of streamwise wavenumbers, 0.5 6 α1 6 4.0, for each configuration. This range
has been chosen so as to encompass all unstable wavenumbers for 5 6 Wo 6 25 and
0 6 Q̃ 6 0.6 at Re = 10 000.
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FIGURE 7. (Colour online) Linear dynamics at Re = 10 000 and α1 = 2 for 0 6 Q̃ 6 0.6
and 56Wo6 25. (a) DNS-based estimate of the number of Fourier modes required for a
sufficiently resolved Floquet analysis. (b) Comparison of temporal growth rates, computed
by linearized DNS (solid lines) and Floquet eigenproblems (symbols) with Nf = 30. Failure
of truncated Floquet analysis (symbols off solid lines in b) largely corresponds to curves
above dashed line in (a).

Figure 8 shows isolines of positive temporal growth rate for (a) Wo=6, (b) Wo=10,
(c) Wo = 12 and (d) Wo = 15, computed via linearized DNS. For Poiseuille flow (Q̃ =
0), unstable wavenumbers range from α1 ≃ 1.75 to α1 ≃ 2.19, and, as the amplitude Q̃

of the pulsating base-flow component is increased, this range evolves as well as the
maximum growth rate that is achieved for each Q̃.
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FIGURE 8. (Colour online) Isolines of linear temporal growth rate for two-dimensional
perturbations in (α1, Q̃)-plane at Re = 10 000 and (a) Wo = 6, (b) Wo = 10, (c) Wo = 12,
(d) Wo = 15. Thick black lines correspond to the marginal curve ωi = 0 and thin coloured
lines to positive growth rates ωi = 0.005, 0.010, 0.015, . . . .

As already observed, the instability is enhanced with increasing Q̃ for low to
moderate Womersley numbers. Figure 8(a–c), corresponding to Wo = 6, 10 and 12
respectively, shows how the upper bound of the unstable wavenumber range increases
almost linearly with Q̃, while the lower bound depends much less on Q̃. The most
unstable wavenumber occurs roughly in the centre of the unstable range, and it is
therefore observed that an increasing pulsation amplitude Q̃ favours instabilities at
smaller wavelengths (larger α1). Thus, for these configurations, the maximum temporal
growth rate is significantly larger than the values shown in figure 5 corresponding to
a fixed α1 = 2.

At larger Womersley numbers (see figure 8d corresponding to Wo = 15), the
pulsating component has a stabilizing effect and the range of unstable α1 disappears
as Q̃ is increased.

5.4. Three-dimensional instability analysis at Re = 10 000

According to Squire’s theorem, which remains valid for pulsating flows (Conrad &
Criminale 1965), a two-dimensional analysis is sufficient to study onset of instability.
Nonetheless, it is worth investigating the dynamics of three-dimensional perturbations
developing in pulsatile channel flow. Figure 9 shows the temporal growth rate in
the (α1, α2)-wavevector plane for a range of pulsating amplitudes Q̃ and Womersley
numbers Wo, at Re = 10 000.

At a high pulsation frequency of Wo = 15 (figure 9c), the pulsating component
reduces the growth rates and base flows are stable at Q̃ = 0.2 and beyond. In contrast,
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at lower Womersley numbers, the base-flow pulsation enhances the instability and
increases the range of unstable wavenumbers. At Wo = 5 (figure 9a), the maximum
growth rate increases slightly faster with Q̃ than at Wo = 10 (figure 9b). While the
maximum growth rate follows very similar trends at Wo = 5 and 10, the evolution
with Q̃ of the entire unstable region in the (α1, α2)-wavevector plane shows some
differences. Indeed, at Wo = 5 (figure 9a), the pulsation promotes spanwise modes
associated with a finite α2 and small α1. At Wo = 10 (figure 9b), the pulsation rather
favours streamwise modes: as Q̃ is increased, the unstable region further extends in
the direction of large values of α1.

5.5. Critical Reynolds number

Whether a given base flow, characterized by the non-dimensional parameters Re, Wo

and Q̃, is linearly unstable or not depends on the growth rate of its most unstable or
least stable mode:

ωmax
i (Re, Wo, Q̃) ≡ max

α1,α2
Im ωlin(α1, α2; Re, Wo, Q̃). (5.3)

In accordance with Squire’s theorem, it is observed that the maximum growth rate
always occurs for α2 = 0. Then, the critical Reynolds number Rec(Wo, Q̃) for onset of
instability at given values of Wo and Q̃ is obtained by the condition of vanishing ωmax

i .
The evolution of Rec with Q̃ for a range of Wo is shown in figure 10. Poiseuille
flow (Q̃ = 0) corresponds to a critical Reynolds number of Rec = 7696. For the
configurations investigated here, the pulsating base-flow component is seen to have a
stabilizing effect for Womersley numbers beyond 13. This stabilizing effect is very
strong for Wo > 18: when increasing Q̃, the critical Reynolds number more than
doubles when Q̃ = 0.2 is reached. On the other hand, for lower frequencies, the
pulsating component has a destabilizing effect, which appears to be strongest around
Wo = 7.

6. Nonlinear dynamics

In this section the aim is to analyse the fully developed dynamics sustained in
linearly unstable base flows, in order to identify and characterize the different regimes
that prevail in this configuration. Since fully developed perturbations naturally arise
from the temporal development of a small-amplitude initial disturbance, the present
approach is based on temporal evolution problems investigated by direct numerical
simulations of the complete Navier–Stokes equations. The initial evolution is dictated
by linear dynamics, as discussed in the previous section. Whenever the linear temporal
growth rate is positive, the perturbation necessarily reaches finite-amplitude levels and
nonlinear effects come into play. In the absence of secondary instabilities, a fully
developed regime is then reached with spatial periodicity imposed by the prescribed
values of streamwise and spanwise wavenumbers α1 and α2.

Subcritical behaviour has been documented for plane Poiseuille flow (Ehrenstein &
Koch 1991) and is expected to exist also for pulsatile channel flow. However, it is
beyond the scope of the present paper to investigate finite-amplitude regimes that may
exist beyond the linearly unstable regions in parameter space.
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FIGURE 9. (Colour online) Isolines of temporal growth rate ωi in the (α1, α2)-wavevector
plane for Q̃ = 0.0, 0.1, . . . , 0.6 at (a) Wo = 5, (b) Wo = 10, (c) Wo = 15. Thick black lines
correspond to the marginal curve ωi = 0 and thin coloured lines to positive growth rates
ωi = 0.005, 0.010, 0.015, . . . .
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FIGURE 10. (Colour online) Critical Reynolds number for onset of temporal instability
as a function of the base-flow pulsation amplitude Q̃ for a range of Womersley numbers:
Wo = 5, 6, . . . , 25.

6.1. Two characteristic examples of fully developed regimes

While carrying out direct numerical simulations over large regions of a multi-
dimensional parameter space, essentially two types of fully developed regimes have
been observed: ‘cruising’ regimes for which nonlinearities are sustained throughout
the entire pulsation cycle and ‘ballistic’ regimes that are propelled into a nonlinear
phase before subsiding again to small amplitudes within every cycle.

These two distinct regimes may be illustrated by analysing perturbations with α1 = 2
developing in a base flow at Re = 10 000 and Wo = 10 with two different pulsation
amplitudes Q̃ = 0.08 and 0.20.

