
PHYSICAL REVIEW FLUIDS 9, 104501 (2024)

Residence time distributions in unstable channel flow

Nelson Poumaëre , Benoît Pier , and Florence Raynal
Laboratoire de Mécanique des Fluides et d’Acoustique, CNRS, École centrale de Lyon,

INSA Lyon, Université Claude Bernard Lyon 1, 69134 Écully Cédex, France

(Received 11 October 2023; accepted 17 September 2024; published 15 October 2024)

The transport properties of the plane Poiseuille flow in which a two-dimensional,
nonlinearly saturated Tollmien-Schlichting wave is propagating are studied in terms of
residence time distributions (RTDs). First, a method for computing RTDs in any type of
open flows is developed, making use of a single trajectory over a long period of time, with a
controlled level of diffusion. With this method, RTDs of this perturbed flow are computed,
along with a quantitative measure of their dispersion through the mean absolute deviation.
Depending on the travel distance, RTDs display two kinds of pattern. For short travel
distances, a pattern of peaks and valleys is observed for long residence times, originating in
regions of negative streamwise velocity produced by the wave. For longer travel distances,
a large probability peak is observed at t = τwave, the time needed for the wave to travel one
section downstream. This peak is attributed to the cat’s eye pattern characteristic of this
type of traveling wave. It is shown that the increased dispersion of the RTD is mainly due
to the nonlinear correction of the mean velocity profile.

DOI: 10.1103/PhysRevFluids.9.104501

I. INTRODUCTION

Stirring in laminar flows is an essential step in all mixing processes [1]. Whereas mixing is
generally characterized through the decay of concentration variance, measuring stirring efficiency
requires additional tools in the absence of molecular diffusion. This can be done, for instance, using
the stretching rate of fluid elements; in the case of flows subject to chaotic advection [2,3], Lyapunov
exponents and Poincaré sections are more commonly employed. In this article we rather focus on
residence time distributions (RTDs), as first introduced by Danckwerts [4] in his seminal paper to
characterize transport properties of open flows, i.e., flows with clearly defined input and output.
The applications are numerous and diverse, for example, oil transport in pipelines [5], contaminant
dispersion in ground watersheds [6], or microfluidic devices [7,8]. Note that RTD can also be used
to obtain qualitative information about mixing by distinguishing between residence times that are
greater or smaller than the typical time needed for diffusion to be effective, as explained by Gouillart
et al. [9].

As schematized in Fig. 1, for a given fluid system, the RTD provides information about the
probability for a fluid particle to cross the system in a certain lapse of time τ = tout − tin. As shown
by Spalding [10] and Danckwerts [11] in steady conditions, the mean residence time τm is given by

τm =
∫ τmax

τmin

τ f (τ ) dτ = V
Q

, (1)

where f (τ ) is the RTD, V the volume in the system between inlet and outlet, and Q the volumetric
flow rate. The minimum and maximum residence times τmin and τmax respectively correspond to
the fastest and slowest trajectories attainable in the system. Note that Eq. (1) fails for flows with
closed fixed recirculations, as can be seen, for instance, behind an obstacle or a step. Indeed, without
diffusion, those recirculations would not be reached by particles seeded at the entrance of the system.
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FIG. 1. Schematic of an open flow with fluid trajectories, and corresponding RTD, with τm the mean
residence time, and τmin and τmax respectively the minimum and maximum residence times.

Therefore, in this latter case, the volume V should be replaced by a smaller volume V� for which
the volume occupied by the recirculations has been removed.

Ideally, a mixer should mimic as closely as possible the plug-flow model, where all particles
cross the system in the same time τ = τmin = τmax, and for which the RTD is essentially a Dirac
pulse. In practice, however, the maximum residence time τmax is generally infinite, which implies
that the RTD f (τ ) in Eq. (1) must decrease to zero at large times. Although the decay may be
exponential in a pure extensional flow [12,13], the situation is very different when considering
flows with walls, since the decay is thus algebraic, with a τ−3 tail [12], also called a heavy tail. This
tail invalidates the use of a second-order moment of the distribution f , and thus a standard deviation
does not exist. As a measure for the width of the distribution, we will therefore use the mean absolute
deviation [14].

When a flow is subject to hydrodynamic instabilities, the Eulerian flow structure can be substan-
tially modified. Whether this modification can profoundly impact the mixing, transport, and more
especially residence time properties is an important question. In the case where instabilities lead
to turbulent flow, these properties are indeed deeply impacted as was already emphasized by Hull
and Kent [5], who showed that RTDs in pipelines are more stretched in the laminar case than in the
turbulent configuration. They thus recommended that the flow is maintained in a turbulent regime
so as to limit mixing between two consecutive pockets of petroleum.

However, hydrodynamic instabilities do not always result in fully developed turbulence. In closed
flows, for instance, the instabilities may lead to a time-periodic flow that exhibits chaotic advection;
see, for instance, the work of Oteski et al. [15], who studied a two-dimensional confined convection
flow, or the works by Meunier [16], along with Lefranc et al. [17], taking advantage of triadic
resonances in a tilted tank of water to efficiently mix with limited stress, or also that of Qu et al.
[18], who showed that acoustic streaming could enable global chaos in a parallelepipedic cavity
using an oscillatory instability of the flow arising at moderate power of the source.

The case of mixing by instabilities in open flows is even more complex. Lou et al. [19] studied
how laminar vortex shedding can affect temperature and concentration fields in the vicinity of direct
contact membrane distillation channels. Venditti et al. [20] showed how the presence of transversal
vortices greatly improved the performances of open tubular liquid chromatography by containing
axial dispersion. The case of the Couette-Taylor-Poiseuille flow, or spiral Poiseuille flow (SPF),
was studied in terms of residence time distributions. Kataoka et al. [21,22] noticed that when the
vortex flow regime was maintained in the presence of an axial flow rate, the SPF displayed plug-flow
properties, with all particles inside one vortex having the same residence time. When axial flow was
increased, however, the “doubly periodic” regime—wavy vortices—led to profound broadening of
the RTD, due to enhanced intermixing between neighboring vortices.

In the present work, we characterize another type of perturbed open flow in terms of residence
time distributions: the plane Poiseuille flow (PPF), in which a fully developed, nonlinear Tollmien-
Schlichting wave propagates at constant speed.

Even though hydrodynamic stability is not the main subject of the present article, a quick review
of the main results about the linear and nonlinear stability theory for the plane Poiseuille flow is
required here.
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FIG. 2. Channel geometry and parabolic plane Poiseuille flow profile.

Among the numerous authors who have concerned themselves with the linear stability of the PPF
(for example, Lin [23], Thomas [24], and Grosch and Salwen [25]), it is Orszag [26] who eventually
established the critical Reynolds number to its now classically known value of Rec = 7696 (with
the definition adopted in the present article). Making use of a Chebyshev expansion and a spectral
method, he numerically solved the Orr-Sommerfeld equation for the normal velocity component ṽ

of an infinitesimal perturbation written in complex form as

u(x, y, t ) = ũ(y) exp [i(αx − ωt )] + c.c., (2a)

p(x, y, t ) = p̃(y) exp [i(αx − ωt )] + c.c., (2b)

where α denotes the real wavenumber of the perturbation, ω = ωr + iωi its complex frequency,
and c.c. the complex conjugate. For a given setting of Re and α, the linear eigenvalue problem
arising from the Orr-Sommerfeld equation is solved, yielding a discrete spectrum of eigenvalues ω

and the associated eigenfunctions ũ(y) and p̃(y). If the growth rate ωi of a given mode is positive,
it is exponentially amplified; otherwise it is neutrally stable, or decays asymptotically. Above the
threshold value of Rec, to which corresponds the critical wavenumber αc, a continuous band of
unstable wavenumbers exists, and for each of these unstable wavenumbers, the eigenmode with the
largest positive growth rate is referred to as Tollmien-Schlichting (TS) wave. Note that the TS mode
exhibits sinuous symmetry. In the (Re, α) plane, the locus of neutrally stable configurations is called
the neutral curve, and is reproduced (numerical methods in the next section) in Fig. 3(a), along with
contours of constant growth rates.

