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Abstract

The dynamics of viscous flow through a rotating pipe is considered. Small-
amplitude stability characteristics are obtained by linearizing the Navier—
Stokes equations around the base flow and solving the resulting eigenvalue
problems. For linearly unstable configurations, the dynamics leads to fully
developed finite-amplitude perturbations that are computed by direct numer-
ical simulations of the complete Navier—Stokes equations. By systematically
investigating all linearly unstable combinations of streamwise wave number k
and azimuthal mode number m, for streamwise Reynolds numbers Re, < 500
and rotational Reynolds numbers Req < 500, the complete range of nonlinear
travelling waves is obtained and the associated flow fields are characterized.
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1. Introduction

The axial flow through a rotating pipe has been studied over decades, both for its fundamental
importance and for its wide application in turbomachinery and other fluid machines. Rotation
changes the basic nature of the instability of the laminar Hagen—Poiseuille flow (Pedley 1968, 1969,
Mackrodt 1976, Cotton and Salwen 1981, Fernandez-Feria and del Pino 2002, Rusak and
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Wang 2014, Miranda-Barea et al 2016) and the subsequent route towards turbulence. The final
turbulent state too is rather different from that in the non-rotating pipe (Imao et al 1996).

The laminar flow through a non-rotating pipe is linearly stable at all Reynolds numbers in
that all eigenmodes are exponentially decaying. The transition to turbulence takes place by means
of a subcritical route, due to the non-normality of the stability operator, and the consequent
algebraic growth of disturbances. In contrast, when the pipe wall is in rotation about the pipe axis,
exponentially growing disturbances are supported, and the nonlinear evolution is supercritical.
Pedley (1968) showed that the inviscid flow in the limit of strong pipe rotation and weak axial
flow is linearly unstable to long wave disturbances. He extended his study to viscous flow in the
following year (Pedley 1969) to show that rotating Hagen—Poiseuille flow (RHPF) in the same
strong rotation limit is linearly unstable to long waves above a critical Reynolds number of 82.9.
The mode that was found to be least stable was a corkscrew mode which propagates axially in the
direction of the flow but rotates in a sense opposite to that of the walls of the pipe. Given the
symmetries in the problem, this mode is equivalent to one which propagates axially in a sense
opposite to the axial mean flow but rotates in the same sense as the pipe. Mackrodt (1976)
extended this study to lower rotation rates and showed that the flow can still be linearly unstable at
fairly low rotation rates. This work also showed experimentally that residual switl in the entry
region can trigger instabilities. A comprehensive study of the linear stability of the RHPF was
carried out by Cotton and Salwen (1981), extending the earlier results to higher axial wave-
numbers and a range of azimuthal mode numbers. By deriving neutral stability curves, they
noticed that the critical Reynolds number is only weakly dependent on the rotation number
provided that the latter is large enough, and that similarly the critical rotation number is only
weakly dependent on the Reynolds number provided that the Reynolds number is large enough.
In other words, the unstable region is approximately delimited by lines of either constant Rey-
nolds number or constant rotation number. An asymptotic theory for the draining bathtub vortex
was given by Foster (2014), and there are a host of such studies of swirling flows where the pipe
walls are stationary, which we do not discuss here. Analogously, Rusak and Wang (2014)
conducted an inviscid study of solid body rotation accompanied by uniform axial flow and found
a critical swirl ratio, above which there are two kinds of nonlinear states.

Given that a Hagen—Poiseuille flow through a stationary pipe is linearly stable to all
convective modes, this flow can obviously never be absolutely unstable. In contrast, RHPF
can display modes of absolute instability, as was shown by Fernandez-Feria and del Pino
(2002). These modes of absolute instability were obtained experimentally in the recent study
of Miranda-Barea et al (2016). They applied a spin-down to the pipe and could thus obtain the
critical rotation rate for the switch from absolute instabilities to convective.