6.1.1. ‘Cruising’ nonlinear regime

For a pulsatile base flow at Re = 10 000, Wo = 10 and Q̃ = 0.08, a small-amplitude
perturbation of streamwise wavenumber α1 = 2 is linearly unstable and therefore leads
to a fully developed regime. Figure 11(a) gives the temporal evolution of the total
perturbation energy on a linear scale, while figure 11(b) shows the energy of the
different spatial Fourier components on a logarithmic scale. Here, the instantaneous
energy E(n)(t) of the nth Fourier component of the perturbation is defined as the
spatially averaged value of |u(n)(x0, t)|2 per unit volume.

Instantaneous spatially averaged wall shear stress values are plotted in figure 11(c).
During the early stages of the temporal evolution (here approximately 0 < t/T < 10),

a linear regime prevails with a complex frequency of ω = 0.7468 + 0.0085i and an
intracyclic modulation amplitude of Emax

min = 1.35 × 103. In this regime, the different
Fourier components are classically slaved to the fundamental as E(n) ∝ (E(1))n for n>2,
and E(0) ∝ (E(1))2. The mean slopes of the energy curves are seen to follow these
scalings in figure 11(b), and the intracyclic modulations around these mean slopes do
the same. It is only the mean-flow correction E(0) that is found to decay more slowly
than (E(1))2 during the intracyclic decay phases. This slower decay of the spatially
homogeneous component E(0) corresponds to viscous dissipation that is less efficient
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FIGURE 11. (Colour online) ‘Cruising’ nonlinear regime resulting from modulated
exponential growth of small-amplitude initial perturbation with α1 = 2 at Re = 10 000,
Wo = 10 and Q̃ = 0.08. (a) Total perturbation energy. (b) Energy of each spatial Fourier
component. (c) Spatially averaged wall shear stress of perturbation (black solid), total (red
dashed) and base (grey dotted) fields relative to steady Poiseuille flow value.

than the stabilization of the E(1) component during the base-flow acceleration phase.
Indeed, for the same base flow, the decay of a spatially homogeneous perturbation
with α1 = α2 = 0 follows the dashed line in figure 11(b), which displays a similar
slope as the mean-flow correction E(0) here in its phases of slow decay.

As finite-amplitude levels are reached (here beyond t/T = 10), a fully developed
regime is entered consisting of a travelling nonlinear wave that is modulated by the
pulsating base flow. In this regime, the modulation amplitude is no larger than the
average values so that the regime remains fully nonlinear throughout the pulsation
cycle and is characterized by a ratio of intracyclic modulation amplitudes of order
unity, here Emax

min = 2.51.
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FIGURE 12. (Colour online) Snapshots of velocity fields in cruising nonlinear regime over
two wavelengths with α1 = 2 at Re = 10 000, Wo = 10 and Q̃ = 0.08: (a) total velocity
at t/T = 29.5, (b) perturbation velocity at t/T = 29.5, (c) total velocity at t/T = 30.0,
(d) perturbation velocity at t/T = 30.0. Solid curves to the right of (a) and (c) indicate
base-flow profile prevailing at the same instant.

From figure 11(b) it is observed that the total perturbation energy is largely
dominated by the fundamental component E(1), even in the nonlinear regime. Higher
harmonics are well below the fundamental and follow the same pattern of intracyclic
modulation. It is only the mean-flow correction E(0) that displays a different trend:
two intracyclic maxima, coinciding with the extrema of the fundamental (or the total)
energy. The second maximum of E(0) that occurs when the perturbation is near its
lowest is probably due to the continuing transfer of energy from the fundamental to
the spatially homogeneous component and due to the fact that this energy is only
slowly dissipated so that E(0) continues to build up while E(1) decreases. Monitoring
the energy associated with the different Fourier components shows that this fully
developed regime may be accurately computed by using only a limited number of
components. All of the computations of the present study have been carried out with
Nh = 9, and for most cases the fully developed dynamics was already well resolved
with Nh = 5.

The instantaneous spatially averaged wall shear stress (WSS) is plotted in
figure 11(c), relative to the value prevailing for a steady Poiseuille flow at the same
Reynolds number. The wall shear stress component due to the perturbation (solid black
curve) follows a similar evolution to the fluctuating energy (figure 11a), which results
in a significant increase of the total WSS (dashed red curve) and departure from the
WSS prevailing for the base flow (dotted grey curve). The growth (respectively decay)
of the perturbation WSS during the deceleration (respectively acceleration) phases
of the base flow, results in a total spatially averaged WSS modulation out of phase
with the base flow by approximately a quarter period, similar to what is observed for
Stokes layers.

This regime consists of a travelling nonlinear wave that propagates downstream with
a temporally modulated amplitude. Snapshots of the flow fields over two wavelengths
are shown in figure 12, near maximum energy at t/T = 29.5 (a,b) and minimum
energy at t/T = 30.0 (c,d). The total flow fields (a,c) display the sinuous structure
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FIGURE 13. (Colour online) (a) Spatio-temporal pattern of the perturbation WSS in
cruising regime over one streamwise wavelength λ=2π/α1 and one pulsation period. WSS
values are relative to a steady Poiseuille flow at the same Reynolds number, and thick
solid black isoline corresponding to WSS = 0 separates thin dashed red (respectively blue)
isolines corresponding to levels WSS = 2, 4, 6 (respectively WSS = −2, −4, −6).
(b) Instantaneous spatially averaged (solid black), minimum (dashed blue) and maximum
(dashed red) values of WSS.

of these nonlinear travelling waves, while the perturbation velocity fields (b,d) give
an idea of the associated propagating vortices.

These modulated travelling nonlinear waves are associated with the spatio-temporal
WSS pattern shown in figure 13(a) over one streamwise wavelength for one pulsation
period. The characteristic oblique lines in this plot are associated with the nonlinear
waves travelling at a nearly constant phase velocity. Their amplitude is modulated
over the pulsation period, similarly to what has already been observed in figure 11.
However, the wave-like nature of the flow structure is associated with local WSS
values well above and below their spatial average shown in figure 11(c). The
temporal evolution of the local maximum and minimum WSS values are shown
in figure 13(b) together with the instantaneous spatial average. While the spatially
averaged perturbation WSS values are of the same order as the base-flow contribution,
the local extrema are significantly larger. Also, the modulation of these nonlinear
propagating waves results in larger modulation amplitudes for the local extrema than
for the spatially averaged values. Thus, this fully developed regime is associated with
strong localized stresses in alternating directions travelling along the channel walls.
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FIGURE 14. (Colour online) ‘Ballistic’ nonlinear regime resulting from modulated
exponential growth of small-amplitude initial perturbation with α1 = 2 at Re = 10 000,
Wo = 10 and Q̃ = 0.2. (a) Total perturbation energy. (b) Energy of each spatial Fourier
component. (c) Spatially averaged wall shear stress of perturbation (black solid), total (red
dashed) and base (grey dotted) fields relative to steady Poiseuille flow value.

6.1.2. ‘Ballistic’ nonlinear regime

The temporal evolution of an initial small-amplitude perturbation for a base flow
at a larger pulsating amplitude of Q̃ = 0.20 is depicted in figure 14. In this example,
the small-amplitude regime prevails approximately for 0 < t/T < 5, and, in that
stage, the perturbation exponentially grows according to a complex frequency of ω =
0.8119 + 0.0156i with a significantly larger intracyclic modulation amplitude of Emax

min =
4.61 × 107.

