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Steep nonlinear global modes in spatially developing media
Benoı̂t Pier,a) Patrick Huerre, Jean-Marc Chomaz, and Arnaud Couairon
Laboratoire d’Hydrodynamique (LadHyX), CNRS UMR 7646, E´ cole polytechnique,
F-91128 Palaiseau cedex, France

~Received 16 April 1998; accepted 15 June 1998!

A new frequency selection criterion valid in the fully nonlinear regime is presented for extended
oscillating states in spatially developing media. The spatial structure and frequency of these modes
are dominated by the existence of a sharp front connecting linear to nonlinear regions. A new type
of fully nonlinear time harmonic solutions calledsteep global modesis identified in the context of
the supercritical complex Ginzburg–Landau equation with slowly spatially varying coefficients. A
similar formulation is likely to be applicable to fully nonlinear synchronized global oscillations in
spatially developing free shear flows. ©1998 American Institute of Physics.
@S1070-6631~98!00410-3#

Spatially developing free shear flows such as mixing
layers,1 wakes,2,3 and jets4 typically give rise to intrinsic self-
sustained oscillations when they exhibit a sufficiently large
region of absolute instability.5 Fluctuations saturate at a finite
amplitude in the locally unstable regions of the flow and
become tuned at an overall frequency. The intrinsic fre-
quency and the associated spatial distribution of fluctuations
define aglobal modeliving on the underlying unstable basic
flow. In the present letter we show the existence of fully
nonlinear global modes with a sharp stationary front separat-
ing linear and nonlinear regions. The complex Ginzburg–
Landau~CGL! equation is chosen as a model of open flows
since families of linear and nonlinear wave solutions are
readily determined analytically. As summarized below, the
study of CGL models has been found to lead to linear fre-
quency selection criteria6 that remain applicable for the
Navier–Stokes equations.7 The same approach is adopted
here in the fully nonlinear context.

In the linear approximation, global frequency selection
in doubly infinite domainsis dictated by saddle point
conditions6,7 imposed on the local linear dispersion relation.
Such a criterion predicts remarkably well the vortex shed-
ding frequency behind blunt edged plates.8 Nonlinearexten-
sions of these concepts have only recently been developed,
mainly in the context of various one-dimensional evolution
models in semi-infinite9,10 or finite11 domains. The results
compare satisfactorily with numerical simulations and ex-
periments for Taylor–Couette flow12 and Rayleigh–Be´nard
convection with throughflow.13,10 Surprisingly, fully nonlin-
earsoft global modesof the CGL equation varying smoothly
over a doubly infinite domain have been shown,14 by appli-
cation of Wentzel–Kramers–Brillouin–Jeffreys~WKBJ!
theory, to satisfy a nonlinear saddle point criterion which is

formally analogous to its linear counterpart. Here we show
the existence of a second class of nonlinear spatially ex-
tended states in doubly infinite domains:steep global modes
with a sharp front.

We assume that the fluctuating complex scalar field
c(x,t) is governed by the supercritical CGL equation written
as

i
]c

]t
5S v0~X!1

1

2
vkk~X!k0~X!2Dc1 ivkk~X!k0~X!

]c

]x

2
1

2
vkk~X!

]2c

]x2
1g~X!ucu2c, ~1!

where the complex functionsv0(X), vkk(X), k0(X), and
g(X) solely depend on the slow space variableX5ex,
e!1, to account for the weak inhomogeneity of the medium.
The choice of these functions and their meaning will become
clear when we discuss the resulting linear and nonlinear dis-
persion relations.

In regions where the amplitude ofc is small, its behav-
ior is governed by the linearized counterpart of~1!. Under
the assumption of weak inhomogeneity, linear solutions are
approximated at leading order by waves of the form
exp((i/e) *Xk(u)du2ivt). The correspondinglocal linear dis-
persion relationreads

v5V l~k,X![v0~X!1 1
2 vkk~X!~k2k0~X!!2, ~2!

with associated complex local linear spatial branches

kl 6~X;v![k0~X!6A2
v2v0~X!

vkk~X!
. ~3!
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As defined in Ref. 5, the complex absolute frequencyv0

necessarily coincides with the branch point of~3!: at
v5v0 both wave number branches are equal to the local
absolute wave numberk0 . The following basic flow struc-
ture is assumed: a central absolutely unstable~AU! region of
finite extent characterized byv0,i(X)[Im v0(X).0, sur-
rounded by convectively unstable~CU! regions with
v0,i(X),0, which in turn become stable far downstream
(X→1`) and upstream (X→2`). In order to enforce cau-
sality, sufficiently large wave numbers are assumed to be
damped, i.e.,vkk,i(X),0 for all X. We assume a basic flow
advection towards increasingX which is readily shown to
correspond tok0,i,0. The1 and2 superscripts are unam-
biguously assigned to the spatial branches exponentially de-
caying towardsX51` andX52`, respectively.

In unstable regions the CGL equation admits local non-
linear traveling wave solutions of the formc
5R(X)exp((i/e) *Xk(u)du2ivt), with real wave numberk,
real frequencyv andreal amplitudeR governed by thelocal
nonlinear dispersion relation

v5v0~X!1 1
2 vkk~X!~k2k0~X!!21g~X!R2. ~4!

This complex equation with three real unknowns can easily
be cast in the form

v5Vnl~k,X! ~5a!

and

R25R2~k,X!, ~5b!

where the functionsVnl andR2 are quadratic polynomials in
k with X-dependentreal coefficients. The real nonlinear
wave number branchesknl6(X;v) are derived from~5a!; the
allowed wave numbers are those for whichR2(k,X).0. We
only consider CGL coefficients for which the finite ampli-
tude traveling waves are stable.

Global mode solutions over the entire flow are obtained
by asymptotically matching together local traveling wave so-
lutions of the same frequency. By definition, a global mode
is necessarily made up of the decayingkl 2 branch forX→
2` and the decayingkl 1 branch for X→1`. The fre-
quency selection gives rise to a nonlinear eigenvalue prob-
lem: the matching of finite amplitude oscillations in a central
region to exponentially decaying tails in both upstream and
downstream directions can only be achieved for a specific
frequency.

This problem has been solved for purelylinear global
modesin Ref. 6. In the fully nonlinear regime,soft global
modeswith an overall slowly varying spatial envelope have
been identified and described in Ref. 14; their real global
frequencyvs is obtained at a saddle point (ks ,Xs) of the
nonlinear dispersion relationVnl(k,X). The objective of this
letter is to report the existence of a second type of fully
nonlinear solutions: in situations wheresoft modes fail to
exist, they are replaced by asteepmode with a sharp front.

The spatial structure of a steep global mode of frequency
v f is given in Fig. 1~a!. Such a solution is characterized by a
sharp front at the upstream boundaryXf of the AU region
indicated in gray. Associated linearkl 6 and nonlinearknl6

wave number branches at the frequencyv f vary along the

streamwise directionX, as shown by solid and dashed lines
in the X-kr plane of Fig. 1~b!. The local wave number mak-
ing up the actual solution follows the path indicated by a
thick line in Fig. 1~b!. Except for the jump at the front@re-
peated arrows in Fig. 1~b!# local wave number and amplitude
vary slowly. The nonlinear solution prevails in the region
Xf,X,X2 which extends beyond the AU region.

The steep global frequencyv f and the front locationXf

are then solely determined by applying the following crite-
rion to the locallinear dispersion relation:

v f5V l~kf ,Xf !, ~6!

where the pair (kf ,Xf) satisfies

]V l

]k
~kf ,Xf !50 and V i

l~kf ,Xf !50. ~7!

In terms ofv0(X) these conditions read

v f5v0~Xf ! and v0,i~Xf !50. ~8!

The above equations are reminiscent of the Dee–Langer se-
lection criterion15 for a propagating front connecting an un-
stable statec50 to a fully nonlinear wave pattern in a ho-
mogeneous medium undergoing a supercritical bifurcation.
According to this criterion, a stationary front exists in homo-
geneous media only when the control parameters are chosen
to be exactly at the CU/AU transition. In the present inho-
mogeneous, i.e., spatially varying context, the CU/AU tran-
sition precisely occurs at the single locationXf . The front at
this station has the overall frequencyv f and the complex
wave number at the decaying front edge coincides@Fig. 1~b!#
with the local absolute wave numberkf5k0(Xf)
5kl 6(Xf ,v f).

By definition of the absolute wave number, the linear
kl 6 branches meet atkf for v5v f andX5Xf . In a neigh-
borhood ofXf , the upstreamkl 2 branch decays towardsX

FIG. 1. ~a! Envelopeucu and real partc r of steep global mode with sharp
front at upstream boundaryXf of AU region ~in gray!. ~b! Corresponding
linear and nonlinear spatial branches in theX-kr plane. Local wave number
making up solution in~a! follows path indicated by a thick line. The wave
number jump at the front is indicated by repeated arrows.
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52` when X,Xf , whereas the downstream spatially am-
plified kl 1 branch is replaced by the nonlinearknl1 branch
whenX.Xf . The front atXf exactly connects the linearkl 2

branch in the CU regionX,Xf with the nonlinearknl 1

branch prevailing in the AU regionX.Xf . Further down-
stream the nonlinearknl1 branch eventually returns to the
linearkl 1 via a neutral stability stationX2 where the nonlin-
ear amplitude vanishes, exactly as for soft global modes.14

A front located at the upstream boundary of the AU re-
gion is a stable configuration due to the following argument.
Consider a small displacement from the front equilibrium
position atXf towardsX.Xf . The front now experiences a
slightly AU medium and hence15 propagates slowly towards
its decaying edge, i.e., upstream. When the front is displaced
to X,Xf , it penetrates into a CU region and is thus pushed
downstream. In any case the front is seen to return to its
equilibrium position. The complete asymptotic representa-
tion of steep global modes is obtained by linear and nonlin-
ear WKBJ matching techniques as in Ref. 14.