Interest in the nonlinear stability properties of the plane Poiseuille flow (and shear flows in
general) has developed in the wake of advancements in the linear theory, mainly to explain
why turbulence is observed in experiments way below (Re � 1500) the critical Reynolds number
[27]. Nonlinear effects manifest themselves in essentially three ways [28]: distortion of the mean
flow, modification of the fundamental from linearized theory, and generation of higher harmonics.
Essentially all works relied on some kind of spatial Fourier expansion of the total flow:

u(x, y, t ) =
∑

n

u(n)(y, t ) exp [inαx]. (3)

Early works [29,30] made use of the mean-field approximation, where this expansion is truncated
up to |n| < 2, and only the interaction between the mean flow and the fundamental is considered.
By truncating the expansion up to the second harmonic (|n| < 3), and assuming the first harmonic
to be the normalized eigenmode of linear theory multiplied by an amplitude function of time,
Stuart [31] and Watson [32] were able to study the subcritical and supercritical behavior of the
flow in the vicinity of critical conditions, notably establishing the existence of equilibrium solutions
consisting of steadily traveling two-dimensional finite-amplitude waves. This kind of expansion was
used in consecutive works like those of Zahn et al. [33] or Jiménez [34] to study different solution
branches bifurcating from basic plane Poiseuille flow. Ehrenstein and Koch [35], using Fourier

104501-3



POUMAËRE, PIER, AND RAYNAL

FIG. 3. Numerical parameters for both figures: Nc = 65 and Nh = 5 for the nonlinear computations.
(a) Growth rate contours of the most unstable eigenmode of the linear eigenvalue problem. Inside the neutral
curve (black solid line), growth rates are positive. Contour values shown are −0.12 to 0.0 in steps of 0.02, and
0.0 to 0.01 in steps of 0.002. (b) Phase speed contours for the linear (dashed lines) and nonlinear (solid lines)
Tollmien-Schlichting waves. Contour values shown are 0.26 to 0.50 for linear phase speeds and 0.32 to 0.64
for nonlinear phase speeds, both in steps of 0.02.

expansion and pseudoarclength continuation, thoroughly computed two- and three-dimensional
nonlinear traveling-wave solutions, under both sub- and supercritical conditions.

The present article is concerned with this type of solution, but considers only those obtained
under supercritical conditions, i.e., for linearly unstable base flows.

There are different ways to calculate numerically a RTD in an open flow. In the case of in-line
chaotic mixers made of a succession of identical elements of length L each, chaos is global so that
the system is ergodic, and a given particle visits the whole periodic domain; a natural method is thus
to follow a unique particle over a long lapse of time, long enough for it to travel a distance M × L
with M � 1, and to monitor the time needed to cross each portion. The RTD is thus computed
as the histogram of the resulting M residence time values [12,36]. Indeed, the particle naturally
visits regions of high velocity more often than regions of low velocity, and the residence time
values are already properly weighted; this also implies that the mean value of the residence times
in the sample is the Eulerian mean time τm defined in Eq. (1). This method can be qualified as
a Lagrangian process, and is available for stationary flows; it is also very cheap, as the different
residence time values are obtained simultaneously with the points when calculating the Poincaré
section. When the flow is not chaotic and stationary, a simple technique for the calculation of
RTD is to seed homogeneously a large number of particles at the entrance of the section, follow
them on the longitudinal distance L, and note the residence times; the RTD is then the probability
density function (PDF) of the residence times weighted by the longitudinal velocity at entrance. This
method of weighted residence times is best known in porous media studies, in the context of the
continuous-time random walk (CTRW) method (see, for example, the early work of Saffman [37],
and more recently Dentz et al. [38] and Puyguiraud et al. [39]). It can, however, become difficult
to implement when the flow field is time dependent, since the velocity at entrance is both position
and time dependent. The flow considered here is not only time dependent, but also nonchaotic as
it is two dimensional and can be made stationary by a Galilean change of frame (see Ref. [40]).
We propose here to generalize the Lagrangian method by allowing the particle to diffuse and thus
“sample” the entire cross section of the flow. This was first proposed by Spalding for stationary
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flows [10], but never used in practice. The idea is here to have a diffusion large enough so as to
favor the sampling, but at the same time small enough so as not to alter much the RTDs obtained.

The paper is organized as follows. In Sec. II, the geometry studied and general equations are
recalled, followed by a quick review of the linear and nonlinear stability of the plane Poiseuille flow.
Then we explain the method for computing the nonlinear Tollmien-Schlichting waves, and introduce
a reference case typical of the situation encountered in the problem. Section III explains the diffusive
method for the calculation of the RTDs. The procedure is then validated on the parabolic plane
Poiseuille flow. Section IV first focuses on the reference case, and explains the links between
the properties of the saturated flow and the corresponding RTD. From what was learned with the
Lagrangian method, we then propose an Eulerian method, without diffusion, for the calculation of
the RTD. Finally we vary the physical parameters of the problem, and give the conclusions and
perspectives in the last section.

II. PROBLEM FORMULATION AND METHODS

A. Geometry and governing equations

Throughout this investigation, the flow between two infinite parallel plates is considered, gov-
erned by the incompressible Navier-Stokes equations,

∂t u + (u · ∇)u = ν�u − 1

ρ
∇p, (4a)

∇ · u = 0, (4b)

where ρ and ν respectively denote the constant density and kinematic viscosity of the fluid. The
entire study takes place within a two-dimensional framework, assuming neither spanwise variations
nor spanwise velocity component. Adopting Cartesian coordinates, with x denoting the streamwise
and y the wall-normal coordinates, the velocity u and pressure p then depend on position x = xex +
yey and time t . The channel is of width h and the fluid put into motion by a constant streamwise
pressure gradient G. No-slip boundary conditions prevail along the walls at y = ±h/2 (see Fig. 2).

The steady base Poiseuille flow solution follows the classical parabolic profile

U (y) ex = 3

2
Um

(
1 − 4y2

h2

)
ex, (5)

with Um = h2

12ν
G the mean velocity. Throughout this article, the definition of the Reynolds number

is based on the channel width h and the mean velocity Um:

Re = hUm

ν
. (6)

Note that the flow dynamics is entirely controlled by the choice of the Reynolds number. For
deriving numerical values, without loss of generality, we specify two dimensional parameters h = 1
and Um = 1.

B. Linear and nonlinear stability of the plane Poiseuille flow

In order to investigate the stability of the Poiseuille profile, the total instantaneous flow fields are
separated into basic and perturbation quantites as

utot(x, y, t ) = U (y) ex + upert(x, y, t ), (7)

ptot(x, y, t ) = −Gx + ppert(x, y, t ), (8)

whether the perturbation quantities are of small amplitude (for linear stability analyses) or not (for
computing the saturated fully developed nonlinear flow solutions). Replacing these expansions in
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the Navier-Stokes equations, the equations governing the evolution of the perturbation fields upert

and ppert are obtained as

∂t upert = −L(upert ) − N (upert ) + ν�upert − 1

ρ
∇ppert, (9a)

∇ · upert = 0, (9b)

where L(upert ) = U ′vpertex + U∂xupert is the linear term accounting for the advection by the base
flow and N (upert ) = (upert · ∇)upert is the nonlinear self-advection term. For the rest of this paper,
we will only consider the perturbation velocity and pressure fields upert and ppert and, for simplicity,
omit their subscript.