Once finite amplitudes are reached, the essential difference with the previous
configuration is that the nonlinear regime does not prevail throughout the entire
pulsation cycle: the fully developed regime consists of regular nonlinear bursts
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separated by phases of nearly unperturbed base flow. Thus, the ratio of intracyclic
modulation amplitudes is here much larger than unity, Emax

min = 391, since the
perturbation drops to very small levels during the linear phase of the cycle
(figure 14a).

Monitoring the temporal evolution of the energy contained in the different spatial
Fourier components (figure 14b), shows that the observations of the previous
configuration still hold: during the linear phases, higher harmonics are slaved to
the fundamental as E(n) ∝ (E(1))n; a few Fourier components are enough to fully
resolve the dynamics; during stabilization phases, the mean-flow correction E(0)

decays on a slow time scale and therefore becomes un-slaved from the fundamental.
Here the un-slaving of the mean-flow correction from the fundamental also occurs in
the linear phases of the fully developed regime: the slow decay rate of the mean-flow
correction is dictated by viscosity and is equivalent to that of a spatially homogeneous
perturbation with α1 = α2 = 0 indicated by a dashed line in figure 14(b). Again, the
total perturbation energy is dominated by the fundamental component, except during
the linear phases of the fully developed regime where the fundamental drops to
negligible levels while the mean-flow correction lags behind. Note also that due to
these alternating linear and nonlinear phases, the energy levels in the ballistic regime
are significantly lower than those of the cruising regime.

The temporal evolution of the associated WSS is shown in figure 14(c). Obviously
the WSS associated with the perturbation (solid black curve) is only significant during
the nonlinear phases. These nonlinear phases are relatively short compared with the
pulsation period, therefore the total WSS (dashed red curve) in the fully developed
regime only weakly departs from the WSS prevailing for the base flow (dotted grey
curve).

This fully developed regime consists of periodic nonlinear bursts that are identically
regenerated during every pulsation cycle. Snapshots of the flow fields over two
wavelengths are shown in figure 15. Near maximum energy at t/T = 29.6, the total
flow fields (figure 15a) exhibit the sinuous structure of the finite-amplitude travelling
perturbation; this sinuosity is, however, less pronounced than in figure 12(a) since
the perturbation is less energetic here. The associated perturbed fields at t/T = 29.6
are represented in figure 15(b). In the linear phase, at t/T = 30.0, the total flow
fields (figure 15c) are indistinguishable from the base flow since the perturbation has
negligible amplitude.

These nonlinear bursting travelling waves are associated with the spatio-temporal
WSS pattern shown in figure 16(a). As already noted, the perturbation WSS is
only significant during the nonlinear phases of the dynamics, here approximately for
29.4 < t/T < 29.8. While the spatially averaged perturbation WSS (solid black curve
in figure 16b) does not exceed half the mean value prevailing for the base flow, the
local extrema due the travelling wave structure reach values that are an order of
magnitude larger. Thus the ballistic regime is still associated with intense spatially
localized WSS events, while the spatially averaged values remain rather weak (see
also figure 14c).

6.1.3. Terminology

These two markedly different fully developed dynamics exemplified by the
configurations discussed in this section have motivated the terms ‘cruising’ and
‘ballistic’ regimes by analogy with cruising and ballistic flight: the ‘cruising’
perturbations are continuously driven by nonlinearities while the ‘ballistic’ state
is characterized by ‘take-off’ and ‘landing’ of the perturbation energy level. More



Linear and nonlinear dynamics of pulsatile channel flow 461

(a)

(b)

(c)

FIGURE 15. (Colour online) Snapshots of velocity fields in ballistic nonlinear regime over
two wavelengths with α1 = 2 at Re = 10 000, Wo = 10 and Q̃ = 0.2: (a) total velocity at
t/T = 29.6, (b) perturbation velocity at t/T = 29.6, (c) total velocity at t/T = 30.0 when
the perturbation is negligible. Solid curves to the right of (a,c) indicate base-flow profile
prevailing at same instant.
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FIGURE 16. (Colour online) (a) Spatio-temporal pattern of the perturbation WSS in
ballistic regime over one streamwise wavelength λ = 2π/α1 and one pulsation period.
WSS values are relative to a steady Poiseuille flow at the same Reynolds number, and
the thick solid black isoline corresponding to WSS = 0 separates the thin dashed red
(respectively blue) isolines corresponding to levels WSS = 1, 2, 3 (respectively WSS =−1,
−2, −3). (b) Instantaneous spatially averaged (solid black), minimum (dashed blue) and
maximum (dashed red) values of WSS.
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FIGURE 17. (Colour online) Temporal evolution of perturbation energy in fully developed
regime at (a) Wo = 7, (b) Wo = 10, (c) Wo = 15, (d) Wo = 20, for Q̃ = 0.00 (horizontal
line), 0.02, 0.04, . . . , 0.20 and α1 = 2, Re = 10 000.

precisely, in the cruising regime, nonlinearities are sustained throughout the pulsation
cycle, resulting in a fully developed regime with a modulated amplitude, that may be
interpreted as saturated Tollmien–Schlichting waves undergoing modulations caused
by the pulsation of the underlying base flow. In contrast, the ballistic regime consists
of linear and nonlinear phases that alternate within every pulsation cycle: from a
small-amplitude minimum reached near the middle of the linear phase, strong linear
growth thrusts the system into a nonlinear regime that culminates after saturation at
finite amplitude, before collapsing again and subsiding towards the next minimum.

6.2. Nonlinear dynamics at α1 = 2 and Re = 10 000

The fully developed regime that prevails after perturbations reach finite amplitudes has
been systematically investigated at α1 = 2 and Re = 10 000 for Womersley numbers in
the range 5 6 Wo 6 25 and increasing pulsation amplitudes Q̃. Figure 17 shows the
temporal evolution of the perturbation energy in the final regime over two base-flow
pulsation periods for 0 6 Q̃ 6 0.2.

For Poiseuille flow, i.e. Q̃ = 0, finite-amplitude Tollmien–Schlichting waves with
constant energy are selected (dark blue horizontal lines in figure 17).

As the base-flow pulsation amplitude Q̃ is increased, these nonlinear travelling
waves display energy modulations around a mean value: in this cruising regime the
temporally averaged perturbation energy remains very close to the value prevailing
for Q̃ = 0. As for the linear dynamics (see figure 3), energy builds up during
base-flow deceleration (n < t/T < n + 0.5 for integer n) while it declines during
base-flow acceleration (n + 0.5 < t/T < n + 1); recall that the definition of base-flow
acceleration and deceleration phases is based on the sign of dQ/dt.