According to the present theory the CGL equation with
spatially varying coefficients has been shown to admit two
types of time harmonic solutions. Soft global modes are
characterized by a nonlinear saddle point condition,14

whereas steep global modes display a stationary front~6! and
~7! at the upstream boundary of the AU domain. The nature
of the selected global mode is determined by formally com-
puting the respective characteristic frequenciesvs and v f :
in a future publication we will show that the mode of largest
frequency is selected and that no other global mode type
occurs. The validity of these theoretical criteria is confirmed
by spatio-temporal numerical simulations of~1!. Further-
more, according to the results of Ref. 16, one expects the
nature of the bifurcation to a fully nonlinear global mode to
be extremely sensitive toe.

In both instances, frequency selection takes place at the
downstream position where a2 branch is linked to a1
branch:knl2 andknl1 at Xs for a soft global mode,kl 2 and
knl1 at Xf for a steep global mode. These stations effectively
act as frequency generators for the entire flow. Such loca-
tions may be interpreted as local oscillators inducing the up-
stream2 branch and the downstream1 branch, regardless
whether these branches are linear or nonlinear. It is notewor-
thy that the present steep frequency selection criterion~6!
and~7! demonstrates, in the CGL context, the validity of the
initial resonance principle postulated by Monkewitz and
Nguyen17 to account for self-excited resonances in bluff
body wakes.

An essential difference between steep and soft global

modes is that steep global modes only involve one nonlinear
spatial branchknl1. The sharp front allows an immediate
crossover from the linear2 to the nonlinear1 branch. Gen-
eralization of the present theory to real flows is in progress:
In the context of free shear flows governed by the Navier–
Stokes equations, the localknl1 is represented by fully non-
linear saturated solutions on a streamwise periodic domain as
obtained in direct numerical simulations for a given parallel
basic flow. To our knowledge localknl2 branches for free
shear flows have never been identified. It therefore seems
likely that fully nonlinear global modes in wakes, jets or
shear-layers may be described as steep rather than soft global
modes.
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Abstract 

We report novel superlattice wave patterns at the interface of a fluid layer driven vertically. These patterns are described 
most naturally in terms of two interacting hexagonal sublattices. Two frequency forcing at very large aspect ratio is utilized 
in this work. A superlattice pattern ("superlattice-I") consisting of two hexagonal lattices oriented at a relative angle of 22 c' 
is obtained with a 6 : 7 ratio of forcing frequencies. Several theoretical approaches that may be useful in understanding this 
pattern have been proposed. In another example, the waves are fully described by two superimposed hexagonal lattices with a 
wavelength ratio of ~/3, oriented at a relative angle 30 °. The time dependence of this "superlattice-II" wave pattern is unusual. 
The instantaneous patterns reveal a time-periodic stripe modulation that breaks the sixfold symmetry at any instant, but the 
stripes are absent in the time average. The instantaneous patterns are not simply amplitude modulations of the primary standing 
wave. A transition from the superlattice-II state to a 12-fold quasi-crystalline pattern is observed by changing the relative phase 
of the two forcing frequencies. Phase diagrams of the observed patterns (including superlattices, quasicrystalline patterns, 
ordinary hexagons, and squares) are obtained as a function of the amplitudes and relative phases of the driving accelerations. 
Copyright © 1998 Elsevier Science B.V. 
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1. Introduction 

Surface waves produced by the Faraday instabil- 

ity are known to give rise to many different pat- 

terns (including stripes, squares, hexagons, and even 

quasi-crystalline patterns) as a function of  driving 

frequency and amplitude, viscosity, and the driving 

waveforrn [1-4]. However, regular space-filling pat- 

terns formed as a result of  nonlinearity are even more 

diverse than the wide range reviewed by Cross and 

* Corresponding author. Tel.: (610) 896 1196; fax: (610) 896 
4904; e-mail: jgollub@haverford.edu. 

I Permanent address: Department of Physics, Clark Univer- 
sity, 950 main Street, Worcester, MA 01610, USA. E-mail: 
akudrolli @ clarku.edu. 

Hohenberg [5]. For example, in recent optical ex- 

periments in a Kerr-like medium, phase locking of  

several wave vectors results in novel patterns with 

several unequal wave vectors [6]. In this paper we 

report novel regular patterns observed in experiments 

on surface waves generated by two frequency forc- 

ing that extend earlier systematic work limited to 

single-frequency forcing [3]. We will refer to these 

new patterns as superlattices because these are com- 

posed o f  two discrete but interacting sublattices. 

Their occurrence extends the striking variety of sym- 

metric states than can occur in nonlinear surface 

waves. 
In our earlier study hexagonal wave patterns were 

observed for low driving frequencies, for which the 

0167-2789/98/$19.00 Copyright © 1998 Elsevier Science B.V. All rights reserved 
PII S0167-2789(98)001 15-8 
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gravitational restoring force was comparable to the 
capillary force. For high frequencies, i.e. in the capil- 
lary limit, square patterns were observed for low kine- 
matic viscosity (v < 50 cm 2 s - I ) ,  and textured stripes 

for higher viscosity. Recent theoretical work by Chen 
and Vifials [7] has explained these observations using 

quasi-potential equations derived from the underlying 

hydrodynamic equations. 
Good agreement of measured onset accelerations 

for two frequency forcing have been found with pre- 

dictions of linear stability analysis of the full hy- 
drodynamic equations [8]. Edwards and Fauve [4] 

observed 12-fold quasi-crystalline patterns using two 
frequency forcing with ratio 4 : 5. They argued that an 

even frequency perturbed by an odd frequency breaks 
the subharmonic symmetry (invariance with respect to 
translation in time by one driving period) and there- 
fore allows quadratic terms (which would otherwise 

be excluded) to appear in the amplitude equations. Sta- 
bilization of patterns such as hexagons can then occur 

by quadratic interaction as in non-Boussinesq con- 
vection. These 12-fold quasi-crystalline patterns may 

be described as two hexagonal lattices that are ori- 
ented at 30 °. A clear mechanism for their formation is 

not available, although recent work on a generalized 
Swift-Hohenberg model equation has shown 12-fold 
quasi-patterns [9]. 

In other work by Mtiller using 1 : 2 forcing, trian- 

gular and hexagonal lattices were observed; the type 
of lattice could be selected by using a third perturb- 

ing frequency [10], but no superlattices were reported. 
These experimental observations were reproduced the- 
oretically by Zhang and Vifials [11] using an exten- 

sion of their quasi-potential equations to the case of 
two frequencies. 

In the present work we report and discuss sev- 
eral new patterns formed with even-odd forcing. We 
study two frequency ratios (6 : 7 and 4 : 5), to explore 
the formation of patterns with novel symmetries. In 
both cases, there is a prominent region of hexagons in 
parameter space. By making relatively small adjust- 
ments in the relative amplitude or phase of the forcing 
components, we find several distinct patterns that are 
described most naturally as being composed of multi- 
ple hexagonal sublattices. In these patterns, the spatial 

power spectrum contains peaks at smaller wave num- 

bers than those observed at the onset of surface waves 

(for either driving frequency). These superlattice pat- 
terns arise from an instability of the base hexagonal 
lattice that is formed at onset. Superlattice structures 

are of course common in condensed matter physics, 

but to our knowledge the term has not previously been 

applied to patterns in nonlinear systems. 

2. Experimental setup and forcing function 

The apparatus is essentially as described in [8]. The 

experimental setup consists of a 32 cm diameter cir- 

cular aluminum container filed with silicone oil to a 
height of 3 mm. This material gives stable behavior 

over many weeks, and is available over a wide range 
of kinematic viscosity, though the present work is lim- 

ited mainly to v = 20-50 cm 2 s - I  because of the large 

number of other parameters that need to be varied. The 
fluid depth is generally greater than the viscous pene- 
tration depth at the typical fluid oscillation frequency. 

The container is rigidly attached to a Vibration Test 
Systems electromagnetic shaker that is capable of ap- 

plying peak forces of 2200 N. 

The forcing waveform that controls the acceleration 
of the container is described by 

a( t )  = a[cos(x) cos(no9t) 

+ sin(x) cos(mogt + 0)], (1) 

where, o9 = 2rrf ,  n and m are integers, 1 I f  is the 
overall period T of the driving, and X is used to 
control the relative amplitudes. By measuring the ac- 
tual acceleration and using feedback, the acceleration 

is forced to follow Eq. (1) to within about 1%. We 
generally choose n to be even and m to be odd so 

that nonlinear interactions can occur at quadratic or- 
der, as explained in Section 1. We thoroughly explore 
two cases: (m, n) = (6,7) and (4,5), and we system- 
atically vary a, 4~, X for each case. For some pur- 
poses it is useful to define an = a cos(x) and am = 

a sin(x). 
Lighting is provided by a circular array of lights, 

and the reflected light from the fluid surface is imaged. 
Roughly speaking, nodes appear dark because light 
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is deflected away from the camera, while antinodes 

appear bright. The intensity is a (nonlinear) function 
of the surface slope, reaching a maximum at an an- 

gle (4.2 ° ) that is often small compared to the slopes 
typically present in the patterns. We typically aver- 

age over 1-2 wave periods; this causes the apparent 
wavelength to be half the actual wavelength, since 
there are two nodes (or antinodes) per period. Though 
the images are not quantitative measures of the sur- 
face height function or slope, they are useful for de- 

termining the symmetries of the patterns. In some 
cases, instantaneous images are used to determine the 

variation of the waves with time within one wave 

period. 
The patterns formed at the surface are imaged using 

a 512 x 512 pixel Dalsa variable scan CCD camera 
controlled by the same computer that generates the 

driving waveform of the shaker. The camera exposure 
times may be varied with a minimum exposure time of 
about 10 -3 s. The phase of the image acquisition with 

respect to the forcing function is adjustable by means 
of a programmable liquid crystal shutter. Pattern anal- 
ysis is implemented using Khoros image processing 

~oftware. 