When considering small-amplitude perturbations, the quadratic term N (u) is neglected and the
flow fields are sought in normal-mode form as

u(x, y, t ) = ũ(y) exp [i(αx − ωt )], (10a)

p(x, y, t ) = p̃(y) exp [i(αx − ωt )], (10b)

where α is the streamwise wavenumber and ω the frequency. Substitution of this expansion into the
linearized perturbation equations results in a classical eigenvalue problem, the solution of which
yields the frequency spectrum in the complex ω plane for a given wavenumber α [41].

A positive imaginary part ωi of the frequency associated by the linear dispersion relation to
a given wavenumber α signals a linear instability. An initial spatially periodic perturbation of
wavenumber α is then exponentially amplified in time with growth rate ωi so as to reach finite
amplitude levels. The dynamics of the fully developed perturbation is then governed by the complete
Eqs. (9a) and (9b) since the nonlinear terms can no longer be neglected. After expanding the
spatially periodic finite-amplitude perturbation as

u(x, y, t ) =
∑

n

u(n)(y, t ) exp [inαx], (11a)

p(x, y, t ) =
∑

n

p(n)(y, t ) exp [inαx], (11b)

and substituting in the nonlinear evolution equations (9a) and (9b) leads to a system of coupled
partial differential equations governing the temporal evolution of the spatial Fourier components
u(n)(y, t ) and p(n)(y, t ). This is equivalent to considering the dynamics in a finite domain of length
2π/α with periodic boundary conditions in the streamwise x direction.

C. Numerical computation of the Tollmien-Schlichting waves

The numerical implementation closely follows the methods developed by Pier and Schmid [42]
in the context of pulsatile channel flow. The spatial discretization involves a Chebyshev collocation
method, using Nc Gauss-Lobatto collocation points to cover the channel diameter −h/2 � y � h/2.
Thus, the differential operator ∂y is recast as a matrix operating on the array consisting of the values
at the collocation points.

After this spatial discretization, the linear eigenvalue problem governing the eigenfunctions ũ(y)
and p̃(y) [Eqs. (10a) and ((10b) is recast as an algebraic eigenproblem, the solution of which then
yields the linear dispersion relation.

For nonlinear temporal evolution problems, the streamwise Fourier expansions (11a) and (11b)
for u(x, y, t ) and p(x, y, t ) are truncated at |n| < Nh. Then, the Chebyshev collocation method in
y transforms the governing partial differential equations (9a) and (9b) into an algebraic system of
coupled ordinary differential equations in time. Temporal integration is carried out using a predictor-
corrector fractional-step method derived from the work of Goda [43], improved by Raspo et al. [44].
More details of the general method can be found in Refs. [42,45]. The numerical implementation
in C + + is based on the "home-spun" PACKSTAB library [46]. The required numerical effort is
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reduced by explicitily taking into account symmetry properties prevailing for sinuous or varicose
perturbations: the different flow components are then either symmetric or antisymmetric in y. Thus
only half of the collocation points need to be considered, using the associated discretized differential
operators of corresponding symmetry.

The essential properties of linear and nonlinear Tollmien-Schlichting waves are illustrated
in Fig. 3.

First, maps of the linear growth rate and phase velocity are computed over the (Re, α) plane,
by solving the algebraic eigenvalue problem and monitoring the most unstable eigenvalue of the
spectrum obtained for each choice of Re and α. Figure 3(a) shows isolines of constant growth rate ωi

along with the neutral curve. Note that the most unstable eigenmode is always of sinuous symmetry.
The associated phase velocity ωr/α is plotted as dashed lines in Fig. 3(b). The region inside the
neutral curve ωi = 0 in Fig. 3(a) corresponds to linearly unstable configurations, for which temporal
integration of the nonlinear evolution problem leads to fully developed perturbations that saturate at
finite amplitude, after an initial phase of exponential growth. For the parameter ranges considered
in the present investigation, the perturbation energy is found to converge towards a constant level,
and the saturated finite-amplitude perturbations propagate as a whole at a constant velocity without
modulations. This behavior suggests the absence of secondary instablities, that would lead to more
complex dynamics. Thus, in this finite-amplitude regime, the temporal evolution of the different
Fourier components in Eqs. (11a) and (11b), is of the form u(n)(y, t ) = ũ(n)(y) exp(−inωnlt ), for
some real-valued nonlinear frequency ωnl . By monitoring the different components during the
temporal integration and computing the frequency ωnl , it is thus verified that, after convergence,
the perturbations may indeed be written as a steadily traveling nonlinear wave:

u(x, y, t ) =
∑

|n|<Nh

ũ(n)(y) exp [in(αx − ωnlt )]. (12)

This nonlinear Tollmien-Schlichting wave travels with a phase velocity cnl = ωnl/α; in a reference
frame comoving with the wave at speed cnl , the perturbation fields are thus steady in time and
spatially periodic with period λ = 2π/α, the wavelength of the perturbation. The solid lines in
Fig. 3(b) show contours of the nonlinear phase velocity cnl , computed for the parameter region
corresponding to linear instability.

Note that from Eq. (12), the velocity field is only a function of wall-normal position y and phase
φ with

φ = αx − ωnlt mod 2π with 0 � φ � 2π. (13)

Similarly, we define the periodic longitudinal position x′ in the moving reference frame as

x′ = φ/α = x − cnl t mod λ with 0 � x′ � λ. (14)

D. A reference case: α = 2 and Re = 10 000

As an example, the result of a simulation for Re = 10 000 and α = 2 can be seen in Fig. 4,
which displays the corrected mean profile and a contour map of the streamfunction of the total flow
in the frame comoving with the wave, a frame in which the flow is stationary. This configuration
is linearly unstable with ω = 0.74967 + 0.00670i. For this case we have λ = λref = 2π/α = π ,
and the nonlinear frequency is ωnl = 1.17, yielding a nonlinear wave speed cnl = 0.587 and a time
period T = 2π/ωnl = 5.36. The longitudinal extent for the contour map is the spatial pseudoperiod
λ = π .The distorted mean flow is compared to the base flow on the left, an important feature of this
distortion being that the maximal value of the mean flow is greater than in the case of the base flow.
On the right the streamlines of the total flow in the frame comoving with the wave are visualized.
The sinuous structure of the wave is clearly recognized here in the form of the Kelvin-Stuart cat’s
eye pattern, a series of cellular recirculation zones traveling downstream of the flow at a velocity
equal to the wave speed. These waves also exhibit small near-wall regions where the longitudinal
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FIG. 4. (a) Parabolic Poiseuille flow (dotted line) and distorted mean flow (solid line); (b) streamlines of the
total flow for the saturated nonlinear TS wave at Re = 10 000 and α = 2 in the frame comoving with the wave
[therefore in the (x′, y) plane]. The small near-wall regions inside the blue curves display negative longitudinal
velocities measured in the laboratory frame. Numerical parameters for the computation of the nonlinear TS
wave are Nc = 65 and Nh = 5.

velocity, measured in the laboratory frame, is negative. Basically, if a particle is close to the wall
and happens to be just below (or above) a cat’s eye, it is traveling upstream because of the vortex
motion.

In Fig. 5, we represent snapshots of the trajectories of 2500 particles over one period of the flow.
As was described by Weiss [47] for the general case of a traveling wave, the flow is essentially
separated into three distinct regions: the core region, where particles travel faster than the wave, the
near-wall region, where they lag behind it, and the trapping regions, where particles are bound to
travel around the center of the cat’s eye cells shown in Fig. 4(b). In particular, particles traveling
slowly near the separatrix are easily distinguishable at time t = T .