The amplitude of these perturbation energy modulations grows as Q̃ is increased.
Eventually the minimum energy value reached near t/T = n drops to a low level,
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and the flow behaviour switches then to a ballistic regime, characterized by linear
phases of negligible perturbation amplitudes alternating with finite-amplitude bursts.
This transition from cruising to ballistic regimes appears to be rather sudden: curves
in figure 17 correspond to constant steps in Q̃ of 0.02, and they display a gap at the
transition between these two nonlinear regimes. At larger pulsation frequencies, see
figure 17(d) at Wo = 20, the base-flow modulation has a stabilizing effect so that the
ballistic regime is never selected: as Q̃ is increased, the critical value for stability is
reached while the flow is still in a cruising regime. The fully developed modulated
Tollmien–Schlichting waves that prevail at the lower values of Q̃ could probably be
interpreted as inviscid vorticity waves and described by a Korteweg–de Vries equation,
following a similar approach than that proposed by Tutty & Pedley (1994). In that
context, the transition from cruising to ballistic regimes may be governed by a similar
mechanism than that leading to cnoidal waves in a Korteweg–de Vries model.

Note also that when the critical value of Q̃ for transition from cruising to ballistic
regimes is approached, the energy curves display small-scale irregular fluctuations that
break the overall periodicity of the flow from one pulsation period to the next and
are believed to be the sign of secondary instabilities rather than numerical instabilities
since this same behaviour is observed after changing spatial and temporal resolutions
of the simulations. These secondary instabilities certainly play a role in the precise
transition scenario between the two nonlinear regimes. However, the present numerical
implementation was designed to investigate the structure of nonlinear travelling waves
of given spatial wavenumbers and does not take into account sufficient degrees of
freedom for a full secondary stability analysis, which is left for future investigations.

At larger base-flow modulation amplitudes, the maximum energy reached during
the nonlinear bursts in the ballistic regime increases again with Q̃, as illustrated in
figure 18 for 0.2 6 Q̃ 6 0.4 and Wo = 7 and 10. Eventually, the nonlinear bursts
occurring at every base-flow pulsation period display some variation from one period
to the next. Depending on the control parameters, the fluctuations that affect the
regular pattern associated with the ballistic regime result either in period doubling
or more irregular behaviour. A more detailed characterization of the fully developed
regimes prevailing beyond these periodic nonlinear waves has not been attempted.

The phase diagram in figure 19 indicates the nature of the selected regime over the
whole range of investigated Womersley numbers: 5 6 Wo 6 25. The cruising regime
prevails at low base-flow modulation amplitudes, starting from Poiseuille flow at Q̃=0.
At larger values of Q̃, to the right of the dashed curve, transition to a ballistic regime
occurs. The pulsating base flow is linearly stable above the black curve. The critical
value of Q̃ where the transition between the two nonlinear regimes occurs is seen to
weakly depend on the Womersley number. It is only at low values of Wo that the
cruising regime survives significantly beyond Q̃ ≃ 0.1. At larger pulsation frequencies
(i.e. larger Wo), the stabilizing effect of the base-flow pulsation competes with its
enhancing effect on the perturbation energy modulation. Thus, as already observed in
figure 17(d) for Wo = 20, the ballistic regime is suppressed and the cruising regime
prevails over the entire range of unstable Q̃, here for Wo > 17.

The criterion used to distinguish between cruising and ballistic regimes is based on
the ratio Emax

min of the energy perturbation in the fully developed regime. This ratio is of
order 1 for cruising regimes and increases more than tenfold in the ballistic regime,
characterized by vanishing energy levels in its linear phases. Since the transition
between both nonlinear regimes occurs rather suddenly, the boundary between both
regimes is largely independent of the precise value of the critical ratio Emax

min used.
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FIGURE 18. (Colour online) Temporal evolution of perturbation energy in fully developed
regime at (a) Wo = 7, (b) Wo = 10, for Q̃ = 0.20 (dark blue), 0.22, . . . , 0.38, 0.40 (red)
and α1 = 2, Re = 10 000. The maximum energy of the nonlinear bursts increases with Q̃

and, at larger values of Q̃, successive peaks culminate at slightly different levels.
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FIGURE 19. (Colour online) Phase diagram of the flow dynamics for Re = 10 000 and
α1 = 2. A cruising regime prevails at low base-flow modulation amplitudes Q̃. At larger Q̃,
to the right of the dashed curve, a ballistic regime takes over. Above the black curve, the
pulsating base flow is linearly stable.

6.3. Two-dimensional nonlinear dynamics at Re = 10 000

The complete two-dimensional nonlinear travelling wave solutions have been
computed by exploring the whole range of linearly unstable wavenumbers α1 for
0 6 Q̃ 6 0.5 and 5 6 Wo 6 25 at Re = 10 000.

Figure 20 shows characteristic features of perturbation energy for selected
configurations. Panels of the first column (a1–d1) in this figure illustrate the
temporally averaged energy of the fully developed regime prevailing in the linearly
unstable domain of the (α1, Q̃)-plane for (a1) Wo = 6, (b1) Wo = 10, (c1) Wo = 12 and
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FIGURE 20. (Colour online) Isolines of perturbation energy levels for two-dimensional
fully developed nonlinear regimes in (α1, Q̃)-plane at Re=10 000 and (a) Wo=6, (b) Wo=
10, (c) Wo = 12, (d) Wo = 15. Panels (1) represent temporally averaged energy, while (2)
and (3) give maximum and minimum values respectively. Colour isolines correspond to
E = 0.01, 0.02, 0.03, . . . , and the thick black curve represents the neutral boundary.

(d1) Wo = 15. Panels in the second (a2–d2) and third (a3–d3) columns correspond
respectively to maximum and minimum energy values in the same regimes.

For Poiseuille flow, constant-amplitude Tollmien–Schlichting waves are obtained, so
that all plots correspond to the same values along the line Q̃ = 0.

Increasing the base-flow pulsation amplitude Q̃ results in modulated nonlinear
travelling waves with increasing modulation amplitude. For example, considering
the case Wo = 6 (figure 20a1–a3) and concentrating on α1 = 2 for 0 6 Q̃ 6 0.1,
it is seen that the average energy (figure 20a1) remains almost constant while
the maximum energy (figure 20a2) increases with Q̃ and the minimum energy
(figure 20a3) decreases. The same observation holds for different values of α1

and Wo: for 06 Q̃6 0.1, the discrepancy between maximum energy (figure 20a2–d2)
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and the corresponding minimum energy (figure 20a3–d3) increases with Q̃, while the
average energy (figure 20a1–d1) remains almost constant in Q̃. It is found that this
cruising regime prevails over all unstable wavenumbers α1, and that the modulation
amplitude is more pronounced at smaller wave lengths (larger α1). Note also that
the nonlinear regime displays finite-amplitude energy levels up to the upper marginal
wavenumber (near α1 ≃ 2.2): it is expected that these nonlinear solutions continue
to exist in the linearly stable region for larger values of α1, but the investigation of
such sub-critical nonlinear modulated solutions by continuation methods has not yet
been attempted.

The cruising regime, characterized by energy modulations around a mean value that
is rather independent of Q̃, extends over the entire range of linearly unstable α1 from
Q̃ = 0 to Q̃ ≃ 0.15 at Wo = 6 and to Q̃ ≃ 0.11 at Wo = 10, 12 and 15. Thus, the
phase diagram of figure 19 remains valid after taking into account the whole range
of unstable wavenumbers α1.