3. Experimental results 

3.1. Parameter space f o r  6o9 : 7o9 forcing 

First we discuss the patterns obtained using n = 6 
and m = 7, i.e. a 6 : 7 frequency ratio. We find that in 

the capillary limit (where the capillary force dominates 
over gravitation) the pattems do not depend strongly 

on the frequency f .  Therefore, detailed studies of the 
pattems observed as a function of a, X, and ~b in Eq. (1) 
were conducted at f = 16.44Hz. The phase diagram 
of the patterns obtained as a function of the relative 

strength of acceleration is shown in Fig. l(a) for f = 
16.44 Hz, and 4~ = 20 °. The data shown in the phase 
diagram were obtained by observing the pattern after 
incrementing the acceleration a in steps 0.1 g, and X 
and ~b in steps of 5 °. 

A square lattice is observed when the acceler- 
ations a6 and a7 are substantially unequal. This 

observation is consistent with previous studies us- 

ing single frequency forcing at the same viscosity 
[3]. The square patterns corresponding to the even 

frequency are harmonic since the phase of the fluid 
motion has the same sign after a drive period T. 

On the other hand, the square patterns correspond- 
ing to the odd frequency are subharmonic, i.e. they 
change sign after one drive period and will have 

the same sign only after two periods. (However, the 
subharmonic pattern does recur at a shorter time in- 

terval 2T /7 .  The use of the term subharmonic refers 

to the phase of the pattern after one drive period 

T.) 
More complex patterns are obtained when both 

components are comparable. In this situation, 
hexagons are formed at onset, as shown in Fig. 1. This 
transition is subcritical, since hysteresis is observed at 
onset. Because of the observation of hysteresis and the 
role played by the odd frequency 7o9, these hexagons 
are thought to arise from quadratic interactions in 

the amplitude equations [4]. They arise from a fun- 
damentally different mechanism than those observed 
with single frequency forcing, where the interactions 
are at cubic order in the amplitude equations and triad 
resonances (which occur at low frequencies) are im- 
portant [3,12]. As the variable X (which specifies the 

relative strength of the two frequencies) is increased 
near onset, the wavelength changes suddenly from 
the one corresponding to the even forcing term to that 
corresponding to the odd term at a particular value 
X0 -- 61.5 ~ that is independent of 4~. This point in 
the parameter space may be regarded as a "bi-critical 

point". 
Time-dependent patterns are also visible in the 

phase diagrams. These include: transverse amplitude 
modulations (TAM), which have been predicted in 
a simpler form [13] and observed [14] previously; 
and spatiotemporal chaos (STC) similar to that which 
develops from square patterns for single frequency 

forcing [3]. 
The main features of the phase diagram are rela- 

tively independent of 4~. This is shown in the phase 
diagram near the bi-critical point for fixed Z as shown 
in Fig. 1 (b). However, the secondary instability lead- 

ing to disorder does depend significantly on 4~- 
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Fig. 1. Phase diagrams of patterns obtained for a forcing frequency ratio of 6 : 7 (see Eq. (1)). (a) The axes represent the forcing 
amplitudes a6 and a7 at the two frequencies 6 f  and 7f ,  and the phase angle ¢ is held fixed at 16 ° (v = 20 cm 2 s - t ,  16.4 Hz). (b) Phase 
variation of the patterns for fixed X = 61 °. H = hexagons; Ss = subharmonic squares; Sh = harmonic squares; SL-I = Superlattice-I 
state; TAM = transverse amplitude modulations; STC = spatiotemporal chaos. In shaded regions competition occurs. 

3.2. Superlattice-I patterns and their spectra 

A n  addit ional  instabil i ty occurs as the acceleration 

is increased in  the vicini ty of  the bi-cri t ical  point  (see 

Fig. l(a)).  We refer to the resul t ing pattern, shown 

in  Fig. 2, as a superlattice-I (SL-I) pattern (to dist in- 

guish it f rom another  case that we describe later in 

this section). This  pattern shows a t r iangular  (three- 

fold) lattice at large scales, with each lattice point  be- 

ing composed of  discrete clusters of three small  cells. 

Each of  the small  cells is approximately  the same size 

as the hexagons in the "nearby"  hexagonal  state. We 

use stroboscopic i l luminat ion  to determine that this 

pattern is harmonic  with the drive period T;  the image 

shown in  Fig. 2 has been  obtained with an exposure 

t ime equal  to the drive period. 

We compare  the two-d imens iona l  power  spectrum 

of  the SL-I  state with that of  the hexagonal  pattern in  

Fig. 3. The SL-I spectrum has the sixfold symmetry  

of  a hexagonal  lattice, but  the m i n i m u m  lattice vec- 

tor (corresponding to the inner set of  six peaks) is 

Fig. 2. Example of the superlattice-I pattern obtained for 
two-frequency forcing with ratio 6 :7  ( f  = 16.44Hz, ¢ = 20 °, 
g = 61°) • 
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Fig. 3. Two-dimensional power spectrum of the superlattice-I state (a) and hexagonal state (b). The two sets of  circles in black 
highlight the peaks corresponding to the two hexagonal lattices of  the same wave number as the onset hexagons shown in (b). 

quite different in magnitude from the wave number 

k0 that is forced directly and corresponds to the onset 
hexagons, shown in Fig. 3(b). Instead, k0 corresponds 

to the fourth circle in Fig. 3(a) that is concentric 
with the origin; these peaks have been highlighted 
artificially and are farther from the origin by a fac- 
tor v/ft. Furthermore, the 12 peaks on this circle are 

not equally spaced. They may be described as two 
sets of six peaks forming two hexagons oriented at 
an angle 2sin -] (1/2v/if) ~ 22 ° to each other. (This 

situation is quite different from the 12 peaks of the 
quasi-crystalline pattern discussed in Section 3.3. 
In that case, there are also 12 dominant peaks, but 

they are equally spaced on a circle centered at the 

origin.) 
We note that the onset wave number k0 corre- 

sponds (via the dispersion relation) to the 609 forcing. 
We propose that the SL-I pattern results from reso- 
nances involving quadratic interactions between the 
highlighted peaks on the fourth circle with wave 

number k0; such interactions are allowed for har- 
monic patterns produced by even-odd forcing, and 

they are capable of generating all of the other peaks 

in the power spectrum. The six peaks located on the 

slightly larger fifth circle have a wave number that 
approximately corresponds to the 70) term. This fre- 
quency matching may also be important in generating 

the SL-I pattern [9], but we are unable to assess its 
importance. 

3.2.1. Phenomenological description of the SL-1 state 
As we have indicated, a description of this SL-1 

state can be given in terms of two interacting hexag- 
onal lattices; we give it more explicitly here. Each 

hexagonal lattice may be specified by an instantaneous 
surface height function given (to within a constant of 
proportionality) by 

3 

Fhe×(X'  Y) = Z c o s ( k /  • r + (2) 
i= l  
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Fig. 4. Patterns formed by superposing two hexagonal lattices at an angle 0 = 2 sin-1 (1/2C'ff) ~ 22 °. The total phases defined below 
Eq. (2) are the same for both lattices. (a) A point of sixfold symmetry of the first lattice coincides with a point of triangular symmetry 
of the second lattice; this gives a pattern that closely matches the experimental SL-I pattern with overall triangular symmetry. (b) A 
point of sixfold symmetry of one lattice corresponds to a similar point of the other lattice. 

with 

kl = (1,0), k2 = ( - 1 / 2 ,  v/3/2),  

k3 = ( - 1 / 2 ,  - ~ / 2 ) ,  r = (x, y). 

We denote the arguments of  the cosine functions 

by lPi; the total phase 4~ ----- ~ ~/fi =- E / ~ i  can take 
on only two possible values: 0 (corresponding to the 

centers of  the hexagons having positive or upward dis- 

placement) and zr (corresponding to hexagons with 

centers down at the given instant). Hexagonal patterns 

have points of  sixfold symmetry where 1/t i -~- 0 ( fo r  

all i), and points of  triangular symmetry for which 

1~i = +2zr/3 (for all i) o r  1~i = - 2 z r / 3  (for all i). 

I f  a second lattice, rotated by an angle 0 = 2 • 

sin - j  (1/2C'ff) ~ 22 °, is also present, then the com- 
bined pattern is periodic because of the commensura- 
bility or resonance condition 2kll - k~ = kl -- 2k3. 
However, it is still necessary to specify the total phases 

and the relative positions of  the centers of  the hexagons 
of  the two lattices. We choose the total phases of  the 
two lattices to be the same, i.e. q0 = 4~ I = 0 (If they 

are unequal, the constructed pattern does not resemble 
the experimental pattern.) The texture also depends on 

the displacement of the second lattice with respect to 

the first one. It turns out that the pattern we observe 

is obtained if a point of  sixfold symmetry of  the first 

lattice (where all the aPi = 0) coincides with a point of 

three-fold symmetry of  the second lattice (where all 

the gti = 4-2zr/3). This pattern is shown in Fig. 4(a). 

Another interesting pattern is obtained by superim- 

posing either points of  hexagonal symmetry 1//i = 0, 

or points of  triangular symmetry of  different type, i.e. 

~ i  = 2zr/3 with ~i = -t-2rr/3. This pattern is shown 
in Fig. 4(b); symmetry considerations have been used 

to argue for its stability [15], but we do not observe it. 

Finally, if points on the two lattices with no rotational 

symmetry are superimposed, then stripe pattems are 
generally obtained. 