Some studies of the nonlinear evolution of disturbances have been carried out on the RHPF.
Toplosky and Akylas (1988) resolved a controversy as to whether the nonlinear evolution is
supercritical or subcritical, and found no subcritical nonlinearities. All subsequent nonlinear studies
to our knowledge, and also the present study, find only supercritical growth of perturbations in the
nonlinear regime. In fact the boundary of linear neutral stability also marks the onset of nonlinear
evolution of wave trains. This was seen explicitly in the study of Yang and Leibovich (1991) which
focused on the close vicinity of the neutral stability boundary. The predicted linear and nonlinear
modes were confirmed qualitatively in the experiments of Imao et al (1992). Furthermore, these
experiments have shown how the initially sinusoidal perturbations adopted a saw-tooth form in their
nonlinear state. Far downstream, perturbations other than the least stable linear mode were trig-
gered, and the disturbance spectrum became broadband. Landman (1990) imposed the constraint of
helical symmetry, and demonstrated that the nonlinear state goes through several bifurcations and
results in a time-dependent flow. Barnes and Kerswell (2000) found three-dimensional travelling
waves which appeared after a bifurcation from the solutions found by Toplosky and Akylas (1988).
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A range of studies focus on pipes where the flow is not streamwise independent. One
situation is of course when the pipe is finite, so entry and exit flows dictate the dynamics, see
e.g. Sanmiguel-Rojas and Fernandez-Feria (2005). Dennis et al (2014) created a vortex
breakdown in a pipe where one part was rotating faster than a critical rate. The fully turbulent
flow through a rotating pipe is not a topic of the present study, but it is of interest to note that
while rotation acts to destabilise the laminar flow and provide a supercritical route to tur-
bulence, the resulting turbulence may be suppressed by rotation (Imao et al 1996).

The objective of the present investigation is to systematically derive and characterize the
family of nonlinear travelling-wave solutions sustained in RHPF. Therefore we study the
nonlinear evolution of a class of travelling waves over a range of the relevant parameters in a
periodic box. We show that the dynamics saturates into a nonlinear state of a system of
travelling waves. In all cases, the most energetic nonlinear state has longer wavelength than
that of the corresponding fastest growing linear eigenmode.

2. Problem formulation

In this study, the fluid flow is described by a vector velocity field u(x, ¢) and a scalar pressure
field p(x, t) that depend on position x and time ¢ and are governed by the incompressible
Navier—Stokes equations

g—l; + (u- V)u =vAu — Vp, (H
V-u=0, 2)

where v is the kinematic viscosity of the fluid, and the pressure has been redefined to eliminate
the constant fluid density from the equations. The flow occurs inside a pipe of radius R which is
rotating at rate {2 about its axis and no-slip boundary conditions prevail along the pipe walls. A
fixed cylindrical coordinate system will be used where r, # and z denote radial, azimuthal and
axial coordinates respectively, and » = 0 coincides with the pipe axis.

In the RHPF configuration, the flow is driven by the combination of two factors: a constant
axial pressure gradient and the rotating pipe walls. The resulting steady, axisymmetric and
axially invariant base flow is then an exact superposition of an axial parabolic velocity profile
U, and an azimuthal solid-body rotation U, depending only on the radial coordinate r as

U (r) = 2(7(1 — ;—22) and Uy(r) = Qr, 3)

where U is the mean axial velocity, associated with an axial pressure gradient of magnitude
G. = 8vU/R?. This flow is governed by two non-dimensional control parameters, the
streamwise and azimuthal (or rotational) Reynolds numbers defined as

Re,=2UR/v and Req =2QR?/v 4

respectively. With this definition, the ratio Req, /Re, corresponds to the ratio of the azimuthal
pipe wall velocity to the mean axial flow velocity. In the sequel, units used for giving
numerical results are based on the pipe diameter 2R and the mean axial velocity U.