As already observed, the cruising regime ends rather suddenly when Q̃ is
increased. The ballistic regime, that takes over at larger base-flow pulsation
amplitudes, is characterized by much lower values of the temporally averaged energy
(figure 20a1–c1) and vanishing values of minimum energy levels (figure 20a3–c3).
The maximum energy (figure 20a2–c2) prevailing in the ballistic regime displays low
values at onset of this regime (near Q̃ ≃ 0.15) and increases with Q̃. The irregular
shape of isolines in the ballistic regime is due to the loss of exact periodicity of
the nonlinear solutions already observed in the previous section: when the successive
nonlinear bursts are not perfectly identical, some scatter results while recording peak
values in different realizations. At larger pulsation frequencies, the instabilities are
suppressed as Q̃ is increased (figure 20d1–d3), thus avoiding the ballistic regime.

6.4. Three-dimensional nonlinear dynamics at Re = 10 000

For given pulsating base flows, three-dimensional finite-amplitude modulated
propagating waves have been computed over the entire linearly unstable region of
the (α1, α2)-wavevector plane. The linear temporal growth rate of three-dimensional
perturbations has been discussed in § 5.4 and illustrated in figure 9.

The task of systematically investigating these fully developed nonlinear solutions
has been carried out for 5 6 Wo 6 25 and 0 6 Q̃ 6 0.6 at Re = 10 000. For each
base flow, characterized by the non-dimensional control parameters Q̃, Wo and Re, the
nonlinear temporal evolution problem has been simulated for those values of (α1, α2)

that are associated with a positive linear temporal growth rate. In this process, the
(α1, α2)-wavevector plane has been covered using steps of 0.05 in both α1 and α2 and,
for each run, characteristic quantities are derived from the fully developed nonlinear
regime.

Figure 21 shows levels of temporally averaged perturbation energy while peak
energy levels are plotted in figure 22. In these figures, colour isolines correspond to
energy levels E = 0.01, 0.02, . . . , and the thick black curve represents the neutral
boundary.

At low base-flow modulation amplitudes, Q̃ = 0.0 and 0.1, the fully developed flow
is in the cruising regime, characterized by a significant average perturbation energy
(figure 21) and slightly larger maximum energy levels (figure 22). In this regime,
average and peak energy levels significantly increase with α1, starting at low values
near the small-α1 neutral boundary and reaching finite values at the large-α1 neutral
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FIGURE 21. (Colour online) Isolines of average energy levels for three-dimensional
nonlinear solutions in the (α1, α2)-wavevector plane for Q̃ = 0.0, 0.1, . . . , 0.5 at (a) Wo =
5, (b) Wo = 10, (c) Wo = 15 and Re = 10 000. Colour isolines correspond to E =
0.01, 0.02, 0.03, . . . , and the thick black curve represents the neutral boundary.
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FIGURE 22. (Colour online) Isolines of maximum energy levels for three-dimensional
nonlinear solutions in the (α1, α2)-wavevector plane for Q̃ = 0.0, 0.1, . . . , 0.5 at (a) Wo =
5, (b) Wo = 10, (c) Wo = 15 and Re = 10 000. Colour isolines correspond to E =
0.01, 0.02, 0.03, . . . , and the thick black curve represents the neutral boundary.
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boundary. The energy levels depend more weakly on α2, so that the isolevels remain
roughly parallel to the neutral boundaries as α2 is increased from 0.

Between Q̃ = 0.1 and Q̃ = 0.2, the flow switches to ballistic regimes, and this
transition is accompanied by a sharp drop in energy levels. Beyond Q̃ = 0.2, for low to
moderate pulsation frequencies, the perturbation energy levels increase again with Q̃,
very weakly on average (figure 21a,b) but significantly for peak values (figure 22a,b).
In contrast, at higher Womersley numbers, base-flow pulsation has a stabilizing effect,
see figures 21(c) and 22(c) at Wo = 15. In the ballistic regime, the energy isolines are
more irregular for the same reasons as those mentioned in the previous sub-section,
but the general trend of the peak energy levels remains the same, except that the
largest values are reached within the linearly unstable region and not near the large-α1

neutral boundary. Therefore it would be expected that the cruising nonlinear regime
is more likely to display subcritical behaviour, i.e. to continue to exist beyond the
large-α1 neutral boundary, than the ballistic regime.

At a given value of Q̃, the same regime is seen to prevail over the entire linearly
unstable region of the (α1, α2)-plane. Thus it appears that the phase diagram
of figure 19 still remains valid after taking into account all linearly unstable
three-dimensional waves.

The maximum localized WSS occurring in the nonlinear regimes is shown in
figure 23. In this figure, colour isolines correspond to WSS levels of 0.5, 1.0, 1.5, . . . ,

relative to Poiseuille flow values. These plots follow a similar trend as the peak energy
levels shown in figure 22, except that the regime change between Q̃ = 0.1 and 0.2 is
associated with a less pronounced drop in WSS.

6.5. Nonlinear dynamics at other Reynolds numbers

In order to systematically investigate the nonlinear dynamics prevailing after onset
of linear instability, i.e. for Reynolds numbers above the marginal curves plotted in
figure 10, two-dimensional nonlinear travelling wave solutions have been computed
for linearly unstable configurations in the range 8000 6 Re 6 15 000.

The main findings are summarized in figure 24, extending the phase diagram of
figure 19 and showing the nature of the selected flow regime in the (Q̃, Wo)-plane
for Re = 8000, 10 000, 12 000 and 15 000. As in figure 19, these curves correspond
to a fixed streamwise wavenumber of α1 = 2. In the preceding sections it has been
shown, for Re = 10 000, that this approach yields a good approximation of the
boundary between cruising and ballistic regimes without exploring the whole region
of linearly unstable three-dimensional waves in the (α1, α2)-plane for each base flow.
A systematic coverage of the five-dimensional parameter space (Re, Wo, Q̃, α1, α2)
would require of the order of 106 runs for each value of Re. Nonetheless, it has been
checked that the curves of figure 24 are a faithful representation of the dominant
flow dynamics prevailing for any linearly unstable wavenumbers.

In agreement with the linear results of § 5, the stable region of the (Q̃, Wo)-plane
shrinks as the Reynolds number is increased: the stability boundary (solid curves in
figure 24) moves toward larger values of Q̃ and Wo with increasing Re. In contrast,
the boundary between cruising and ballistic regimes remains almost unchanged over
the entire range from Re = 8000 to Re = 15 000. For all the base flows considered in
this investigation, the transition from cruising to ballistic regimes is found to occur
when the base-flow oscillation amplitude exceeds about 10 %–15 % of the steady flow
component.
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FIGURE 23. (Colour online) Isolines of maximum local WSS levels for three-dimensional
nonlinear solutions in the (α1, α2)-wavevector plane for Q̃ = 0.0, 0.1, . . . , 0.5 at (a) Wo = 5,
(b) Wo = 10 and Re = 10 000. Colour isolines correspond to WSS = 0.5, 1.0, 1.5, . . . ,
relative to Poiseuille value, and the thick black curve represents the neutral boundary.

7. Summary and future work

In this paper, we have systematically investigated the rich dynamics resulting from
perturbations developing in harmonically pulsating channel flows, for Womersley
numbers in the range 5 6 Wo 6 25.