From these considerations, we learn that to form the 
observed SL-1 pattern from two hexagonal lattices, it 

is essential not only that the wave vectors of the two 
lattices be locked at the correct angle in Fourier space, 

but also that a phase-locking condition be satisfied in 

real space: the positions of  the two patterns must have 

the relationship described in the preceding paragraph. 
Note that the constructed pattern of  Fig. 4(a) closely 
resembles the experimental one even though it does 
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not contain the smaller wave vectors that are present 

in the power spectrum of the experimental image. 

These smaller wave vectors are probably a mixture 

of  (a) nonlinear interactions arising from three-wave 

resonances between the various Fourier components 

and (b) imaging nonlinearity. There is no easy way 
to determine the relative importance of  these two 

contributions. 

3.2.2. Transition to the SL-1 state 

The inner ring of  peaks in Fig. 3(a) is present in 

the SL-I state but not in the hexagon state. Therefore, 

we use the strength of  these peaks to follow the tran- 

sition qualitatively as the acceleration is varied, while 

remaining cognizant of  the fact that imaging nonlin- 

earity can contribute significantly to their strength. We 

define a superlattice amplitude S / b y  first integrating 

the power spectrum azimuthally and then integrating 

over Ak  = 0.3 cm - l  centered at the peak correspond- 

ing to the first ring of  peaks. The variation of  SI with 

driving acceleration a is shown in Fig. 5. The contri- 

bution from the background noise has been subtracted. 

The transition appears to be continuous, and could be 

a transcritical bifurcation. Visually the domains of  the 

SL-I state spread with increasing acceleration until 

they gradually cover the entire container. However, it 

is possible that the transition is actually discontinuous, 

and that the discontinuity is masked by a slightly in- 

homogeneous driving acceleration (variation 4-1.5%). 

0 . 0 0 1 5  ' ' ' I ' • ' I ' ' ' I ' ' ' I , ' ' 
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Fig. 5. The superlattice amplitude SI (a) (see text) as a function 
of acceleration shows a continuous transition from hexagons to 
the SL-I state ( f  = 16.44Hz, 4~ = 20 °, X = 61°) • 
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3.2.3. Defects 

The superlattice-I patterns generally show weak 

time dependence due to the presence of  defects in 

the patterns. The most prominent of these are phase 

defects that cause the "triangular" structure in the 

SL-I pattern to vary locally in orientation. A typical 

defect-free region is of  the same size as that shown 

in Fig. 2. Small domains of ordinary hexagons are 

also present with accompanying grain boundaries. We 

found that the number of  defects does not decrease 

appreciably with time. 

3.2.4. Other superpositions 

Edwards and Fauve [4] have reported quasi- 

crystalline patterns with 6 : 7  forcing frequency ratio. 

We did not observe them with 6 : 7  forcing, but our 

viscosity was significantly lower (20 cm 2 s - l  versus 

100cm 2 s -1 in their case). Given the large number of 

parameters that affect the superlattice patterns, it was 

impractical to explore the variation with viscosity in 

the present work. Earlier work in our laboratory us- 

ing single frequency forcing showed that the pattern 

symmetry depends on the viscosity [3]. 

3.3. Parameter space for  409 " 5co forcing 

Next we discuss the patterns observed with a 4 : 5  

forcing frequency ratio. The phase diagram of the pat- 

terns obtained as a function of  the two forcing ampli- 

tudes is shown in Fig. 6(a) for f = 22 Hz, and ~b = 

16 ° . As for the 6 : 7  frequency ratio, the frequency 

again is high enough that the waves are in the capil- 

lary limit. The patterns do not depend strongly on f .  

The overall structure of the phase diagram is similar 

to that observed for the 6 : 7 frequency ratio: square 
lattices when one component is much larger than the 

other, and hexagons and superlattices when both com- 

ponents are comparable. The bi-critical point is also 

at a similar location in the phase space: X0 -- 61.5° 

and is independent of  4~. As in the 6 : 7 frequency ratio 
case, the main features of the phase diagram do not 

change qualitatively with ~b except near X0- 
Quasi-crystalline patterns are observed as the 

acceleration is increased beyond onset, for X 

slightly less than X0- An example of  such a 12-fold 
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Fig. 6. Phase diagrams of patterns obtained for a forcing frequency ratio of 4:5 with f = 22 Hz. The axes are the same as in 
Fig. 1. SL-II = superlattice-II state (see text); Ss = subharmonic squares; Sh = harmonic squares; H = hexagons; Q = quasi-crystalline 
patterns; x =competition between quasi-patterns and hexagons; TAM =transverse amplitude modulations; STC = spatiotemporal 
chaos; dark shading = no stable pattern near onset; light shading = competition between neighboring states. 

quasi-crystalline pattern is shown in Fig. 7. The field 

of view is approximately 2 0 c m × 2 0 c m .  Competi- 

tion between hexagons and quasi-crystalline patterns, 

which makes them time-dependent, is observed for 

parameters between those of the pure states. An ex- 

ample of this competition is shown in Fig. 8. We 

believe that this competition is inherent and not due to 

an inhomogeneous driving force because the domains 

exchange position in time. 

We studied the transition from hexagons to quasi- 

crystalline patterns using a spectral quasi-crystalline 

amplitude So(a)  that is similar to that used for the 

SL-I state; it denotes the amplitude of the inner ring 

of peaks in the corresponding spectrum; they arise due 

to nonlinear interactions between the main spectral 

components (but are also affected by imaging nonlin- 

earity) and is shown in Fig. 9, The onset of hexagonal-  

quasi-crystal competition appears to be abrupt; this 

regime leads smoothly to the pure quasi-crystalline 

state around a / g  = 8.9. 

Fig. 7, Example of a quasi-crystalline pattern obtained at 
q~ = 16 ° ( f  = 22Hz, 4:5 frequency ratio). This pattern has 
12-fold orientational symmetry but no translational order. 
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Fig. 8. Quasi-crystalline patterns and hexagons compete on a slow timescale in the region between the pure states indicated by the 
symbol x in the phase diagram of Fig 6(a). (a,b) are separated in time by 1600 drive periods. 
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Fig. 9. The quasi-crystal spectral amplitude SQ (a) as a function 
of acceleration shows a discontinuous jump at the onset of 
the region of quasi-crystal-hexagon competition ( f  = 22 Hz, 
~b= 16, ; (=61 ' ) .  

3.4. Superlat t ice-H state 

When ~b is increased with ;( ~ 61 ° (slightly less 

than X0), the quasi-crystalline patterns are replaced 
by a superlattice structure that is quite different from 

the superlattice-I state discussed in Section 3.2. This 

superlattice-II pattern, whose stable region is shown in 

Fig. 6(b), is subharmonic with respect to f and shows 

a distinctive periodic time dependence. It was first re- 

ported by Pier in his undergraduate thesis [16]. An 

image obtained by averaging over two drive cycles is 

shown in Fig. 10 at two different scales. This pattern is 

composed of  hexagonal cells, but there is also a larger 

wavelength hexagonal lattice superimposed upon it. 

The cells in the large lattice have higher amplitude 

and hence appear darker (since more light is scattered 

away from the camera). The higher amplitude of  these 

cells was checked with a strobe light using side illu- 

mination; it is clearly real, and not a lighting artifact. 

Additional information about this pattern may be 

obtained by examining the two-dimensional power 

spectrum, which is shown in Fig. 11. The peaks cor- 

responding to the hexagonal patterns formed at onset 
are indicated by the outer ring of  six circles. The cor- 

responding wave number k0 is that obtained by using 

the dispersion relation with 2(o as the wave frequency 

(the subharmonic of  the 4(0 forcing). In addition to 

these peaks and their harmonics, a set of  six peaks oc- 
curs at smaller k. The wave number of this inner ring 

is smaller than k0 by a factor v/3. 
The experimental spectrum suggests a description 

of  the superlattice-II state in terms of  two hexagonal 
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Fig. 10. (a) Supedattice-II state obtained with 4:5 forcing frequency ratio by changing ~b to 60 °. The wave periodicity is 2T; this 
pattern was obtained by averaging the image over two drive periods ( f  = 22 Hz). (b) Pattern after magnification by a factor of 4. 
The scale is within a few percent of that used in Fig. 2. 

lattices oriented at 30 ° to each other, and with wave 
numbers having a ratio equal to x/~. (Using the in- 

ner peaks alone could reproduce all of the observed 
spectral peaks by quadratic interactions, but only at 
the cost of not including the directly forced modes in 

the description.) A simulated pattern obtained in this 
way is shown in Fig. 12. Each of the two component 
lattices has been chosen to place points of hexagonal 

symmetry at the origin so that l p i  = 0 (for all i) in the 
notation defined below Eq. (2). The result is qualita- 
tively similar to the experimental pattern of Fig. 10(a). 
In this description, we have ignored any direct forc- 
ing at the wave number corresponding to 5w, though 
it may be significant. 

The SL-II state displays additional complexity that 

is not shown by the SL-I state. An instantaneous im- 
age (exposure over 1/20 th of the drive period) reveals 
this complexity: the sixfold symmetry is broken, and 
the observed pattern depends on the instant at which 
the image is obtained. Examples of instantaneous im- 
ages obtained at four different phases (with respect to 
4~o) separated by T / 2 0  are shown in Fig. 13. A stripe 
modulation is visible that is not present in the aver- 
age images. Power spectra of these images indicate 

that the wave number of this modulation is half that 
of the onset hexagons. The stripes are not a simple 

amplitude modulation of the primary standing wave, 
since in that case they would survive in the averaged 

picture as do the subharmonic stripes observed with 
single frequency forcing [3]. The stripe modulation is 

always present; time averaging yields the hexagonal 
superlattice-II patterns shown in Fig. 10. 

The phase diagram as a function of 4~ is shown in 
Fig. 6(b). The onset acceleration for this pattem does 

not change appreciably with ~b. A disordered region 
occurs for parameters between the quasi-crystalline 
SL-II states. 