FIG. 5. Snapshots of the positions of 2500 particles, initially uniformly placed in the channel over two
wavelengths of the TS wave, for different instants between t = 0 and t = T . The parameters are those of the
reference case, Re = 10 000 and α = 2. In order to visualize the velocity of the wave, the blue and red vertical
lines drawn at each side of the initial blob are artificially moved at the wave speed.
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FIG. 6. Schematic of the partitioning of the flow in sections of length L, along with a particle trajectory
and retained data (τ j, y j, φ j ).

III. COMPUTATION OF RESIDENCE TIME DISTRIBUTIONS

In this section we develop a general method for the calculation of RTDs, which could in principal
be available for any type of in-line flow or mixer where no fixed recirculation is present. Note that
in our case the recirculations shown in Fig. 4(b) are not fixed since they move at the speed of the
wave. The method is validated afterwards in the case of the nonperturbed parabolic Poiseuille flow.

A. The Lagrangian method

As explained in the Introduction, we propose here to compute the residence time distributions
on a given longitudinal distance L using a single long trajectory; we allow the particle to diffuse so
as to sample the entire cross section of the flow and render the system ergodic. The advection of a
single diffusive particle can be modeled with a generalized Langevin equation

dx
dt

= u(x, t ) + ζ (t ), (15)

where ζ (t ), a Gaussian decorrelated process such that 〈ζi(t )ζ j (t ′)〉 = 2D δi j δ(t − t ′), with D the
diffusion coefficient, δi j the Krönecker symbol, and δ the Dirac delta function, models the molecular
diffusion [48]. Although diffusion is artificial in the method (it just allows to visit the whole width),
we introduce the Péclet number based on the mean velocity Um,

Pe = hUm

D
. (16)

We then proceed as follows: we solve Eq. (15) for a single diffusive particle. When the particle
enters the jth element at plane x = ( j − 1) L and time t j−1, we note its vertical position y j−1 and
the corresponding phase φ j−1 = α × ( j − 1) L − ωnl t j−1; then we calculate the residence time τ j =
t j − t j−1 in this element as the time it takes to reach the exit plane x = j L once entered. Note that,
if the particle enters the first element at time t0 = 0, the total time at the outlet of the jth element
is thus t = ∑ j

i=1 τi. In practice, we follow the particle on a very long time so as to obtain a large
sample of M data (τ j, y j, φ j )1� j�M . The process is illustrated in Fig. 6.

The RTD can thus be obtained as the histogram of the resulting M residence time values τ j ; the
other parameters (y j, φ j ) will be used for other purposes (see Sec. IV). In practice, we store these
data for L = λ. The case L = n × λ (2 � n � 10) is obtained by summing the residence times on n
consecutive elements, resulting in a smaller sample of size M/n and a mean residence time n times
larger than for n = 1. As explained in the Introduction, because of the heavy tail of the distribution,
the dispersion of the sample (τ j )1� j�M of residence times is measured through the mean absolute
deviation

σ1 = 1

M

M∑
j=1

∣∣∣∣ τ j

τm
− 1

∣∣∣∣ , (17)

where τm = L/Um is the mean residence time on the distance L.
Since the only purpose of diffusion here is to enable the computation of the residence time

distribution of the underlying flow, care must be taken when choosing the Péclet number. Indeed,
diffusion must allow the particle to sample the whole flow, without affecting the RTD.
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First of all, diffusion must not statistically modify the time needed to travel the distance L,
typically tconv = L/Um. This means that (i) the characteristic longitudinal diffusive time tdiff,x =
L2/D must be large compared to tconv, i.e., tdiff,x � tconv. Since the traveling time depends on the
streamline, this also implies that the particle must statistically not be allowed to change streamline
when traveling the distance L; this involves that (ii) the characteristic transversal time tdiff,y = h2/D
must be large compared to tconv, i.e., tdiff,y � tconv. Finally, the trajectory must be long enough for
the statistics to be converged. Denoting by M the size of the sample, the particle has traveled a
total length M × L in the x direction, associated to a typical lapse of time M × tconv. The statistics
are converged if the particle has statistically visited all the streamlines of the flow. As the particle
changes streamline thanks to diffusion, this implies that (iii) tdiff,y � Mtconv. Conditions (i)–(iii) can
be rewritten as

Pe � h/L , (18)

Pe � L/h , (19)

M � Pe h/L . (20)

Note that conditions (18) and (19) are very similar. Because in most cases the length L considered
is such that L > h, condition (18) is less restrictive, and condition (19) along with condition (20)
is sufficient in practice. Note finally that condition (20) can be rewritten Ltot � Pe h, where Ltot =
M × L is the total longitudinal distance traveled by the particle. Therefore, this last criterion should
be fulfilled equally for a couple of parameters (L, M ) or (10 L, M/10), since both cases correspond
to the same total longitudinal length traveled, Ltot.

B. Choice of the travel distance L

In spatially periodic flows, a natural choice for the travel distance L on which the RTD is
computed could be the period or a multiple number of periods (see, for instance, Ref. [49] or Ref.
[50] in the partitioned-pipe mixer). In the configuration at hand, the flow is only pseudoperiodic
and there is no true spatial periodicity. However, as the flow is periodic in the frame comoving with
the wave with period λ = 2π/α, a natural possibility is to use L = n × λ, with n reasonably chosen
between 1 and 10 [14].

C. Validation of the method

We propose to validate those conditions on the unperturbed plane Poiseuille flow, with a parabolic
profile of Eq. (5). In such a flow a nondiffusing tracer goes straight without changing streamline;
it is therefore a drastic candidate to test the method. Moreover, this flow is simple enough so as to
obtain an analytical expression for the RTD (valid in the limit Pe → ∞)

fPoi(τ ) = 1

3

τ 2
m

τ 3

(
1 − 2τm

3τ

)−1/2

, (21)

with the corresponding analytical value of the mean absolute deviation (see Appendix A),

σ1,Poi = 2/(3
√

3) � 0.385. (22)

Note that, unlike the perturbed flows considered in the present study, the parabolic flow field has no
natural length; thus Eqs. (21) and (22) are valid whatever the choice of L. Because we need a travel
distance for the validation, we choose L as the wavelength of the reference perturbed case depicted
in Sec. II D with wavenumber α = 2, and equivalently λref = π .

In order to test which Péclet numbers Pe and sample size M may fulfill conditions (18)–(20), we
proceed as follows: for a given Péclet number, we compute a single very long trajectory, long enough
to yield a converged value for σ1: a total longitudinal distance Ltot = M × π with M = 108 is fairly
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FIG. 7. RTDs for the plane Poiseuille flow for different Péclet numbers. The size of the samples for each
Péclet number is M = 108. The travel distance is L = λref = π , except for the dashed line for which L =
10 λref = 10 π . The black solid line represents the analytical RTD in the nondiffusive limit. (a) Log-log scale;
(b) lin-lin scale, with a focus on the lowest residence time values, indicated schematically in panel (a). Note
that the tails of cases (Pe = 105, L = π h) and (Pe = 106, L = 10 πh), which correspond to the same value
of Pe h/L, are almost superimposed in panel (a); a similar remark can be made for panel (b) for cases (Pe =
106, L = π h) and (Pe = 106, L = 10 πh), which correspond to the same value of Pe L/h and for which the
curves have a similar behavior at short times.

sufficient in practice. Then we compute the resulting RTDs (normalized by their corresponding
mean residence time τm) for the different Péclet numbers Pe and travel distances L, and calculate
the associated mean absolute deviations σ1.