The temporal dynamics of small-amplitude perturbations consists of travelling
waves that grow or decay exponentially in the long term while displaying intracyclic
modulations tuned to the base-flow pulsations. Starting from steady Poiseuille flow
and increasing the amplitude of the oscillating base-flow component Q̃ at constant
Womersley number, it is found that the oscillating component reduces instability
for Wo & 13 while it has a destabilizing effect at lower frequencies. Strongest
destabilization occurs near Wo = 7. Using Floquet analysis and linearized simulations,
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FIGURE 24. (Colour online) Maps in (Q̃,Wo)-plane indicating nature of the flow dynamics
prevailing for a range of Reynolds numbers: Re=8000, 10 000, 12 000 and 15 000. Dashed
curves correspond to boundary between cruising and ballistic regimes. Above the solid
curves the base flows are linearly stable.

the present investigation confirms that growth rates depend quadratically on small
values of Q̃, a result analytically obtained by Hall (1975).

While instability (respectively stability) is determined by the net growth (respectively
decay) of fluctuations over one complete pulsation cycle, strong transient growth and
decay occur within each cycle. At small values of Q̃, the intracyclic growth and decay
phases almost balance so that the long-term growth remains similar to the Poiseuille
value despite intracyclic modulation amplitudes that may reach several orders of
magnitude. Intracyclic growth and decay mainly occur during base-flow deceleration
and acceleration phases respectively, and intracyclic modulation is enhanced at low
pulsation frequencies, i.e. for long durations of deceleration and acceleration phases.
A side-effect of these strong intracyclic modulations is the requirement of a large
number of Fourier modes for a reasonably resolved Floquet analysis. This also
probably explains why earlier attempts at linear stability analyses by solving Floquet
eigenproblems were fraught with difficulties, and only Thomas et al. (2011) were
able to locate neutral conditions.

Exploring the whole range of three-dimensional perturbations does not change the
general picture derived from two-dimensional stability analysis since Squire’s theorem
remains valid for pulsating flows (Conrad & Criminale 1965). Nonetheless, it is found
that oblique perturbations at finite spanwise and small streamwise mode numbers are
more strongly destabilized by low-frequency base-flow pulsation, e.g. at Wo = 5, than
at frequencies around Wo = 10.

Using direct numerical simulations to compute the temporal evolution of fully
developed nonlinear propagating waves resulting from linearly unstable situations
has shown that there exist two distinct regimes of finite-amplitude dynamics. In
the cruising regime, the perturbation evolves nonlinearly throughout the pulsation
cycle, while the ballistic regime consists of linear and nonlinear phases that alternate,
locked-in with the base-flow pulsation. Nonlinear solutions in the cruising regime
may be interpreted as saturated Tollmien–Schlichting waves that are modulated
by the base-flow pulsation. These cruising waves are selected for weak base-flow
pulsation amplitudes Q̃ and their intracyclic modulation amplitudes increase with Q̃,
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albeit not as drastically as in the linear regime. For stronger base-flow pulsations,
the intracyclic modulation amplitude eventually becomes of the same order as the
mean perturbation level. When such strongly modulated waves are no longer able
to keep up with the nonlinear regime throughout the cycle, transition to the ballistic
regime occurs. In the ballistic regime, the temporal evolution is then governed by the
following sequence of steps: during base-flow deceleration phases, small-amplitude
fluctuations grow fast, as in a purely linear setting, thus propelling the system into
a nonlinear regime where the amplitude saturates at finite level; during subsequent
base-flow acceleration, the perturbation amplitude declines until the flow falls back to
the linear regime; the fluctuation amplitude then rapidly drops to reach a minimum
near the maximum of the basic flow rate, and grows again in the subsequent base-flow
deceleration phase. Thus, the ballistic regime follows part of a linear dynamics with
high intracyclic modulation amplitude, while nonlinear saturation caps its growth and
limits the perturbation level in the high-amplitude phase. These linear and nonlinear
mechanisms adjust so that the nonlinear bursts are identically regenerated, resulting in
a regime with no net growth or decay over one pulsation cycle. For larger base-flow
pulsation amplitudes, these nonlinear bursts prevailing in the ballistic regime display
some fluctuations from cycle to cycle, which is the sign of secondary instabilities,
beyond the scope of the present investigation.

Computation of spatio-temporal wall shear stress patterns has revealed that both
cruising and ballistic regimes are associated with intense spatially localized WSS
values, much stronger than the spatially averaged values as well as the base-flow
values.

Working out the nonlinear dynamics for the entire parameter space in the range
5 6 Wo 6 25, shows that a cruising regime prevails at low base-flow modulation
amplitudes Q̃, and that transition to a ballistic regime occurs between Q̃ = 0.1 and
0.2, unless the ballistic regime is bypassed because the neutral boundary is crossed
while still in the cruising regime.

The present investigation uses a single spatial Fourier series (4.20), (4.21) to
compute the saturated wavetrains. This approach yields nonlinear solutions of the
Navier–Stokes equations and prevents the development of secondary instabilities that
would break the imposed spatial periodicity. Secondary instabilities may play an
important part in the fully developed dynamics, and in particular near the transition
between cruising and ballistic regimes. Secondary stability properties could be
investigated by implementing a technique similar to that used for the rotating-disk
flow (Pier 2007), and the resulting dynamics could be computed by simulations
allowing for more degrees of freedom, e.g. using a double Fourier expansion in both
wall-parallel directions for the flow fields.

The nonlinear travelling waves found in the present investigation display a structure
that is reminiscent of solutions to the Korteweg–de Vries equation. Therefore one
might expect that an approach similar to that implemented by Tutty & Pedley (1994)
could account for the dynamics, and possibly explain the ballistic regime in terms of
cnoidal waves. Another line of thought would be to analyse the pulsating channel flow
in terms of a Mathieu equation (McLachlan 1964), also known to give rise to similar
solutions as the amplitude of the oscillatory term becomes larger.

Having established the existence of nonlinear modulated travelling wave solutions
for linearly unstable pulsating channel flows, it would now be worth to investigate
the existence of subcritical solutions, i.e. finite-amplitude solutions that prevail in
linearly stable base flows. Such subcritical solutions are known to exist for steady
Poiseuille flow (Ehrenstein & Koch 1991) and are therefore also expected in its
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pulsating counterpart. These subcritical solutions may be sought by continuously
varying control parameters in a DNS or by generalizing the continuation technique
of Ehrenstein & Koch (1991) to take into account the modulation of these solutions.
The findings of the present paper suggest that the cruising regime probably displays
such a subcritical behaviour, while it is less likely for the ballistic regime. And
indeed, since the ballistic regime continuously regenerates nonlinear pulses on its
own, it presumably does not depend on a finite-amplitude perturbation to be selected.

In the context of small-amplitude fluctuations, a question that has not yet been
addressed is the nature of pulsating channel-flow instability, i.e. convective or
absolute (Huerre & Monkewitz 1990). For purely oscillating boundary layers, as
investigated by Blennerhassett & Bassom (2002, 2006) and Thomas et al. (2014),
the onset of instability is expected to coincide with absolute instability, while steady
plane Poiseuille flow is at most convectively unstable. Therefore, transition between
convective and absolute instability is likely to occur when the pulsating base-flow
component is increased or equivalently the steady component reduced; this could be
investigated using the theory discussed by Brevdo & Bridges (1997).

The observation of linear modes exhibiting strong intracyclic growth phases, raises
the question of the possibility for even larger transient growth resulting from an
optimal initial condition. Current investigations address the computation of transient
energy amplifications using non-modal stability theory (see Schmid 2007) applied to
time-periodic flows.