Throughout this investigation, the total instantaneous flow fields are separated into basic
and perturbation quantities as

u(r, 0, z, 1) = u,(r, 0, z, 1), (5)



Fluid Dyn. Res. 50 (2018) 031402 B Pier and R Govindarajan

L@ )
2 2

0 } } } } } } } } } 0 } } } } } } } n }

50 100 150 200 250 300 350 400 450 500Re, 50 100 150 200 250 300 350 400 450 500Re,
k ¢ k d

ko © k@

0 100 150 200 250 300 350 400 450 500Re.
Ey oo (f)

(e)
31 31
21 27
11 1+ @

050 100 150 200 250 300 350 400 450 500Re.’50 100 150 200 250 300 350 400 450 500Re.
k@ ko

3 3

2 2 _

1 1

0 } } } } } } } } } 0 } } } } } } } } }
50 100 150 200 250 300 350 400 450 500Re, 50 100 150 200 250 300 350 400 450 500Re,

Figure 1. Temporal growth rate w; in (Re, k)-plane for (a) m = —1, Ren = 60,
(b)m=—1, Reqg=100, (c)m= —1, Req=200, (d)m= —1, Req= 500,
(&) m = =2, Req =200, (f)m = -2, Reqg =500, (g) m = —3, Reqg =200 and
(h) m = =3, Rep = 500. Thick black lines correspond to the marginal curve w; = 0
and thin coloured lines to positive growth rates w; = 0.1, 0.2, 0.3, 0.4, ...

ug®(r, 0, z, t) = Uy(r) + ug(r, 9, z, 1), (6)
u®(r, 0, z, 1) = U,(r) + u,(r, 0, z, 1), @)
peir, 0, z2,t) = -Gz + p(r, 0,z 1), (8

whether the perturbation is of small amplitude or not. Replacing these expansions into the
Navier—Stokes equations (1) and (2) then yields the governing equations for the perturbation
flow fields u,, uy, u, and p.
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Figure 2. Neutral curves in (Re;, Reg)-plane for m = —1, —2, —3.
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Figure 3. Temporal evolution of £, kinetic energy contained in each spatial Fourier
component, and of total E™, resulting from a small-amplitude initial perturbation at
k=1 and m = —1 for Re, =250 and Ren = 200, plotted on (a) logarithmic and
(b) linear scales.

When analysing the dynamics of small-amplitude perturbations, the disturbances may be
written in normal-mode form as

uy(r, 0, z, 1) = d,(r)exp itkz + mf — wr), ©)
ug(r, 0, z, t) = dg(r)exp itkz + mb — wt), (10)
u,(r, 0, z, t) = d,(ryexp itkz + mf — wr), (11)
p(r, 0, z, t) = p(r)exp i(kz + mb — wr), (12)

where k is an axial wave number, m an azimuthal mode number and w a (complex) frequency.
Linearization of the governing equations then leads to eigenvalue problems, the solution of
which yields the w-eigenvalue spectrum together with the associated eigenfunctions i, (r),
iig(r), i,(r) and p(r), for each setting of k, m, Re, and Reg. Usually, the spectrum is
dominated by a single eigenvalue and its identification then yields the linear dispersion
relation as

w = w'™(k, m; Re,, Reg). (13)

In unstable situations, characterized by positive growth rates w; = Imw, an initial spa-
tially periodic small-amplitude perturbation may be exponentially amplified in time and
eventually reach finite amplitudes, thus be governed by the full nonlinear equations. The
resulting nonlinear dynamics is then investigated by using spatial Fourier series of the form
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Figure 4. Temporal evolution of instantaneous frequency w = w, + iw; from the linear
growth phase (W' = —0.42 + 0.44i) to the saturation regime (w" = —0.56). Same
configuration as figure 3.

u (r, 0, z, 1) = > u™(r, exp inlkz + mb), (14)
ug(r, 0, z, 1) = > u"(r, hexp in(kz + mb), (15)
u(r, 0, z, ) = > ul(r, exp in(kz + mb), (16)
p(r, 0, z, 1) = p™(r, n)exp in(kz + mb), (17)

n

and integrating in time the nonlinear temporal evolution problem consisting in a system of
coupled partial differential equations for the components u,(”)(r, 1), u()(")(r, 1), ué”)(r, t) and
p"(r, 1. This is equivalent to considering a finite domain with periodic boundary conditions
and investigating the dynamics of finite-amplitude disturbances at prescribed total axial
pressure gradient. The numerical implementation of this time-marching problem uses a
second-order accurate predictor—corrector fractional-step method, similar to the one described
in detail in Pier and Schmid (2017). Complete expressions and derivations of the linear and
nonlinear governing equations as well as numerical solution methods may be found in
Pier (2015).