4. Discussion 

We have reported novel superlattice pattems that 
occur when Faraday waves are driven at two frequen- 
cies. They are closely related to the hexagonal state 
that occurs near onset. The superlattice-I state, shown 
in Fig. 2, is harmonic with respect to the total drive 
frequency ~o. It can be described in terms of two su- 
perimposed hexagonal lattices whose wave numbers 
are both equal to that of the onset hexagonal state, 
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O 

Fig. 11. Two-dimensional power spectrum corresponding to Fig. 
10. The outer ring of six peaks (marked by circles) are those 
of the hexagonal pattern formed near onset. The inner ring of 
highlighted peaks are associated with the transformation of the 
hexagonal state into the superlattice state. Their wave number 
is a factor q'3 smaller than that of the onset hexagons. 

Fig. 12. Simulated SL-II superlattice pattern generated by 
adding two hexagonal lattices with a wave number ratio ~/3; 
the orientations of the lattices differ by 30 .  

but whose  wave  vectors are oriented at an angle  o f  

2 s i n - l ( l / 2 q ' 7 )  ~ 22 ° (Fig. 3). (Whi le  other  repre-  

sentations are possible,  we  bel ieve that it is impor tant  

to include at least one o f  the wave  vectors  that are 

direct ly forced.)  The  discussion o f  Sect ion  3.2 shows 

that the two lattices are phase- locked together  in real  

space so that a point  o f  s ixfold symmet ry  o f  the first 

lattice coincides  wi th  a point  o f  t r iangular  symme-  

try o f  the second lattice. The  new SL-I  state differs 

f rom the other  regular patterns, and f rom the quasi-  

crystal l ine patterns which  also have 12 pr imary  spec- 

tral peaks,  in that the overall  or ientat ional  symmet ry  

( threefold) is less than the number  o f  pr imary spectral 

components .  

This  SL-I  pattern seems to be one o f  the gener ic  

possibil i t ies that can be  expec ted  on the basis of  

symmet ry  considerat ions,  as expla ined by Si lber  

m J 

,,I ,  m 

Fig. 13. The sixfold symmetry of the SL-II averaged pattem is 
broken by the presence of a temporal modulation. Instantaneous 
images obtained with exposure times of 1/20th of the drive 
period T show a stripe modulation during the drive cycle. 
Starting times are as follows: (a) t = 6T/20, (b) t = 7T/20, 
(c) t = 8T/20, and (d) t ---- 9T/20. 
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and Proctor [17]. These authors show that a low- 

dimensional model with degenerate bifurcations can 
be constructed to reproduce the observed transition 
sequence. The transition shown by their model is 

hysteretic, whereas the experimental transition ap- 
pears to be continuous. However, in studying the SL-I 
state and the transition connecting it to the hexagonal 
state, we are limited by imaging nonlinearity and a 

slightly inhomogeneous driving acceleration. An al- 
ternate approach to understanding patterns resulting 

from forcing at two frequencies, such as the SL-I 
pattern, has been proposed by Lifshitz and Petrich 

[9]. It is based on a Swift-Hohenberg model with two 
preferred length scales and both quadratic and cubic 

nonlinear terms in the wave amplitude. The quadratic 

term includes the effect of triad interactions between 
standing waves. In this model, the selected patterns do 
more than satisfy symmetry considerations; they lead 
to a lower value of a certain Lyapunov functional. We 
are unable to test this model, but it is not inconsistent 

with what we observe. 
Using a 4~o : 5w frequency ratio, we find and char- 

acterize a second superlattice state, which we call 

superlattice-II (Fig. 10). Its time average can be rep- 
resented primarily as a combination of two hexagonal 
lattices differing in wave number by a factor V~. This 

state shows a remarkable time-dependent stripe mod- 
ulation (Fig. 13) that breaks the hexagonal symmetry 

at an instant, yet leaves this symmetry unbroken on 
average. There is at present no theory applicable to 
this state. 

The various hexagonal, quasi-crystalline, and su- 

perlattice states show additional complexity due to the 
presence of defects and competition between patterns 
that are adjacent in parameter space. Competition be- 

tween hexagonal and quasi-crystalline patterns was il- 
lustrated in Fig. 8. Using spectral methods, we find 
that the onset of this competition is abrupt. In the 
regime of hexagons near onset, hepta-penta defects 
may be formed by sudden increase of driving accel- 
eration. These generally anneal out over a very long 
time scale and a defect free pattern is usually obtained. 

A "clean" hexagonal pattern is best obtained by 
slowly increasing the acceleration near the wave onset. 
In this respect the hexagonal patterns obtained using 

two frequency forcing differ from those obtained for 
single frequency forcing, where defects, including 
:r-phase defects are more common (see [3]). No 

phase defects were observed for two frequency forc- 

ing over the range of parameters we investigated. 
The ease with which defects are eliminated may be 

related to the fact that the transition from the fiat 
state is subcritical, i.e., there is a small amount of 

hysteresis, typically about 0.1 g in the driving am- 
plitude a. This hysteresis was first discussed by 
Edwards and Fauve [4]. This situation is different 

from that of single frequency forcing, where the cou- 
pling, giving rise to hexagons, is at third order in 
the amplitudes, and both gravity and capillarity are 

significant. 
Defects are also observed in the superlattice-I state. 

These defects cause the orientations of the triangu- 
lar structures shown in Fig. 2 to vary from place to 

place. (This variation can be seen when larger areas 
are examined.) In fact we were unable to obtain a sin- 
gle superlattice-I pattern in which the whole pattern 

had the same orientation. These defects move slowly, 
and therefore the patterns are weakly time-dependent. 

On the other hand the superlattice-II patterns show 
few defects when the acceleration is increased slowly. 

Defects that do appear in the superlattice-II state can 
probably be attributed to the slightly inhomogeneous 
driving acceleration. 

It seems likely that other patterns with distinct 
symmetries can also be created using two-frequency 

forcing; because of the large number of parame- 
ters that can be varied, we have not explored all of 

the possibilities. We believe that the patterns dis- 
cussed in this paper can be used to explore the role 

of nonlinearity in stabilizing structures with dif- 
ferent symmetries that are composed of interacting 

waves. 
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Abstract

The selection of fully nonlinear extended oscillating states is analyzed in the context of one-dimensional nonlinear evolution
equations with slowly spatially varying coefficients on a doubly infinite domain. Two types of synchronized structures referred
to assteepand soft global modes are shown to exist. Steep global modes are characterized by the presence of a sharp
stationary front at a marginally absolutely unstable station and their frequency is determined by the corresponding linear
absolute frequency, as in Dee–Langer propagating fronts. Soft global modes exhibit slowly varying amplitude and wave
number over the entire domain and their frequency is determined by the application of a saddle point condition to the local
nonlinear dispersion relation. The two selection criteria are compared and shown to be mutually exclusive. The onset of global
instability first gives rise to a steep global mode via a saddle-node bifurcation as soon as local linear absolute instability is
reached somewhere in the medium. As a result, such self-sustained structures may be observed while the medium is still
globally stable in a strictly linear approximation. Soft global modes only occur further above global onset and for sufficiently
weak advection. The entire bifurcation scenario and state diagram are described in terms of three characteristic control
parameters. The complete spatial structure of nonlinear global modes is analytically obtained in the framework of WKBJ
approximations. © 2001 Elsevier Science B.V. All rights reserved.

PACS:47.20.Ft; 47.20.Ky; 47.54.+r; 03.40.Kf

Keywords:Hydrodynamic stability; Frequency selection; Nonlinear global modes

1. Introduction

It is now well established that spatially developing open shear flows may be divided into two classes: some flows
are very sensitive to inflow conditions and essentially behave asnoise amplifiers, others display intrinsic dynamics
and may be interpreted asglobal oscillators[20–22]. The present paper is concerned with the latter class of systems
and examines in detail the synchronized self-sustained structures which they can support. In previous studies, we
have demonstrated the existence of nonlinearsoft global modes[33] andsteep global modes[34]. The objective of
the present investigation is to analyze the bifurcation scenarios which lead from the basic state to either of these
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fully nonlinear structures as the global control parameters are varied. The analysis is carried out in the context
of one-dimensional evolution models with spatially varying coefficients in order to account for the streamwise
development of the basic state.

A variety of physical systems give rise to intrinsic self-sustained oscillations: mixing layers with strong enough
counterflow [46], low-density jets [29,44], cylinder wakes [27,38,45], wakes behind blunt-edged plates [18,19],
thin aerofoil wakes [49], Taylor–Couette flow between concentric spheres [43], Taylor–Couette flow between
circular cylinders with throughflow [5], Rayleigh–Bénard convection with throughflow [31], baroclinically unstable
atmospheric flows [17,37], sunspot cycles [1,28], etc. Many of these flows display a spatially varying basic state,
and hence a spatial dependence of the local instability characteristics. The goal of a global analysis is to obtain
in a self-consistent manner a spatially extended structure made up of wave trains governed by the local properties
of the medium and tuned at an overall global frequencyωg. The unknown global frequencyωg is to be derived
from a nonlinear eigenvalue problem consisting of the evolution equation and associated boundary conditions. The
associated eigenfunction yields the spatial structure of the corresponding self-sustained oscillations. The resolution
of the eigenvalue problem is typically undertaken under the hypothesis of slow spatial variations whereby the
underlying basic state evolves slowly over a typical instability length scale. In this framework, the main objective of
the global mode analysis is to deriveglobal frequency selection criteria from thelocal dispersion relation prevailing
at each streamwise station.