In a physiological context, the blood flow rates resulting from the cardiac pulse
cannot be described by a single oscillating harmonic component but require a Fourier
expansion of the form (3.3) with more modes. All the mathematical methods and
numerical tools developed in the present investigation can handle flow rates with an
arbitrary number of base-flow Fourier components. Current collaboration with Service
de chirurgie vasculaire (Hôpital Édouard–Herriot, Lyon) and Service de Radiologie
(Hôpital de la Croix-Rousse, Lyon) aims at obtaining relevant flow-rate waveforms
for studying their fluid dynamical properties.

For bioengineering applications as well as for fundamental reasons, the present
approach needs to be generalized from plane channel to circular pipe configurations.
This work is in progress and requires minor adjustments to take into account the extra
terms due to a formulation in cylindrical coordinates. However, the main difficulty
arises from the fact that Hagen–Poiseuille flow through a circular pipe is linearly
stable at all Reynolds numbers, therefore an approach based on temporally modulating
the steady base flow is inappropriate for comprehending a regime of nonlinear waves
travelling through a circular pipe. Thomas et al. (2011) have found neutrally stable
conditions for pulsating pipe flow that could be used as starting points for nonlinear
simulations; these conditions, however, correspond to essentially oscillating flow with
a weak steady component, thus complicating their continuation toward physiological
conditions. Furthermore, pulsatile flow through curved pipes (Siggers & Waters 2008)
probably sustains even more complex dynamics.
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Appendix A. Numerical solution methods and validation

Following the mathematical formulation of § 4, the governing equations yield
systems of coupled partial differential equations of first order in time with spatial
derivatives only in the wall-normal coordinate x0. The numerical implementation
of these one-dimensional multi-component problems is based on the home-spun
PackstaB library in C++; it involves a Chebyshev collocation technique for spatial
discretization and a predictor–corrector fractional-step method for temporal integration.
The essential features used in the present investigation are presented below, more
details of the general method may be found in (Pier 2015, § A.6).

A.1. Spatial discretization

The differential problems in the wall-normal coordinate x0 are solved via a Chebyshev
collocation method (Boyd 2001) where the collocation points ξi ≡−h cos(iπ/(N0 − 1))
for 0 6 i < N0 span the diameter of the channel.

No-slip boundary conditions apply to the velocity components while there
are no boundary conditions for the pressure. Thus the velocity components are
discretized using all N0 collocation points including boundary points, while the
pressure components may be discretized using only the N0 − 2 interior points. This
amounts to approximating velocity components by polynomials of order N0 − 1
and pressure components by polynomials of order N0 − 3. In this collocation
technique, approximations of the x0-derivatives are then computed by using N0 × N0

or (N0 − 2) × (N0 − 2) matrices, respectively.
Taking into account symmetry/antisymmetry of the different flow fields and using

the associated discretized differential operators in the x0-coordinate, computations may
be restricted to half the channel width and the numerical effort reduced by using only
the N⋆

0 collocation points from the centreline to the boundary instead of the complete
set of N0 = 2N⋆

0 − 1 points covering the entire channel diameter.

A.2. Eigenvalue problems

The Floquet analysis discussed in § 4.2 yields an infinite system of linear coupled
ordinary differential equations involving the Fourier components of the velocity and
pressure eigenfunctions (4.14)–(4.17).

Truncating the Fourier expansions of the eigenfunctions (4.13) at |n| 6 Nf then
yields an algebraic generalized eigenvalue problem of size (4N0 − 2)(2Nf + 1),
since there are N0 values for each of the three velocity components and N0 − 2
values for the pressure components. This generalized eigenvalue problem may be
reduced to a regular eigenvalue problem of size 2(N0 − 2)(2Nf + 1) by eliminating
the pressure (taking the divergence of the momentum equations) and one of the
velocity components (using the continuity equation) as well as the (homogeneous)
velocity boundary conditions. This may be further reduced to 2(N⋆

0 − 1)(2Nf + 1),
with N0 = 2N⋆

0 − 1, by separately solving for sinuous or varicose modes.
Note that for all configurations considered in this study, it has been found that the

most unstable or least stable perturbation is a sinuous mode, a confirmation of what
was already observed by von Kerczek (1982).
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A.3. Temporal evolution problems

In a linear analysis, the equations (4.7)–(4.10) involve three scalar velocity components
and one pressure field. In a nonlinear analysis, after truncating the Fourier expansions
(4.20), (4.21) at |n| 6 Nh, the equations (4.22)–(4.25) involve 3(2Nh + 1) velocity
components and 2Nh + 1 pressure components; note that the condition of real fields
implies that 2Nh + 1 complex components are completely described by 2Nh + 1
independent real components. Time marching of these incompressible Navier–Stokes
equations is carried out by a second-order accurate predictor–corrector fractional-step
method, derived from the implementations of Goda (1979) and Raspo et al. (2002),
where the velocity components are obtained at the intermediate time step by solving
Helmholtz-type problems, and Poisson-type problems yield the pressure predictions
and corrections required to enforce divergence-free velocity fields. Complete details
of the numerical method are given in Pier (2015, § A.6.3).

For each simulation, the numerical values of the Floquet multiplier µ and of the
associated frequency ω are derived by computing the ratios ui(x0,j, t + T)/ui(x0,j, t),
where i = 0, 1 or 2 and x0,j is any of the collocation points. It is then checked
that all these ratios converge to the same constant value and do not depend on the
phase with respect to the base-flow pulsation, with at least five significant digits.
Since the precision of these ratios is degraded when both the numerator and the
denominator approach very small values, a threshold has been set on the magnitude
of the denominator (typically 10−5) below which the ratio is not computed. The same
strategy has been adopted to produce table 1, but using longer time series than for
the rest of the paper in order to obtain the required highly converged numbers.

As mentioned in § 4.3, an external volume force f = −g1(t)e1 −g2(t)e2 is used
in the nonlinear governing equations in order to simulate evolution problems at
the prescribed instantaneous total flow rate of the base flow. The purpose of this
time-dependent spatially homogeneous body force, or pressure gradient, in the wall-
parallel directions is to ensure that the spatially invariant flow corrections u(0)(x0, t)
due to nonlinearities develop without modifying the base flow rate. In the numerical
implementation, the streamwise and spanwise flow-rate corrections q1(t) and q2(t),
defined in (4.27), (4.28), are driven to vanishing values by applying pressure gradient
values governed by

∂tg1 = q1

(

G(0)

τQ(0)

)

and ∂tg2 = q2

(

G(0)

τQ(0)

)

. (A 1a,b)

Using sufficiently small values of the relaxation time τ and solving (A 1) while time
marching (4.22)–(4.25) guarantees that the pressure gradients g1(t) and g2(t) constantly
adjust so as to suppress any departure from the base flow rate.

A.4. Validation

The accuracy of our numerical schemes has been assessed by comparison with known
results and by extensive resolution tests.