It should be emphasized that the use of single spatial Fourier series in expansions
(14)-(17), instead of double series using terms of the form exp i(nkz + Im6) with n = [, is
motivated by our objective of computing primary nonlinear travelling wave solutions, rather
than studying their stability with respect to secondary perturbations. Indeed, starting from a
linearly unstable small-amplitude initial perturbation of the form exp i(kz + m6), the non-
linearities of the Navier—Stokes equations only promote spatial harmonics of the form
exp in(kz + mf), while terms of the form exp i(nkz + Imf) with n = [ would only be
generated by secondary instabilities.

3. Results

3.1. Linear dynamics

The dynamics of small-amplitude perturbations is governed by the dispersion relation (13)
derived from a normal-mode analysis of the Navier—Stokes equations linearized around the
base flow (3). In this subsection we repeat some of the results obtained by previous authors to

6



Fluid Dyn. Res. 50 (2018) 031402 B Pier and R Govindarajan
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Figure 5. Velocity fields of saturated nonlinear travelling wave at k = 1 and m = —1
for Re, =250 and Req = 200: (a), (b) axial component and (c), (d) in-plane velocity
for ((a), (c)) perturbation and ((b), (d)) total flow. In (a), coloured lines correspond to
negative velocities —0.2, —0.4 and —0.6. In (b), coloured lines correspond to positive
velocities 0.2, ..., 1.6. Black lines indicate vanishing values.

validate our approach and identify the parameter space of interest for the subsequent
investigation of nonlinear travelling-wave solutions.

Temporal growth rates w; corresponding to the most unstable mode are shown in figure 1
over the (Re;, k)-plane for Re, < 500 and different values of Req and m. For m = —1
(figures 1(a)—(d)), the RHPF becomes already unstable at Req, = 60, while higher values of
Req are required for m = —2 (figures 1(e)—(f)) and m = —3 (figures 1(g)—(h)). These results
fully agree with those obtained by Cotton and Salwen (1981).

The critical curves for onset of instability in the (Re,, Req)-plane are shown in figure 2 for
m = —1, —2 and —3. As already noticed by Cotton and Salwen (1981), these critical curves
asymptote towards constant values of Re, or of Req. Except for low values of both Re, and
Req, onset of instability thus only depends on the lowest of these two control parameters. For
parameter values within the linearly unstable regions, growing perturbations lead to a fully
developed regime, analysed in detail in the rest of this paper.

7
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Figure 6. (a) Axial and (b) azimuthal mean velocity profiles prevailing for the fully
developed nonlinear travelling wave: comparison of base profile (solid), mean flow
correction (dotted) and total mean profile (dashed). Same parameter settings as in
figures 3 and 5.

3.2. Nonlinear travelling waves

In configurations where the base flow displays linear temporal instability, a small-amplitude
perturbation with a positive growth rate is exponentially amplified and eventually reaches
finite-amplitude levels. The nonlinear terms in the Navier—Stokes equations can then no
longer be neglected and the dynamics is governed by the complete nonlinear equations. The
aim of this investigation is to systematically derive and characterize the resulting fully
developed travelling wave solutions for Re, < 500 and Re, < 500.

The approach is here based on temporal evolution problems investigated by direct
numerical simulations of the Navier—Stokes equations. Starting from a small-amplitude initial
perturbation, the evolution is first dictated by linear dynamics before nonlinear effects come
into play. In the absence of secondary instabilities, a fully developed regime is reached with
spatial periodicity imposed by the prescribed values of streamwise wave number k and azi-
muthal mode number m. As already mentioned in the Introduction, no sign of a subcritical
transition has been found. This approach is therefore deemed to yield all nonlinear wave
solutions that may prevail in the RHPF, for the control-parameter region under consideration.