Linear global mode analyses are now fairly complete. Chomaz et al. [7] demonstrated that the complex global
frequency is determined by a saddle point (equivalently a double turning point) condition applied to the local
linear dispersion relation for the linear complex Ginzburg–Landau equation with spatially varying coefficients. This
criterion had previously been discovered and implemented by Soward and Jones [43] to describe oscillating states in
Taylor–Couette flow between concentric spheres. According to Monkewitz et al. [30], the same criterion also holds
for the Navier–Stokes equations linearized about an arbitrary slowly varying basic flow. More recently, Le Dizès
et al. [25] reexamined the case of the spatially varying linear complex Ginzburg–Landau equation and demonstrated
the existence of another family of linear global modes with two simple turning points. The causal nature of these
linear global modes has been established for the same model by Hunt and Crighton [23]: the exact linear impulse
response does converge, for large time, to the most unstable linear global mode. The validity of the linear saddle
point criterion has been fully confirmed in the direct numerical simulations of the Kármán vortex street behind a
blunt-edged plate by Hammond and Redekopp [19].

Paradoxically, the weakly nonlinear extension of these concepts is fraught with difficulties, as emphasized by
Chomaz et al. [6] and Le Dizès et al. [24]: the Landau constant pertaining to the Hopf bifurcation near global mode
onset does not display a well-defined sign as the WKBJ spatial inhomogeneity parameter is decreased. Furthermore,
the weakly nonlinear formulation is only valid in an exponentially small vicinity of threshold.

To obviate such weakly nonlinear studies, it appears natural to resort to a fully nonlinear approach where
fluctuations are of order unity. Such a line of thought has been consistently pursued since the early 1990s in
the framework of nonlinear Ginzburg–Landau type models. The classical absolute/convective instability concepts
introduced in a linear context by Bers [3] and Briggs [4] have been generalized to the fully nonlinear regime by
Chomaz [8]. The absolute/convective nature of the nonlinear dynamics is then directly related to the propaga-
tion direction of the front separating the basic state from the bifurcated state [16,39–41]. The properties of fully
nonlinear global modes on a semi-infinite domain governed by Ginzburg–Landau type equations with constant
coefficients have been thoroughly studied by Couairon and Chomaz [10,12,13]. In this case, a nonlinear global
mode is obtained when an upstream travelling front is halted in its motion by the upstream boundary point. This
event occurs whenever the medium is nonlinearly absolutely unstable in the sense of Chomaz [8]. The reader
is referred to Chomaz and Couairon [9] and Tobias et al. [47] for a corresponding analysis of the finite interval
problem.
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Corresponding fully nonlinear analyses have been performed for the complex Ginzburg–Landau equation with
spatially varying coefficients in infinite media. Two varieties of nonlinear global modes have been identified. Soft
global modes, obtained by Pier and Huerre [33], obey a saddle point frequency selection criterion applied to the local
nonlinear dispersion relation. This criterion is formally analogous to its linear counterpart. The associated spatial
eigenfunction structure displays smoothly varying amplitude and wave number over the entire domain. By contrast,
according to the preliminary results reported by Pier et al. [34], steep global modes are governed by a marginal
linear instability criterion: the steep global frequency is imposed by the real absolute frequency [3] prevailing at the
transition station between local linear convective and absolute instability. This criterion is akin to the linear front
velocity selection principle put forward by Dee and Langer [16]: for a wide class of systems, the speed of the front
separating the basic state from the bifurcated state is such that in the co-moving frame the medium is marginally
linearly absolutely unstable. The steep global spatial structure displays a stationary sharp front at the transition
station with a sudden jump in wave number. In all other regions, the amplitude and wave number are slowly varying.
Similar steep self-sustained structures have been numerically identified and analytically determined in amplitude
evolution models pertaining to solar and stellar magnetic activity cycles by Bassom et al. [1] and Meunier et al.
[28]. The properties of nonlinear global modes governed by the real Ginzburg–Landau equation in a semi-infinite
domain with combined distributed spatial inhomogeneity have been obtained by Couairon [11] and Couairon and
Chomaz [14]. Predicted scaling laws for the amplitude and position of the maximum very favorably compare with
experimental and numerical observations of bluff-body wakes.

The purpose of the present study is two-fold: first, we wish to map out the domains of existence of soft or steep
global modes in an appropriate control parameter space and to characterize the associated bifurcations. Secondly, we
present the detailed asymptotic structure of the various layers and regions which make up their spatial distribution.

Consider a system governed by a one-dimensional nonlinear partial differential equation that is first-order in time
of the form

∂ψ

∂t
= F(∂x;X)[ψ ], (1)

wherex andt represent space and time coordinates, respectively, andX a slow space variable to be defined shortly.
The basic state is assumed to beψ = 0, and the functionψ(x, t) represents the fluctuations riding on the basic
state. In regions of finite amplitude,ψ is governed by the full nonlinear operatorF . In small amplitude regions,ψ
is a perturbation governed by Eq. (1) linearized around the basic state, i.e.,

∂ψ

∂t
= L(∂x;X)[ψ ]. (2)

A crucial assumption of the present investigation is the slow spatial development of the medium as exemplified by
the introduction of the slow spatial variableX in the operatorsF andL. The weak non-uniformity hypothesis is
fulfilled if the ratioε = λ/L between the typical instability length scaleλ and the inhomogeneity length scaleL is
small. As a result of this scale separation, the weak variations of the medium instability properties may be described
through the slow variable

X = εx with ε � 1. (3)

If the slow space variableX is frozen, system (1) becomes a PDE inx and t with constant coefficients which
captures the local properties prevailing at that stationX. In order to construct a global mode it is necessary to “piece
together” local wave trains at differentX by explicitly accounting for the weak coupling between local and global
properties via relation (3).

The outline of this paper is as follows. The essential concepts necessary to carry out this study are introduced
in Sections 2 and 3. Local instability properties whereX is frozen are summarized in Section 2. Emphasis is
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given to the relationship between causality and the spatial response to a localized harmonic forcing (Section 2.3).
In this framework, stationary fronts are shown to naturally arise as the limiting spatial response of the system in
the absence of forcing when the medium is marginally absolutely unstable (Section 2.4). Variations of the local
instability properties over the entireX-domain are analyzed in Section 3. More specifically, the distribution over
X of linear spatial branches (Section 3.2) and nonlinear spatial branches (Section 3.3) is investigated as the global
frequency is varied.

Section 4 is concerned with the determination of the leading-order approximation to the global frequency and
spatial distribution of fully nonlinear synchronized states governed by (1). It contains the essential results concerning
the structure of steep global modes (Section 4.2), the nature of their bifurcation from the basic state (Sections 4.3–4.5),
the structure of soft global modes (Section 4.6), and finally the respective domains of existence of steep and soft
global modes (Sections 4.7 and 4.8) in control parameter space.

Section 5 is devoted to the complete higher-order asymptotic analysis of the various regions and layers which
make up the spatial structure of global modes (cf. Fig. 15). Higher-order corrections to the global frequencies are
then obtained. The results are derived in the general context of system (1) by following a methodology analogous
to that previously used by Bassom et al. [1] and Pier and Huerre [33].

All the results in principle apply to any nonlinear system governed by an equation of the form (1). However,
in order to obtain explicit results and to validate them by direct numerical simulations, we repeatedly use as an
illustrative example the complex Ginzburg–Landau (CGL) equation

i
∂ψ

∂t
=
(
ω0(X)+ 1

2
ωkk(X)k0(X)

2
)
ψ + iωkk(X)k0(X)

∂ψ

∂x
− 1

2
ωkk(X)

∂2ψ

∂x2
+ γ (X)|ψ |2ψ (4)

for a complex functionψ(x, t). For convenience, the CGL equation is written here as derived from the Taylor
expansion of the dispersion relation aroundk0(X) in the same manner as [20]. The precise meaning of all the
quantities appearing in (4) is discussed in detail in Section 2. The complexX-dependent coefficientsω0(X) and
k0(X)denote the usual local absolute frequency and wave number, respectively, whileωkk(X) is the second derivative
of the linear dispersion relation with respect to the wave numberk. The complex Landau “constant”γ (X) is chosen
so that nonlinearities are stabilizing everywhere (supercritical bifurcation), i.e.,γi(X) ≡ Im γ (X) < 0 for all X.
In the entire paper, the fieldψ(x, t) is assumed to be advected in the positivex-direction everywhere to mimic
the dynamics of open flows. As demonstrated in Section 4.8, this assumption is equivalent tok0,i(X) < 0 for
all X. Thus, the increasing and decreasingx-directions will be referred to as “downstream” and “upstream”,
respectively. The Ginzburg–Landau model (4) has been shown to successfully describe a large range of pattern
formation phenomena [15,26,32]. Here this idealized representation of spatially developing flows is invoked as a
specific example. Similar conclusions may be shown to hold for real flows governed by the Navier–Stokes equations
[35,36].

2. Local instability properties

Under the assumption that the governing equation only depends on space through the slow variableX, local
characteristics of the medium are recovered by freezingX in (1) and studying the corresponding strictly uniform
medium. In the sequel, “local” always refers to properties of spatially uniform systems obtained by extending the
medium at a specific downstream stationX towardsx = ±∞. At this local level of analysis,X andx are then
considered to be independent: the fast componentx is involved in spatial differentiation whereasX plays the part
of an independent control parameter. The rigorous asymptotic analysis re-establishing the link betweenx andX via
(3) in terms of WKBJ approximations [2] is postponed to Section 5.



B. Pier et al. / Physica D 148 (2001) 49–96 53

In this section, the properties of infinite spatially uniform media governed by an equation of the form

∂ψ

∂t
= F(∂x)[ψ ] (5)

are reviewed. The results are applicable to any nonlinear operatorF(∂x) = F(∂x;X0) derived from (1) for some
fixed locationX = X0. Explicit forms are obtained for the uniform CGL equation

i
∂ψ

∂t
=
(
ω0 + 1

2
ωkkk

2
0

)
ψ + iωkkk0

∂ψ

∂x
− 1

2
ωkk

∂2ψ

∂x2
+ γ |ψ |2ψ. (6)

The linear properties dictating the dynamics of small amplitude perturbations are routinely obtained. The main
assumption used throughout the study is that (5) admits a continuous family of nonlinear travelling waves. This is
guaranteed as long as the nonlinearities are supercritically stabilizing, as demonstrated below.