Figure 7(a) displays the RTDs in log-log scale, so as to focus on the long-residence-times
behavior. The figure clearly illustrates criterion (ii) associated with condition (19): in the presence
of diffusion, a particle located close to the wall (where the velocity is weak) cannot remain
forever on its streamline, and arbitrary long residence times are no longer possible. This results
in a cutoff of the algebraic τ−3 tail obtained without diffusion [14]. When increasing the Péclet
number Pe for the fixed travel distance L = λ, diffusion effects are less important, and the cutoff
is shifted toward higher residence times as observed in Fig. 7(a). Reversely, when increasing the
travel distance L for a given Péclet number, a particle is more likely to change streamline so that
diffusion effects are more pronounced, and the cutoff is shifted toward smaller residence times, as
illustrated in the case Pe = 105 for L = π and L = 10 π . Note also that the tails of the RTDs of the
cases (Pe = 104, L = π ) and (Pe = 105, L = 10 π ) are almost identical. Overall, when the quantity
Peh/L increases, the cutoff is shifted toward higher residence times, as expressed in condition (19).

Figure 7(b) displays the RTDs in lin-lin scale, so as to focus on the small-residence-times behav-
ior. The figure now clearly illustrates criterion (i) associated with the less restrictive condition [Eq.
(18)]: diffusion can modify the time needed to travel the distance L, leading to residence times that
can be significantly smaller than the minimum theoretical time without diffusion, τmin = 2/3 × τm

[see Eq. ((21). When Pe is increased with a fixed travel distance, diffusion effects are less important,
and the RTDs become more peaked around τmin, as shown in the figure for L = λ. Identically, when
the travel distance L is increased at fixed Péclet number, diffusion is more likely to move the particle
equally forward and backward on the larger distance, and the RTD is more peaked, as illustrated in
the case Pe = 105 for L = λ and L = 10λ. Note finally that the shape of the RTDs at small time is
very similar for the two cases (Pe = 105, L = 10 π ) and (Pe = 106, L = π ). Overall, the RTDs are
more peaked on τmin when increasing the quantity PeL/h, as expressed in condition (18). In order to
obtain a quantitative criterion, we now turn to the computation of the mean absolute deviation. The
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FIG. 8. (a) Evolution of the mean absolute deviation with the travel distance in the plane Poiseuille flow,
for different Péclet numbers. (b) Evolution of the mean absolute deviation along the trajectory, for different
Péclet numbers and travel distances. These diagrams correspond to the RTDs of Fig. 7.

results are compared to the theoretical mean absolute deviation σ1,Poi [Eq. (22)]; we consider that a
given point is acceptable if it lies within 1% of this theoretical value.

Figure 8(a) shows the mean absolute deviations obtained for the different trajectories corre-
sponding to different Péclet numbers, for varying values of the travel distance, L = n π with
1 � n � 10. For each point the size of the sample is M/n, that is, larger than 107 (since M = 108).
The data are plotted as a function of the quantity Peh/L corresponding to the parameter involved
in the most restrictive condition [Eq. (19)]. For small values of Peh/L, the values obtained are
underestimated, which is explained by the fact that the cutoff in Fig. 7(a) is too much shifted toward
small residence times. As seen in the figure, all points corresponding to Pe = 105 or higher are
acceptable.

Condition (20) is related to the size of the sample, M: in order to optimize the method, we must
evaluate the minimum size M for which the mean absolute deviation is sufficiently converged. In
practice, we use the long trajectories calculated previously and consider subsets of increasing size
M, (τi )1�i�M , with Mmax = 108. The results are shown in Fig. 8(b), where the computed values of σ1

are plotted as a function of the nondimensional parameter ML/hPe involved in Eq. (20). Note that
we recover that for small values of Pe h/L, as discussed before, the curves do not converge toward
the correct theoretical value. This is the case, for instance, for the parameters (Pe = 104, L = 10 π ),
while the theoretical value is reached for the same Péclet number and a smaller travel distance,
i.e., for the couple (Pe = 104, L = π ). However, although they do not converge toward the same
value, the two curves behave similarly with the parameter ML/hPe; indeed, for a given value of
the parameter, as explained before, the total distance Ltot = M × L is the same (with a sample 10
times smaller for L = 10 π than for L = π h). Therefore, the convergence is identical since the two
curves are calculated with the same part of the trajectory. This is even more striking for the two sets
of parameters (Pe = 105, L = π ) and (Pe = 105, L = 10 π ), where the two curves converge toward
the same parameter and are nearly identical. Finally, in all cases, the convergence toward the final
value is effective for ML/hPe � 300.

To sum up, the Péclet number must be equal to 105 or higher, and the size M of the sample must
satisfy M � 300 × Pe h/L. Similar thresholds were obtained when considering different trajectories
(different initial points, and of course different aleatory diffusion increments). In order to have a
reasonable sample size, we therefore choose the minimum acceptable Péclet number, Pe = 105, for
the computation of residence times hereafter. The size of the sample is thus chosen as the minimum
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FIG. 9. Normalized RTDs of the reference flow (solid line) in lin-lin scale; left, L = λ; right, L = 10λ.
The sample corresponds to a single trajectory of total longitudinal length Ltot = 12 × 106 × λ. The dotted line
represents the theoretical RTD of the basic Poiseuille flow [Eq. (21)]: the minimum residence time is clearly
smaller in the reference case. The peak corresponding to the nondimensional wave residence time τ̂wave is more
pronounced for L = 10λ.

acceptable size, M ≈ 300 Pe h/L = 3 × 107h/L. For instance, for the reference case for which λ =
π (with h = 1), we need a sample of size M ≈ 107.

IV. RESULTS

In this section, we first consider the reference case, the nonlinear TS wave introduced in Sec. II D,
for which we study the influence of the travel distance L on the RTD. From this example we show
how to calculate RTDs properly with an Eulerian method (without diffusion) in the case of TS
waves. Then we vary the wavenumber and Reynolds number.

As explained in the previous section, the Péclet number chosen for the calculation of the RTD is
Pe = 105, and the minimum sample size is M = 107; numerical parameters for the computation of
the wave are Ncheby = 65 and Nh = 5.

In the following, we refer to the time τwave = L/cnl it takes for one wave train to travel the
distance L as the wave residence time; similarly, τmin is the minimum of the residence time for
the distance L. We introduce the nondimensional wave residence time τ̂wave = τwave/τm = Um/cnl

and also τ̂min = τmin/τm = Um/Umax. Note that both τ̂wave and τ̂min are independent of the travel
distance L.

A. The reference case α = 2 and Re = 10 000

We first begin with the reference case already described in Sec. II D, for which α = 2, Re =
10 000, and λ = 2π/α = π . For this case we compute the RTD, using a single diffusive tracer,
following the method outlined in Sec. III; a single trajectory is computed throughout M = 12 × 106

sections of length L = λ, resulting in a sample (τi, yi, φi ) of size M.
Figure 9 shows the RTDs obtained for the travel distances L = λ and L = 10 λ. For the purpose

of comparison, the RTD of the parabolic Poiseuille flow, obeying Eq. (21), is plotted with a
dotted line.

First we note that the minimum residence time is significantly smaller for this reference case than
for the Poiseuille flow. Indeed, the maximum mean velocity at the center of the flow is greater than
that of the Poiseuille flow, as previously seen in Fig. 4(a).