A typical scenario may be illustrated by considering the temporal evolution of a pertur-
bation at k =1 and m = —1 for Re, = 250 and Ren = 200. At these parameter values the
linear dispersion relation yields a complex frequency of w'" = —0.42 + 0.44i, with a positive
temporal growth rate. Figure 3 shows the temporal evolution of the energy E” contained in
each spatial harmonic together with the total E™ = 3, _ (E™, both on logarithmic and linear
scales; the energy E™ is here defined as the spatially averaged kinetic energy per unit volume
associated with the Fourier component corresponding to n and —n of the expansions (14)—(16).

In the first stage of the evolution, here approximately for ¢ < 0.15, the perturbation is
seen to grow exponentially: the energy E/(r) in the fundamental component is amplified as
e2«i!_ while the higher harmonics (n > 2) are slaved by nonlinear interaction to the funda-
mental as E™ () oc [EV(#)]* and the mean-flow correction as E@(¢) oc [EV(1)]?, see
figure 3(a). The nonlinearities are stabilizing and therefore lead to saturation at finite

8
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Figure 7. Levels of total disturbance energy E™ in the (Re;, k)-plane for (a) m = —1,
Req =100, (b)y m = —1, Req =200, (c)ym= —2, Reqg=200, (d)ym= -2,
Req =500, (e) m = —3, Req =200, (f) m = —3, Reqg =500. Thick black lines
correspond to the marginal curve and thin coloured lines to levels E™ = 0.005, 0.010,
0.015, ...

amplitude levels. In the absence of secondary instabilities, a fully nonlinear travelling-wave
solution is then reached in the long-time limit with spatial periodicity imposed by the pre-
scribed values of k and m and constant energy levels, see figure 3(b). For the final pertur-
bation velocity and pressure fields (14)—(17) associated with this nonlinear travelling
solution, each of the nth spatial Fourier components is found to depend on time as
exp(—inw"'t) for some real frequency w™. This means that the flow fields are 2m-periodic
functions of kz + mf — w"t, which is characteristic of three-dimensional solutions that travel
without deforming. The nonlinear frequency w™ is related to the axial wave propagation
speed as w" /k and to the azimuthal wave rotation rate as w" /m. Its value is obtained by the
numerical simulations, which therefore yield the nonlinear dispersion relation

w"(k, m; Re., Req). (18)

In the example illustrated here, w™ = —0.56. Monitoring the temporal evolution of the
instantaneous complex frequency, figure 4 shows how the growth rate varies from w; = 0.44
in the linear growth phase to a vanishing value in the saturation regime, while the real part of
the frequency decreases from w, = —0.42 to w, = —0.56. As shown below (see figure 6(a)),
this frequency reduction in the nonlinear régime is associated with the development of a
negative mean-flow correction.
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Figure 8. Relative axial mean flow-rate corrections for (a) m = —1, Ren = 100,
b)ym=—1, Req=200, (c)m= -2, Req=200, (d)m= -2, Reqg=500,
() m = =3, Req =200, (f) m = —3, Req = 500. Thick black lines correspond to
the marginal curve and thin coloured lines to levels Q/Q = —0.05, —0.10, —0.15, ...

Note that the fully developed nonlinear travelling waves could have been obtained by an
iterative Newton—Raphson search procedure, a technique that we have used and implemented
in a similar context for the three-dimensional rotating-disk boundary layer (Pier 2007). For
the RHPF, however, that was not necessary since for the parameter space under consideration
the time-marching procedure outlined in section 2 was always found to converge towards the
desired finite-amplitude travelling wave solutions and, moreover, provides information about
the transition from the linear growth phase to the saturated regime.