Small amplitude perturbations are governed by the counterpart of (5) linearized aroundψ = 0,

∂ψ

∂t
= L(∂x)[ψ ]. (7)

Any perturbation is a superposition of elementary waves ei(kx−ωt) where the complex wave numberk and frequency
ω satisfy the linear dispersion relation

ω = Ω l(k) ≡ iL(ik). (8)

For Eq. (6), it takes the simple form

ω = ω0 + 1
2ωkk(k − k0)

2, (9)

where it is assumed thatωkk,i ≡ Imωkk < 0 in order to enforce causality (see Section 2.3).
Dispersion relation (8) governs all linear properties of the system. Three situations are of particular interest: the

temporal evolution problem, the impulse response, and the spatial response problem.

2.1. Temporal evolution and nonlinear dispersion relation

A spatially harmonic perturbationψ(x, t = 0) = Aeikx+c.c. of real wave numberk and small amplitudeA � 1
initially evolves according to the linear dispersion relation (8). Its linear temporal growth rate isΩ l

i (k) ≡ ImΩ l(k).
Two typical variations ofΩ l

r andΩ l
i with k are sketched by solid lines in Fig. 1. WheneverΩ l

i (k) > 0, the
wave is temporally amplified and eventually governed by the full nonlinear equation (5). Assume that stabilizing
nonlinearities lead to a fully nonlinear travelling wave of the form

ψ(x, t) = Ψ (kx− ωt; k), (10)

whereω is a real frequency and the functionΨ (θ; k) is 2π periodic inθ . This one-parameter family of nonlinear
solutions parameterized byk is characterized by the nonlinear dispersion relation

ω = Ωnl(k), (11)

represented by the dashed curves in Fig. 1a and c. The travelling waves (10) and dispersion relation (11) are the
nonlinear counterparts of the linear normal modes ei(kx−ωt) and dispersion relation (8). Since the medium is assumed
to be supercritical, nonlinear solutionsΨ (θ; k) only exist in the unstable wave number range defined byΩ l

i (k) > 0.
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Fig. 1. Linear and nonlinear temporal branches of the CGL equation. (b), (d) Temporal growth rateΩ l
i (k) as a function of the real wave number.

Unstable wave numbers lie in the rangek1 < k < k2. (a), (c) The nonlinear temporal branchΩnl(k) (dashed curves) is defined in the unstable
wave number range and is connected to theΩ l

r(k) curve (solid lines) at the neutrally stable boundaries whereω1 = Ω l(k1) = Ωnl(k1) and
ω2 = Ω l(k2) = Ωnl(k2). The nonlinear branch may be (a) monotonous or (c) exhibit an extremum, atω?.

As the boundaries of this range are approached, the linear growth rate vanishes as well as the nonlinear saturation
amplitude ofΨ (θ; k). In the neutrally stable limit, the nonlinear frequency equals the linear real frequency,

Ωnl(k) = Ω l(k) when Ω l
i (k) = 0 (12)

(see Fig. 1). In weakly unstable media, the unstable wave number range is small and in general the nonlinear
frequency is a monotonous function of the wave number (Fig. 1a). Further above threshold, the unstable wave
number range increases and the nonlinear temporal branchΩnl(k) may exhibit an extremumω? (Fig. 1c). As a
result, one value ofω may be associated to two distinct wave numbers as further discussed in Section 2.3.

In general, the functionsΨ as well asΩnl cannot be calculated analytically. They are obtained by performing a
numerical simulation in a spatially periodic interval of wavelength 2π/k [35,36]. In the particular case of the CGL
equation (6), nonlinear solutions are explicitly obtained as finite amplitude harmonic waves,

ψ(x, t) = R(k)exp{i[kx−Ωnl(k)t ]},
with

Ωnl(k) = Im(γ ?Ω l(k))

Im γ ?
, R2(k) = Im(Ω l(k))

Im γ ?
,

where the superscript? denotes the complex conjugate. Recall that the condition of stabilizing nonlinearities implies
γi < 0.

2.2. Impulse response and absolute instability

Unstable systems may be further characterized by studying their response to an impulsive localized perturbation
[3,4,20–22]: in an unstable medium, at least one growing wave packet develops from the impulse location. If the
growing wave packet moves away from its source and eventually leaves the medium unperturbed, the instability
is said to beconvective. If, by contrast, the instability grows in place and invades the system both upstream and
downstream, the instability is said to beabsolute. The convective or absolute nature of the instability depends on the
absolute frequencyω0 associated with the absolute wave numberk0 defined by a zero group velocity condition as

ω0 = Ω l(k0),
dΩ l

dk
(k0) = 0. (13)
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The medium is absolutely unstable (AU) ifω0,i > 0, convectively unstable (CU) ifω0,i < 0. The form (6) in which
the CGL equation has been cast explicitly puts forward its dependence onω0 andk0.

2.3. Spatial response and causality

Consider the response of the medium to a localized time-harmonic excitation. The response to a forcing of real
frequencyωf and amplitudeAf , switched on att = 0, is governed by the signaling problem

∂ψ

∂t
= F(∂x)[ψ ] + Af δ(x)H(t)e−iωf t + c.c. (14)

with H denoting the Heaviside unit step function andδ the Dirac delta function.
For small amplitude forcing (Af � 1), the response in the neighborhood of the forcing location is governed by

the linear spatial problem withF replaced byL in (14). Switching on the forcing att = 0 produces a transient
wave packet together with the steady-state response at the forcing frequency. Whenever the medium is stable or
convectively unstable, transients decay or move away out of the system, and the longtime response is established
at the forcing frequency. When the medium is absolutely unstable, switch-on transients overwhelm the response at
the forcing frequency and the signaling problem (14) is ill-posed [3,4]. Hence, we only consider the spatial problem
(14) for at most CU systems. The steady-state linear response is made up of normal modes ei(kx−ωf t) satisfying
ωf = Ω l(k). For a givenωf , this linear dispersion relation in general admits several solutionskl

m(ωf ) indexed by
m, the number of which very much depends on the particular form ofΩ l(k).

Causality requires thatψ = 0 for all t < 0. Using a residue calculation in the complexω-plane to solve (14)
withF replaced byL, and assuming that temporal growth rates are bounded (max{Ω l

i (k), k real} finite), it is readily
shown [3,4,20] that the spatial brancheskl

m either pertain to the downstream (x > 0) or to the upstream (x < 0) re-
sponse to forcing. The downstream (upstream) branches are denoted bykl+

m (kl−
m ). For a given real forcing frequency

the distribution of the spatial brancheskl
m(ω) into + or − branches is derived, according to classical arguments

[3,4], from an examination of the complete linear dispersion relationΩ l(k) in the entire complexk-plane. In the
sequel, spatial branches are said to be causal+ or causal− branches according to whether they prevail downstream
(x > 0) or upstream (x < 0) of the forcing location. Hence, causality always refers to the spatial response to a
localized harmonic forcing.

For simplicity assume thatΩ l(k) exhibits a single second-order branch pointω0 with only two spatial branches
kl+ andkl−, as in the case of the CGL dispersion relation (9) where

kl±(ω) = k0 ±
√

2
ω − ω0

ωkk
. (15)

The spatial growth rate of the response depends onkl
i ≡ Im kl . The downstream response decays for frequencies

such thatkl+
i (ω) > 0; upstream decay occurs whenkl−

i (ω) < 0. This is always the case for stable media (Fig. 2a).
Whenever a linear spatialkl+(ω) branch is amplified, nonlinear terms have to be taken into account at some distance
from the source, however small the forcing amplitude. When the response reaches finite amplitude, nonlinear
saturation prevents further amplification and leads to a nonlinear travelling wave at the excitation frequency for
some real wave numberknl (Fig. 2b). Since the nonlinear wave train is asymptotically reached far downstream of the
source, it is denoted asknl+(ω). This nonlinear wave train would also be obtained in a temporal evolution problem
at the same wave number. Thus, the forcing frequencyωf and the nonlinear response wave numberknl+ again
satisfy the nonlinear dispersion relation (11). Hence, nonlinear spatial branchesknl±(ω) may formally be obtained
by solving (11) for a given frequency. Following the convention of the “front community” [42], the superscripts+
and− in this formal definition are assigned according to the sign of the “nonlinear group velocity” dΩnl/dk. In
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Fig. 2. Response to time harmonic forcing applied atx = 0. (a) Upstream and downstream decaying response in a stable or CU medium. (b)
Linearly amplified downstream response and nonlinearly saturated solution in a CU medium. (c) Stationary front in a marginally absolutely
unstable medium. Note that slope discontinuity at the forcing location has vanished. Dashed lines indicate exponentially growing branches in
the linear approximation.

the situation of Fig. 1a, onlyknl+(ω) exists forω1 < ω < ω2, whereas both nonlinear spatial branches appear for
the situation in Fig. 1c:knl+(ω) for ω? < ω < ω2 andknl−(ω) for ω? < ω < ω1. These definitions ofknl+(ω)
andknl−(ω) branches apply to CU as well as AU systems. We stress, however, that only those branches accessible
via a spatial response problem in a CU medium have causal meaning. In particular, due to the choice of a basic
advection towardsx = +∞, only the downstream response may be spatially amplified, and theknl−(ω) branch is
never accessible via a forcing problem.

2.4. Stationary fronts as spatial response without forcing

Many studies [16,39–42] have been devoted to the derivation of selection criteria for propagating fronts connecting
an unstableψ = 0 state to a fully nonlinear saturated state in a uniform medium. In situations where the front velocity
is linearly selected [16,40], the front moves towards its decaying edge in AU media, towards its finite-amplitude
edge in CU media. A stationary front is then precisely obtained when the medium is exactly at the CU/AU transition.
The same stationary front solution may be recovered in the context of the spatial response to time-harmonic forcing
as discussed below.