For steady Poiseuille configurations, the eigenvalues given by Schmid & Henningson
(2001, p. 504) have been reproduced to 8 significant digits both by solving the
corresponding eigenvalue problem and by linearized direct numerical simulations
(DNS); note that in these tables (Schmid & Henningson 2001, p. 504) the third
column corresponds to α = 0.25 and β = 2 instead of the mistakenly given β = 3.
The nonlinear time-marching procedure has been checked by reproducing the
Tollmien–Schlichting waves obtained by Ehrenstein & Koch (1991).
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Floquet N⋆
0 = 16 24

Nf = 4 0.77226176 + 0.01194734i 0.77241812 + 0.01208715i
8 0.78504147 + 0.00935444i 0.78521143 + 0.00945091i
12 0.78504178 + 0.00935423i 0.78521176 + 0.00945071i
16 0.78504178 + 0.00935423i 0.78521176 + 0.00945071i
20 0.78504178 + 0.00935423i 0.78521176 + 0.00945071i

N⋆
0 = 32 40

Nf = 4 0.77241825 + 0.01208730i 0.77241825 + 0.01208730i
8 0.78521144 + 0.00945111i 0.78521144 + 0.00945111i
12 0.78521178 + 0.00945092i 0.78521178 + 0.00945092i
16 0.78521178 + 0.00945092i 0.78521178 + 0.00945092i
20 0.78521178 + 0.00945092i 0.78521178 + 0.00945092i

DNS N⋆
0 = 16 24

Nt = 2 × 103 0.78591123 + 0.00945731i 0.78604254 + 0.00954315i
5 × 103 0.78520420 + 0.00933115i 0.78534476 + 0.00946264i
104 0.78508394 + 0.00929745i 0.78524509 + 0.00945350i
2 × 104 0.78504068 + 0.00928410i 0.78522016 + 0.00945137i
5 × 104 0.78501960 + 0.00927863i 0.78521309 + 0.00945070i
105 0.78501341 + 0.00927741i 0.78521196 + 0.00945057i
2 × 105 0.78501048 + 0.00927694i 0.78521160 + 0.00945057i
5 × 105 0.78500878 + 0.00927670i 0.78521146 + 0.00945061i

N⋆
0 = 32 40

Nt = 2 × 103 0.78604246 + 0.00954325i 0.78604246 + 0.00954326i
5 × 103 0.78534469 + 0.00946274i 0.78534468 + 0.00946274i
104 0.78524501 + 0.00945363i 0.78524501 + 0.00945363i
2 × 104 0.78522009 + 0.00945157i 0.78522009 + 0.00945157i
5 × 104 0.78521311 + 0.00945102i 0.78521311 + 0.00945102i
105 0.78521211 + 0.00945094i 0.78521211 + 0.00945094i
2 × 105 0.78521186 + 0.00945092i 0.78521186 + 0.00945092i
5 × 105 0.78521179 + 0.00945092i 0.78521179 + 0.00945092i

TABLE 1. Complex frequency ω of most unstable linear perturbation at Re = 10 000, Wo =
10, Q̃ = 0.1 and α1 = 2. Values computed by solving Floquet eigenproblem (truncated at
Nf Fourier components) and linearized DNS (with Nt time steps per pulsation period) for
different spatial resolutions.

For pulsating base flows, we have reproduced the growth rates shown in figure 1
of von Kerczek (1982) by computing data similar to those shown in our figure 5(b).
By modifying our codes to take into account oscillating boundaries, we have also
reproduced the data given in table 1 of Blennerhassett & Bassom (2006), albeit not
to 6 significant digits for all of them, and those more recently presented in figure 2b
of Thomas et al. (2011).

The validation of our numerical methods is further based on thorough resolution-
independence studies and, for the linear results, on the consistency between Floquet
analysis and linearized DNS.

Table 1 gives values of the complex frequency ω for the most unstable linear
perturbation at Re = 10 000, Wo = 10, Q̃ = 0.1 and α1 = 2. For a range of spatial
discretizations N⋆

0 = 16, 24, 32 and 40, the value of ω is computed by solving Floquet
eigenproblems using an increasing number Nf of Fourier modes for the eigenfunctions
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FIGURE 25. (Colour online) (a) Error in ω computed by linearized DNS with increasing
number Nt of time steps per pulsation period and N⋆

0 = 16, 24, 32, 40, 48. (b) Error in
perturbation energy computed by nonlinear DNS with increasing Nt and Nh = 2 (blue),
3, 4, . . . , 10 (red) at N⋆

0 = 56.

Nh = 4 N⋆
0 = 32 40 48 56

Nt = 2 × 104 0.0035969556 0.0035969659 0.0035969656 0.0035969656
5 × 104 0.0035965369 0.0035965454 0.0035965451 0.0035965451
105 0.0035964768 0.0035964830 0.0035964826 0.0035964826
2 × 105 0.0035964555 0.0035964615 0.0035964612 0.0035964612
5 × 105 0.0035964290 0.0035964511 0.0035964508 0.0035964508
106 0.0035964198 0.0035964480 0.0035964477 0.0035964477

Nh = 9 N⋆
0 = 32 40 48 56

Nt = 2 × 104 0.0035947566 0.0035945442 0.0035945398 0.0035945397
5 × 104 0.0035941373 0.0035938778 0.0035938737 0.0035938737
105 0.0035941337 0.0035937882 0.0035937844 0.0035937847
2 × 105 0.0035942881 0.0035937632 0.0035937600 0.0035937600
5 × 105 0.0035948005 0.0035937528 0.0035937513 0.0035937512
106 0.0035953686 0.0035937481 0.0035937493 0.0035937492

TABLE 2. Energy of fully developed nonlinear fluctuation at Re = 10 000, Wo = 10, Q̃ = 0.2
and α1 = 2. Values computed by DNS with Nt time steps per pulsation period, spatial
Fourier expansions truncated at |n|6Nh and using a range of resolutions in x0 coordinate.

and by linearized DNS using an increasing number Nt of time steps per base-flow
pulsation period. With both methods, it is found that eight significant digits are
achieved for N⋆

0 > 32. In this example, the eigenproblem is already very accurately
resolved with Nf > 12, and the temporal simulations reach the same precision with
Nt > 5 × 105. Note that these correspond to approximately Nt/20 time steps per
perturbation period since ωr/Ω ≃ 20 with Ω = 4Wo2/Re = 0.04. Figure 25(a) plots
the error of the values computed by DNS with respect to the converged Floquet
results and demonstrates the second-order convergence of the temporal integration
scheme; for N⋆

0 > 32, curves are indistinguishable in this log–log plot. In practice,
linearized simulations with Nt = 104 and N⋆

0 = 32 yield results of sufficient accuracy
over the entire parameter space considered here. In contrast, the number Nf of Fourier
modes required for convergence depends on Wo and increases significantly with Q̃ as
discussed in § 5.2.
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Table 2 gives values of the average perturbation energy in the fully developed
regime at Re = 10 000, Wo = 10, Q̃ = 0.2 and α1 = 2, obtained by DNS with up
to Nt = 106 time steps per pulsation period and different settings of Nh and N⋆

0 .
This configuration is discussed in detail in § 6.1.2. For nonlinear temporal evolution
problems, the resolution requirements to achieve a precision of 8 significant digits
are more difficult to meet since increasing the number Nh of spatial Fourier modes
also requires larger values of N⋆

0 to fully resolve these higher modes. Nonetheless,
figure 25(b), which plots the error with respect to the value computed at highest
resolution, shows that second-order convergence is still achieved for the nonlinear
simulations. For the parameter ranges considered in this paper, it has been found that
nonlinear simulations with Nt = 105, Nh = 7 and N⋆

0 = 48 are generally more than
enough to obtain reliable results and plots that do not change at higher resolutions.
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