The velocity fields of this nonlinear travelling-wave solution are given in figure 5. Iso-
lines of the axial velocity are shown in figures 5(a) and (b) for the nonlinear perturbation and
the total flow respectively. The velocity field in a cross-section of the pipe is shown in
figures 5(c) and (d), again for the perturbation and total flow. Due to the travelling-wave
structure of this solution, plots at a different axial position z or different time ¢ only differ
from those shown in figure 5 by rotation in 6. The axial disturbance velocity component
(figure 5(a)) is mostly negative and non-axisymmetric. Thus the resulting total axial velocity
(figure 5(b)) is significantly reduced in comparison with the base Poiseuille profile and
displays a maximum value slightly in excess of 1.6 off axis. Recall that the maximum axial
Poiseuille velocity is 2 since the mean velocity U is used as unit.
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Figure 9. Relative mean angular momentum corrections for (a) m = —1, Reg = 100,
b)ym=—1, Req=200, (c)m= -2, Req=200, (d)m= -2, Reqg=500,
() m = =3, Req =200, (f) m = —3, Req = 500. Thick black lines correspond to
the marginal curve and thin coloured lines to levels M /M,; = —0.01, —0.02, —0.03 ...

The development of nonlinearities produce higher harmonics as well as an axisymmetric
mean flow correction associated with the non-periodic component of the perturbation.
Figure 6 compares the mean profiles prevailing in the fully developed regime with those of
the unperturbed base flow, both for the axial (figure 6(a)) and the azimuthal (figure 6(b))
components. The effect of this mean flow correction is to reduce the total axial flow rate Oy
as well as the total angular momentum M, of the flow: here Q./Qn = 0.88 and
Mo /Mps = 0.97, where Q¢ and My refer to flow rate and momentum prevailing for the
unperturbed base flow.

By varying the disturbance wave numbers k and m and the base flow control parameters
Re, and Req,, the complete set of nonlinear travelling waves may be systematically computed.
In the present investigation we have covered the full range of nonlinear solutions for
Re, < 500 and Req < 500.

Isolines of the total disturbance energy E™ associated with the nonlinear travelling waves are
plotted in figure 7 in the (Re,, k)-plane for selected values of m and Re. For m = —1 and
Req = 100, comparison of the linear temporal growth rates shown in figure 1(b) with the energy
levels of the nonlinear saturated travelling waves shown in figure 7(a) clearly demonstrates the
supercritical nature of the nonlinearities: the amplitude of nonlinear travelling waves vanishes as
the critical curve for instability is approached. However, the largest values of E™ do not coincide

11
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Figure 10. Frequencies of linear (solid coloured lines) and nonlinear (dashed lines)
waves in the (Re,, k)-plane for (a) m = —1, Req =300, (b) m = —1, Req = 500,
(¢) m = =2, Req = 300, (d) m = —3, Reg = 300. The thick black lines indicate the
curve of marginal stability.

with the strongest linear temporal growth rates. Indeed, for a given value of Re,, the strongest
temporal growth rate occurs approximately in the centre of the unstable k-range, while the largest
nonlinear amplitudes are found towards lower values of k. Similar conclusions hold for all
configurations investigated here, comparing figures 1(c) with 7(b), 1(e) with 7(c), 1(f) with 7(d),
1(g) with 7(e) and 1(h) with 7(f), respectively.

The mean axial flow rate corrections and angular momentum corrections due to the fully
developed nonlinear travelling waves are shown in figures 8 and 9, respectively. In these
figures, mean-flow-correction quantities are shown relative to the values prevailing for the
underlying base flows.

As expected by the supercritical nature of the instabilities, the flow-rate correction curves
shown in figure 8 follow very similar trends to the energy curves of figure 7. Comparison of
panels corresponding to the same settings of m and Rep reveals that the largest flow-rate
corrections approximately correspond to the largest disturbance energy levels.