The second characteristic is the existence of a peak located at the nondimensional wave residence
time τ̂wave. The peak is much higher and more marked for the larger travel distance L = 10λ. To
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FIG. 10. Color maps of residence time values in the (φ, y) plane for the reference case α = 2 and Re =
10 000, built as follows: for a given trajectory, the position of the particle entering the jth element at ( j − 1) × L
is located by its coordinates (φ j−1, y j−1) and associated to the residence time τ j , as defined in Fig. 6. The color
maps are obtained as a two-dimensional histogram (250 × 250 uniform bins) of all the points of the long
trajectory used in Fig. 11, weighted by the residence time values, and normalized by the mean residence time
τm(L) = L/Um in each case. The color scale is identical for all figures; the color bar on the right is indicative
and not to scale. The white regions correspond to a forbidden zone empty of points. The streamlines of Fig.
4(b) are reproduced on the last panel to emphasize the connection between the different regions of the flow and
the resulting residence time properties.

explain this behavior, the samples are visualized in the (φ, y, τ ) plane in Fig. 10 for increasing
travel distances, with points colorized according to the corresponding residence time. The figure es-
sentially shows that a point starting in a recirculation region is associated with a nondimensional
residence time close to τ̂wave (green color). This behavior is more pronounced as L is increased.
Indeed, focus on the lower recirculation region in Fig. 10(a) (L = λ): the point at the center of
the recirculation (which is fixed in the moving referential) travels exactly at the velocity of the
wave in the laboratory frame, and its residence time is exactly equal to τwave. Consider now a
point initially slightly above the center: the gyratory motion sends the particle to the low-velocity,
near-wall region, and the resulting residence time is higher. Conversely, a point initially just below
the center is entrained toward the central jet, where the velocities are higher, resulting in a lower
residence time. When L is increased (L = nλ, n � 2), points that are in the recirculation region turn
around the center in the wave referential. If they make an exact number of turns, their residence
time is exactly equal to τwave = nλ/cnl ; if they do not, their residence time may be slightly higher
or lower. Consider finally the extreme case of a point located on one of the separatrices: if located
on the upper separatrix, it moves to the right toward the next saddle point on the right, and the
distance covered in the moving frame is at most equal to λ. Therefore, the residence time in the
laboratory frame is less than that of the central point, such that (n − 1) × λ/cnl � τ � n × λ/cnl .
On the contrary, a point situated on the lower separatrix moves to the left in the wave referential,
with a maximal distance covered λ in the moving frame, and the residence time is higher and
verifies n × λ/cnl � τ � (n + 1) × λ/cnl . Overall, all points in the recirculation have a residence
time such that (n − 1) × λ/cnl � τ � (n + 1) × λ/cnl . Finally, the nondimensional residence time
τ̂ of a point in the recirculation is such that

(1 − 1/n)τ̂wave � τ̂ � (1 + 1/n)τ̂wave , (23)

which approaches τ̂wave as n increases.
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FIG. 11. Normalized RTDs of the perturbed flow for four travel distances from L = λ to L = 10λ, in log-
log scale, for the reference case, α = 2 and Re = 10 000. All RTDs are plotted as histograms constituted of
500 logarithmically distributed bins. The sample corresponds to a single trajectory of total longitudinal length
Ltot = 1.2 × 107 × λ. The dotted line represents the analytical RTD of the theoretical plane Poiseuille flow.

We now focus on long residence times, corresponding to particles located near the walls, where
the longitudinal velocity is weak. Figure 11 shows the RTD obtained for different travel distances
ranging from L = λ to L = 10λ in log-log scale: although we globally recover the t−3 behavior
and its cutoff due to diffusion [14,38,39], some residence times seem underrepresented, so that a
peculiar pattern of peaks and valleys is observed for long residence times. The reason for these
less probable residence times is of Eulerian nature. Indeed, the total flow field exhibits some small
regions delimited in blue in Fig. 4, near the upper and lower walls and right at the vertical of
the recirculation regions, where the longitudinal velocity is negative in the laboratory frame: in
these regions a particle actually travels upstream. This implies that a particle cannot start or end its
trajectory on a section of length L in these particular regions (one cannot cross the start or finish
line moving backwards). This is particularly visible in Fig. 10, which represent a 2D histogram of
points entering in an element: the regions delimited in blue in Fig. 4(b) roughly correspond to those
empty of points in Fig. 10. A blowup of the bottom near-wall region is shown in Fig. 12. As can
be seen in the figure, the forbidden region is rather larger than the zone delimited in blue. This
can be explained as follows: when a particle is in a zone of negative longitudinal velocity, it goes
backwards. Therefore, it must go forward for some time before crossing the finish line. Therefore,
the forbidden region extends to the left of the blue zone. More generally, when approaching the blue
zone, the velocity decreases and approaches zero; therefore, a particle is very unlikely to cross the
finish line in the vicinity of the blue zone, and the density of points decreases as approaching this
particular region. Note finally that this does not break the ergodicity necessary to the validity of
the Lagrangian method: these regions of the flow are nevertheless visited, but these events do not
correspond to a crossing of a line x = n × L, and therefore are only forbidden from the Poincaré
section point of view inherent to residence times calculated with a Lagrangian method.
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FIG. 12. Blowup of Fig. 4(b) near the bottom wall (streamlines of the reference case, α = 2 and Re =
10 000, in the referential of the wave). In blue, region of negative longitudinal velocities in the laboratory
frame. In red, trajectory of a particle near the bottom wall in the referential of the wave. The points correspond
to the different positions of the diffusing particle in the (x′ = φ/α, y) plane when entering the jth element at
x = ( j − 1) × λ (Fig. 6) and can be seen as a Poincaré section of the diffusing trajectory.

In order to understand why those forbidden regions lead to less probable residence times, let us
consider a particle near the bottom wall that has just entered the jth element: because it is located
near the wall, its longitudinal velocity is very weak [and sometimes negative when crossing the
region delimited in blue in Fig. 4(b)]. Therefore, it travels a long time before leaving the jth element
of length L. The trajectory of such a particle in the moving frame is depicted in Fig. 12: in this
referential the particle moves very rapidly toward the left, at a velocity close to cnl . When the particle
leaves on the left in the periodic frame of Fig. 12 it reenters on the right, on the same trajectory if
diffusion is negligible; the time taken to cross once from left to right is roughly λ/cnl in the moving
frame. Because it travels a long time, it moves over a long distance in the referential of the wave,
and reenters many times in the domain.

Let us now focus on Fig. 12: a particle starting outside the forbidden region is always allowed
to travel a distance equal to n × λ in the moving frame (corresponding to the distance L in the
laboratory referential), because then the finish line is also outside the forbidden region. This very
probable configuration corresponds to a travel time τ ≈ m × λ/cnl , where m is an integer which is
at least such that m � 2 (because of the long times involved in this near-wall region). On the other
hand, because of the large forbidden and rarefied region, it is more likely to end in the forbidden
region when traveling a distance equal to (m + 1/2) × λ, which makes this distance in the moving
frame less probable. This corresponds to a rare travel time τ ≈ (m + 1/2) × λ/cnl .

Let us come back now to Fig. 11: in the case L = λ, the mean travel time is τm = λ/cnl .
Therefore, the most probable nondimensional times are

τ̂peak ≈ m × τ̂wave. (24)

Similarly, the positions of less probable nondimensional times (valleys) are given by

τ̂valleys ≈ (
m + 1

2

) × τ̂wave . (25)

This is indeed what is observed in Fig. 11(a). When L = n × λ with n � 2, as in Figs. 11(b)–11(d),
the mean traveling time is τm = n × λ/cnl , and the peaks are located at τ̂peak ≈ m/n × τ̂wave, with
the minima at τ̂valleys ≈ (m + 1/2)/n × τ̂wave. This explains why two events (peaks or valleys) get
mechanically closer to each other for increasing L, as shown in the figure.

Note also that those patterns become less pronounced when L is increased (see also Sec. IV B
later for the nondiffusive case). There are two reasons for this: the first one is that diffusion effects
are more important for larger travel distances; the second one is that the events (peaks or valleys)
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get mechanically closer to each other for increasing L, and sampling very rare events close to each
other tend to blur the results.