Monitoring the mean angular momentum corrections as the control parameters are varied
a slightly different pattern emerges (figure 9): while the values obviously still decay towards
the critical curves, it is found that largest contributions prevail for axial wavenumbers in the
centre of the unstable k-range. These computations thus reveal that the strength of axial and
azimuthal mean-flow corrections significantly depend on the wavenumber k and that the axial
corrections are more important for long wavelength perturbations. Thus the evolution of the
relative angular momentum shown in figure 9 more closely follows that of the linear temporal
growth rate (figure 1) than that of the saturated energy levels (figure 7). Unlike the linear
temporal growth rates that display a maximum when Re, is varied (see figure 1), both the
flow-rate and angular momentum corrections continue to increase with the axial Reynolds
number Re, over the range investigated (see figures 8 and 9).

Finally, the frequencies of the linear and nonlinear travelling waves are compared in

figure 10. For linear waves, the real part of the complex frequency w'™ is derived from the
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linear dispersion relation (13) over the entire (Re,, k)-plane, and plotted with solid coloured
lines in the panels of figure 10. Nonlinear waves exist within the regions of linear instability
(delimited by thick black curves), and the dashed coloured lines indicate their associated
frequency w™ (18). These results show that the nonlinear waves always display a lower
frequency than their linear counterparts. Due to the supercritical nature of the present
instabilities, linear and nonlinear frequencies converge to the same values along the curves of
marginal stability. The departure between linear and nonlinear frequencies is seen to increase
with Re, and to be most significant towards the larger values of k.

4. Conclusions

In this paper, we have systematically investigated the fully developed dynamics prevailing in
RHPF, for streamwise Reynolds numbers up to Re, = 500 and azimuthal Reynolds numbers
up to Req = 500.

In the small-amplitude regime, perturbations are governed by the Navier—Stokes
equations linearized about the steady axisymmetric base flow and the relevant linear stability
characteristics are derived by solving the associated eigenvalue problems for given values of
the streamwise wavenumber k and azimuthal modenumber m. The resulting dispersion
relation has confirmed previously known results.

In unstable situations, small-amplitude perturbations may display exponential temporal
growth and the resulting saturated fully developed regimes have been computed by direct
numerical simulations of the complete Navier—Stokes equations. Over the entire control
parameter space considered in this study, Re, < 500 and Ren < 500, the flow fields have
been found to evolve towards a nonlinear regime consisting of finite-amplitude travelling
(i.e. spiralling) waves, characterised by constant values of energy levels, axial mean flow
corrections and mean angular momentum corrections. The general effect of nonlinearities is to
reduce the mean flow as well as the angular momentum. The strength of the axial mean-flow
correction is directly related to the perturbation energy levels, and the highest levels occur for
axial wavenumbers below those exhibiting strongest linear instability. The development of
nonlinearities has always been found to result in a lower (or more negative) frequency of the
nonlinear waves than of their linear counterparts.

Some secondary instabilities have been observed at larger values of Re, or Req, than those
reported here. However, a complete study of secondary instability features is left for future
investigation. Such secondary stability properties could be investigated by implementing a
Floquet analysis similar to that used for the rotating-disk boundary-layer flow (Pier 2007), and
the resulting dynamics could be computed by simulations allowing for more degrees of
freedom, e.g., replacing the single Fourier series in (14)—(17) by a double series expansion in
both axial and azimuthal coordinates for the flow fields.

Since the RHPF is known to display absolute instabilities (Fernandez-Feria and del
Pino 2002), it would also be interesting to consider domains of large streamwise extent as
Sanmiguel-Rojas and Fernandez-Feria (2005) to analyse the development of nonlinear global
modes in terms of local nonlinear spiralling waves or for comparison with experimental
observations (Miranda-Barea et al 2016). Carrying out direct numerical simulations in axially
extended domains would also allow a detailed investigation of inlet conditions and entry flow
properties, which are known to have non-trivial effects for the non-rotating case (Sahu and
Govindarajan 2007). Presumably, an approach similar to that presented in Juniper and Pier
(2015) could also shed light on how the global dynamics is influenced by the entry flow
region.
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