As the perturbed Poiseuille flow is expected to mix better than the basic Poiseuille flow, we would
also expect the width of the RTD (measured using the mean absolute deviation) to be smaller in the
perturbed case. Surprisingly, the width is larger in the perturbed configuration for the reference case.

Indeed, starting with σ1,Poi � 0.385 for the basic plane Poiseuille flow, mean absolute deviations
of σ1 = 0.431 for L = λ and σ1 = 0.424 for L = 10λ are attained, corresponding to a significant
increase of 12% and 10%, respectively. This is due to the increase in maximum velocity at the center
of the channel due to the nonlinear correction of the mean velocity profile. Indeed, increasing the
maximum velocity while keeping the mean velocity constant automatically produces residence time
values that are not only farther away from the mean residence time, but also highly probable (since
associated with a high-velocity region). The main peak located at τ̂ = τ̂wave leads to the same kind
of effect, although less prominent given the much smaller height of the peak as seen in lin-lin scale
in Fig. 9.

Finally, note that the width of the distributions is only slightly modified when increasing the
traveling length L: the mean absolute deviation σ1 decreases from σ1 = 0.431 for L = λ to σ1 =
0.424 for L = 10λ, which corresponds to a 1.6% decrease only. This is because the main peak is
located at τ = τmin and is related to the maximal velocity at the center; see discussion later at the
end of the section.

B. RTDs in the nondiffusive limit

From what was learned before, is it possible to calculate the RTD by seeding particles at the
entrance of a section? Indeed, when computing the PDFs of the positions yi and the phases φi

corresponding to the residence time samples previously obtained in the reference case, it appears
that the positions follow a distribution based on the mean velocity profile and that the phases obey
an almost uniform distribution (see Appendix B).

Therefore, we propose to build a RTD in the limit Pe → ∞ following an Eulerian method, by
seeding a large number M of nondiffusing tracers at the entrance of a section of length L, as follows:

(1) For each tracer i (1 � i � M), the initial position is characterized by xi = 0, and an initial
position yi and phase φi chosen randomly, both following a uniform distribution.

(2) The trajectory of each tracer is calculated until reaching the exit (xi = L).
(3) The corresponding residence time τi is weighted by the initial longitudinal velocity at en-

trance. This weighting reflects the fact that regions of high longitudinal velocity are more frequently
crossed by traveling particles [14,37,38]. If the longitudinal velocity is negative, which corresponds
to a point going backwards and initially located in one of the blue zones of Fig. 4(b), the point is
omitted.

Note that we do not omit here all the points in the forbidden region (which is larger than the blue
zone); however, the transverse velocities are very small in the whole forbidden region, which gives
a negligible weight to all the forbidden points. Therefore, we expect the resulting RTDs to be very
close to those calculated with diffusion.

The resulting RTDs are shown for the reference case in Fig. 13, with (a) L = λ and (b) L = 10λ.
For the sake of comparison the diffusive RTDs obtained by the Lagrangian method with Pe = 105

[Figs. 11(a) and 11(d)] are also plotted.
In the case L = λ [Fig. 13(a)], the RTDs are almost identical, except for the very long times

where the artificial cutoff due to diffusion is no more present with the Eulerian method. Note indeed
that with this latter method, the algebraic τ−3 tail is recovered, although modulated by the peak
and valley pattern already addressed. In the case L = 10λ [Fig. 13(b)], although the RTDs are
identical for the most probable values (above 10−1), the effect of diffusion is much more visible,
not only for the very long times, but also in the vicinity of the main peak at τwave. Indeed, without
diffusion, a particle remains forever in the recirculation region where it was initially located. Since
the residence time of all points in a recirculation region approaches τwave as L is increased [(Eq. (23);
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FIG. 13. RTDs of the reference flow (α = 2, Re = 10 000), for the Eulerian method (dark colors) and for
the Lagrangian method with diffusion (Pe = 105, light colors), for (a) L = λ and (b) L = 10λ. The diffusive
RTDs are the same as in Figs. 11(a) and 11(d). The dotted line is the RTD of the Poiseuille flow.

see also Fig. 10], the peak at τ = τwave gets narrower, which can be associated with unattainable
residence time values; those zero probability regions are erased by diffusion, which allows particles
to escape the recirculations on long distances, yielding intermediate residence values. Finally, at
long residence times, the algebraic tail is also recovered (with a less visible pattern) with the Eulerian
nondiffusive method.

Overall, in terms of dispersion of the RTDs, the two methods lead to very similar values, with
a mean absolute dispersion σ1 within a 1% difference only, both for L = λ and L = 10 λ. This
is because the most probable values (short times and peak at τ = τwave) are identical with both
methods. Indeed, the RTDs obtained in Fig. 13 are almost identical when plotted in lin-lin scale (not
shown here).

C. Variation of physical parameters Re and α

Up to now we have only considered the so-called reference case, α = 2 and Re = 10 000.
We found that in that case, the TS waves tend to increase the width of the RTDs compared to
the unperturbed Poiseuille flow, and also uncovered the existence of a peculiar pattern at long
residence times. We now vary the wavenumber α and Reynolds number Re in order to explore
the whole range of parameters of instability.

We begin with two sets of numerical experiments using the Lagrangian method: in the first one,
the Reynolds number is kept fixed and α is varied; reversely, in the second one, the wavenumber is
kept fixed, and the Reynolds number is varied. The results are displayed in Fig. 14.

We first address Fig. 14(a), for which the Reynolds number is Re = 10 000, and α varies from
αmin � 1.76 to αmax � 2.18; those values correspond to the lower and upper limits of the neutral
curve at this Reynolds number. What is most noticeable is the shift of the position of the peak
corresponding to the TS waves towards lower residence time values when α is increased. Indeed,
the peak occurs at τ̂wave = Um/cnl , with Um = 1 for the whole study, and the nonlinear phase speed
cnl is an increasing function of the wavenumber, as can be derived from Fig. 3(b).

Another characteristic of importance is the amplitude of the main peak, which increases with the
wavenumber. This is a direct consequence of the fact that the total energy of the perturbation is also
an increasing function of the wavenumber: when the total energy increases, the propagating vortices
also proportionally grow in size in the periodic region [0 � x′ � λ; −h/2 � y � h/2)] [Fig. 4(b)],
all the more so as the wavelength λ decreases when increasing α. Thinking in Lagrangian terms,
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FIG. 14. RTDs for L = 10λ resulting from nonlinear Tollmien-Schlichting waves for (a) fixed Reynolds
number Re = 10 000 and varying wavenumber, from αmin = 1.76 to αmax = 2.19 in steps of 0.04; (b) fixed
α = 2, and varying Reynolds number, from Re = 8000 to Re = 11500 in steps of 500. Main plots are in log-log
scale, while subplots focusing on the peaks are in lin-lin scale. At the top right of each plot are schematized the
ranges considered throughout the neutral curve.

this means that a given particle will be more likely trapped in a recirculation region, associated with
a residence time τ � τwave, which explains the higher peaks when α is increased.

Those changes are still present but much less pronounced in the case when the wavenumber α

is kept constant, and the Reynolds number is varied, as shown in Fig. 14(b), where α = 2 and the
Reynolds number is varied between 8000 and 12 000: this is because the characteristics of the TS
waves change much less in that case, in terms of nonlinear phase speed cnl and total energy.

Finally, note that the peculiar pattern of peaks and valleys observed in the reference case at small
residence lengths L (and less visible when L is increased, as explained before) is in practice nearly
always observed whatever the parameters α and Re are taken inside the neutral curve. Only at very
low wave energy, slightly above the bottom neutral curve, when no negative longitudinal velocities
exist, can the pattern disappear. An example of the RTDs found in such a rare case is shown in
Appendix C for L = λ and L = 10λ.

In terms of width of distributions, a map of values of the mean absolute deviation σ1, calculated
for L = λ with the Eulerian method (so as to compare with the values already obtained with the
Lagrangian method and validate the method with more cases) is shown in Fig. 15(a).

As can be seen, the width of the distribution always increases when going away from the
neutral curve. This is surprising from what was previously shown: because the peak at τ = τwave

increases and gets closer to τm as α or Re increase, one could imagine that σ1 would consequently
decrease. However, the highest peak in the distributions is the one at the minimum residence time,
corresponding to the maximum velocity at the center. A map of the mean flow correction at the
center is given in Fig. 15(b): as can be seen, the velocity at the center increases away from the
neutral curve, so that the minimum time τmin decreases, and curves are very similar in the lower part
of the instability region, when the peak at τ = τwave is small, while the effect of this peak is more
visible in the upper part.

V. SUMMARY AND CONCLUSION

In this paper, the flow resulting from the nonlinear saturation of a linearly unstable Tollmien-
Schlichting wave in the plane Poiseuille flow has been studied in terms of residence time
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FIG. 15. (a) Levels of mean absolute deviation σ1, from 0.385 (plane Poiseuille flow value) to 0.445 in
steps of 0.002, for L = λ. (b) Levels of mean flow correction at the center of the channel, from 0.0175 to
0.0675 in steps of 0.005.

distributions. A method for computing the RTD of this nonchaotic flow, making use of diffusion
as a way for a single particle to visit the entire cross section of the channel, has been outlined and
validated on the simple case of the basic parabolic plane Poiseuille flow.

Since the choice of the travel distance was arbitrary, its impact on the RTD of the flow has first
been assessed, an assessment which at the same time brought to light the main features of the RTD
and their links with the physical properties of the wave, which can be summarized as follows:

(i) For relatively small travel distances, the existence of regions of the flow where the longi-
tudinal velocity is negative leads to a peak-valley pattern situated on the RTD’s tail. This pattern
indicates that some long residence times are much less likely to be encountered than others, entirely
because of the steadily propagating vortices.

(ii) For longer travel distances, a main peak appears on the RTD, precisely located on the
wave residence time. This peak is the consequence of particles being trapped and entrained in the
propagating vortices, which travel downstream at constant speed.

(i) No matter what the travel distance is, the distortion of the mean velocity profile decreases
the minimum residence time (keeping the same mean residence time) compared to the basic plane
Poiseuille flow.

This distortion of the mean velocity profile has been shown to be the main reason for increased
dispersion of the RTD. Indeed, by varying the wavenumber of the disturbance, at constant Reynolds
number, and computing the dispersion of the RTD resulting from the corresponding saturated
nonlinear Tollmien-Schlichting wave, good agreement has been found between the dispersion of
the RTD—quantified by the mean absolute deviation—and the maximum velocity attained at the
center of the channel. It is thus interesting to note that, despite having better mixing capacities than
the basic plane Poiseuille flow, saturated PPF suffers the counterpart of having increased dispersion
of residence time values, which in some applications is of critical importance.

The Lagrangian method introduced in this article for the calculation of RTDs could easily be
applied to any kind of open flow. For example, intermediate equilibrium states of the channel
flow (3D disturbances, modulated Tollmien-Schlichting waves, etc.) could be considered up until
complete destabilization to a turbulent state, in order to observe how the dispersion of residence
time values evolves from the laminar value to the presumably very low dispersion attained with the
turbulent velocity field.
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APPENDIX A: CALCULATION OF THE RTD AND ITS MEAN ABSOLUTE DEVIATION
FOR THE PLANE POISEUILLE FLOW

The probability for a fluid particle to cross a given cross section of the channel at this distance
must be proportional to the velocity field at this point. If we take y as the distance from the center
of the channel, the velocity profile of the plane Poiseuille flow is

UPoi(y) = 3

2
Um

(
1 − 4y2

h2

)
. (A1)

Normalizing the velocity field in order to have an integral unity across half the channel width, we
obtain the probability density

gPoi(y) = 3

h

(
1 − 4y2

h2

)
. (A2)

Let fPoi(τ ) be the probability density of the time needed to cross an element of length L. Thus, the
probability for a fluid particle to travel a length L in a time between τ and τ + dτ is equal to the
probability for the particle to begin the crossing between ordinates y and y + dy; that is,

fPoi(τ ) dτ = gPoi(y) dy. (A3)

We denote by τm the mean time to travel the distance L; we have

τ = L

UPoi(y)
= 2

3

τm

1 − 4y2/h2
, (A4)

which implies

y = h

2

√
1 − 2

3

τm

τ
. (A5)

This can be differentiated into

dy

dτ
= h

6

τm

τ 2

(
1 − 2τm

3τ

)−1/2

. (A6)

Combining Eqs. (A2), (A3), and (A6), we finally obtain

fPoi(τ ) = 1

3

τ 2
m

τ 3

(
1 − 2τm

3τ

)−1/2

. (A7)

Note that, despite being singular in the limit τ → τmin = 2
3τm, the following classical properties

hold: ∫ +∞

τmin

fPoi(τ ) dτ = 1 and
∫ +∞

τmin

τ fPoi(τ ) dτ = τm. (A8)

We can now calculate the mean absolute deviation of this distribution:

σ1,Poi =
∫ +∞

τmin

∣∣∣∣ τ

τm
− 1

∣∣∣∣ fPoi(τ ) dτ =
∫ τm

τmin

(
1 − τ

τm

)
fPoi(τ ) dτ +

∫ +∞

τm

(
τ

τm
− 1

)
fPoi(τ ) dτ .

(A9)
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FIG. 16. PDF of the (a) transversal positions yi and (b) phases φi corresponding to the sample studied in
Sec. IV A.

First, by setting u = τ/τm, we obtain

σ1,Poi =
∫ 1

2/3

1 − u

3u3

(
1 − 2

3u

)−1/2

du +
∫ +∞

1

u − 1

3u3

(
1 − 2

3u

)−1/2

du (A10)

=
∫ 1

2/3

(
1

3u
− 1

3

)(
1 − 2

3u

)−1/2 du

u2
+

∫ +∞

1

(
1

3
− 1

3u

)(
1 − 2

3u

)−1/2 du

u2
. (A11)

Then, by setting x2 = 1 − 2/3u, so that xdx = 1/3du/u2 and 1/3u = (1 − x2)/2, we obtain

σ1,Poi =
∫ 1/

√
3

0

1 − 3x2

2
dx +

∫ 1

1/
√

3

3x2 − 1

2
dx (A12)

=
[

x(1 − x2)

2

]1/
√

3

0

+
[

x(x2 − 1)

2

]1

1/
√

3

, (A13)

FIG. 17. RTDs of the perturbed flow for (a) L = λ and (b) L = 10λ normalized by the mean residence time
τm = L/Um. The physical parameters are here Re = 12 000 and α = 1.6475; the resulting nonlinear wavespeed
is cnl = 0.331.
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and finally,

σ1,Poi = 2/(3
√

3) . (A14)

APPENDIX B: PDFS OF POSITION AND PHASE

Figure 16(a) shows the PDF of transversal positions yi and Fig. 16(b) shows the phases φi

corresponding to the sample obtained by the Lagrangian method in the reference case (α = 2,
Re = 10 000) with a Péclet number Pe = 105. The positions follow a distribution based on the
mean velocity profile and the phases conform to an almost uniform distribution.

APPENDIX C: RTD OF LOW-ENERGY WAVE

Figure 17 shows the RTDs for L = λ and L = 10λ in a case of very low wave energy, when there
are no negative longitudinal velocities: the patterns of peaks and valleys are no longer present at
large residence times.
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