Consider the signaling problem (14) in a uniform medium

∂ψ

∂t
= F(∂x;X)[ψ ] + Af δ(x)H(t)e−iωf t + c.c., (16)

where the frozen slow scaleX has been explicitly introduced as an external control parameter. Let us examine
how the response to a localized forcing of frequencyωf varies with the parameterX which controls the instability
properties of the medium. Assume that the medium is stable or CU forX < Xca and marginally AU atX = Xca,
i.e.,ω0,i(X) < 0 for X < Xca andωca

0 ≡ ω0(X
ca) real. Letkca

0 ≡ k0(X
ca) denote the complex absolute wave
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number at the CU/AU transition. Since basic advection is assumed to be in the positivex-direction,kca
0,i < 0, as

shown in Section 4.8.
Let us use as an illustrative example the CGL equation (4) with forcing as in (16). Upon making use of the

associated linear dispersion relationΩ l given by (9) and invoking continuity of the solution atx = 0, the exact
longtime linear response is obtained as

ψ(x, t) = 2Af

ωkk(X)

exp{i[kl±(X, ωf )x − ωf t ]}
kl+(X, ωf )− kl−(X, ωf )

+ c.c. (17)

The eik
l+x and eik

l−x branches naturally pertain to the regionsx > 0 andx < 0, respectively. In order to obtain a
normalized response such that max|ψ(0, t)| = α, the forcing amplitude is adjusted to the level

Af (X, ωf ) = 1
4αωkk(X)[k

l+(X, ωf )− kl−(X, ωf )]. (18)

If α � 1, the linear response is guaranteed to remain valid in a neighborhood ofx = 0 even though the response
may reach a finite amplitude further downstream.

If the medium is stable for largeX < 0, both upstream and downstream parts of the response decay, i.e.,
kl+

i (X, ωf ) > 0 andkl−
i (X, ωf ) < 0 for largeX < 0 (cf. Fig. 2a). As the control parameterX and forcing frequency

ωf are varied continuously to approach the limitXca, ωca
0 , the downstream responsekl+ is eventually amplified,

whereas the upstream branchkl− still decays (Fig. 2b). Indeed, by definition ofωca
0 (see also (15)) both spatial

branches meet atX = Xca andωf = ωca
0 , i.e.,

kl+(Xca, ωca
0 ) = kl−(Xca, ωca

0 ) = kca
0 .

Sincekca
0,i < 0, it is therefore guaranteed thatkl+

i (X, ωf ) changes sign and becomes negative as(X, ωf ) approach

(Xca, ωca
0 ), while kl−

i (X, ωf ) does not. In such a regime, the downstream growing responseα exp[ikl+(X, ωf )x]
reaches a finite amplitude atx ∼ ln α/kl+

i > 0. At this station, the linearly growing wavekl+(X, ωf ) gives way to
its nonlinear counterpartknl+(X, ωf ).

In the stable or convectively unstable regime (X < Xca), both the spatial growth rate and wave number are
discontinuous atx = 0, i.e.,kl+ 6= kl−. The forcing location is then a singular point of the total response (Fig. 2a
and b). When(X, ωf ) → (Xca, ωca

0 ), the medium approaches absolute instability and both brancheskl+(X, ωf )

andkl−(X, ωf ) tend towardskca
0 . Thus, in this process, the slope discontinuity in the response atx = 0 smoothes

out. Moreover, according to (18), the forcing amplitudeAf (X, ωf ) required to maintain the normalization condition
max|ψ(0, t)| = α vanishes. Thus, in the marginally AU regimeX = Xca, a smooth stationary front of frequency
ωf = ωca

0 prevails without any forcing (Fig. 2c). This front directly connects the upstream linearkl− branch to
the downstream nonlinearknl+ branch. As mentioned in Section 2.3, the+ and− notations have causal meaning
only in CU systems. The previous argument indicates that, in a marginally AU system, the two branches on both
sides of a front are still determined by causal considerations through a continuation procedure from the CU side.
From the above discussion, a stationary front in a spatially uniform system is obtained for zero amplitude forcing
whenever the medium becomes marginally AU and the forcing frequency equals the corresponding real absolute
frequencyωca

0 . This strategy may be implemented numerically to obtain front-like structures not only in the context
of one-dimensional evolution equations (16) but also in more complex systems, e.g., wake flows governed by the
Navier–Stokes equations [35,36].

3. Spatial variations of local instability properties

The previous results derived for spatially uniform media also yield the local linear and nonlinear instability
characteristics of weakly nonuniform media, provided that the control parameterX now be interpreted as the slow
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streamwise coordinate. The respective dispersion relations at each stationX read

ω = Ω l(k,X), ω andk complex, (19)

ω = Ωnl(k,X), ω andk real. (20)

The local linear dispersion relation pertains to any complex wave number whereas the local nonlinear dispersion
relation is defined only for real wave numbers associated with a positive temporal growth rateΩ l

i (k,X) > 0. In
strictly uniform media, linear normal modes are sought in the formψ = Aexp{i[kl(ω)x − ωt ]} + c.c. In weakly
nonuniform media, such modes are replaced by

ψ = A(X)exp

(
i

ε

∫ X

kl(u, ω)du− iωt

)
+ c.c. (21)

As demonstrated in the classical WKBJ procedure carried out in Section 5, the local linear wave numberkl(X, ω)

necessarily satisfies the local linear dispersion relation (19). In strictly uniform media, nonlinear travelling waves are
sought in the formΨ [knl(ω)x −ωt; knl(ω)] (10). In weakly nonuniform media, such travelling waves are replaced
by slowly modulated wave packets of the form

ψ ∼ Ψ

(
1

ε

∫ X

knl(u, ω)du− ωt +Θ(X); knl(X, ω),X

)
, (22)

where the local nonlinear wave numberknl(X, ω) satisfies the nonlinear local dispersion relation (20). The slowly
varying functionsA(X) andΘ(X) appearing in (21) and (22), respectively, are obtained in the complete asymptotic
analysis (Section 5).

The objective of this section is then to study the changing topology of linear complexkl and nonlinear realknl

spatial branches as the global real frequency is varied. The globally synchronized structures obtained in Sections 4
and 5 crucially depend on these spatial branches.

3.1. Instability domains

Let us first introduce the regions of local convective or absolute instability in physicalX-space and determine the
domain of existence of nonlinear wave trains in(X, k)-space. The local absolute frequencyω0(X) and wave number
k0(X) are derived from the local linear dispersion relation (19) as in (13). The local convective or absolute nature
of the medium is determined by the sign ofω0,i(X). In a typical situation of interest, absolute instability occurs in a
central finite domain. For definiteness, considerω0(X) to be of the parabolic form sketched in the complexω-plane
in Fig. 3a:ω0,i(X) is an increasing–decreasing function ofX with a single maximumωmax

0,i reached atX = Xmax.
Wheneverωmax

0,i > 0, there exists a finiteAU domain,Xca< X < Xac, defined as the region whereω0,i(X) > 0.
Its boundariesXca andXac are the stations where the local absolute frequency is real,ωca

0 ≡ ω0(X
ca) andωac

0 ≡
ω0(X

ac), respectively.
The domain of local instability, characterized by unstable real wave numbers,Ω l

i (k,X) > 0, defines thenonlinear
balloonin the(X, k)-plane (Fig. 3b). In theX-direction, the balloon extends beyond the AU domain to the stations
of linear neutral stability, denotedXsc andXcs. At each unstable location, the nonlinear balloon extends in the
k-direction over the local unstable wave number range. Note that, due to causality, large wave numbers are always
temporally decaying; thus, the nonlinear balloon is necessarily bounded in thek-direction.

A typical system, therefore, displays the following structure: a central AU domainXca < X < Xac of finite
extent, surrounded by two CU regionsXsc < X < Xca andXac < X < Xcs, which in turn are embedded in
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Fig. 3. (a) Locus of the local absolute frequencyω0(X) in the complex frequency plane for−∞ < X < +∞. The AU intervalXca < X < Xac

is associated withω0,i(X) > 0. (b) Nonlinear balloon of the CGL equation in the(X, k)-plane defined byΩ l
i (k,X) > 0 and bounded by the

curve of neutral stabilityΩ l
i (k,X) = 0. In theX-direction the balloon spans the domain of local linear instabilityXsc< X < Xcs and extends

beyond the AU interval.

two semi-infinite stable regions extending toX = ±∞. As mentioned in Section 4.1, one may relax the stability
requirement atX = ±∞ and the medium may remain CU toX = ±∞.

3.2. Linear spatial branches

The loci of linear spatial brancheskl(X, ω) as functions ofX is now qualitatively discussed in the complex
k-plane for different values of the complex frequencyω. Such an analysis will illustrate the relationship between the
behavior of linear spatial branches and the local CU/AU properties of the medium. Linear spatial brancheskl(X, ω)

are obtained by solving the local linear dispersion relation (19) for a given frequencyω. In the case of the CGL
equation (4) they read

kl±(X, ω) = k0(X)±
√

2
ω − ω0(X)

ωkk(X)
. (23)

In Section 2.3, the choice of the+ and− branches was shown to be dictated by causality for real frequencies in
stable or CU media. The fate of spatial branches in the AU rangeXca < X < Xac is now examined for different
frequencies in the complexω-plane, as illustrated for the CGL equation in Fig. 4.

As a result of causality [3,4], the spatial brancheskl±(X, ω) do not cross thekr-axis in the complexk-plane for
large enoughωi > 0. For such frequencies far above the absolute frequency curve{ω0(X)} (cf. Fig. 4a), thekl+

(kl−) branch is globally defined as the one located in the upper (lower) halfk-plane for all realX. Thekl±(X, ω)
branches continuously deform asω is varied. They may cross thekr-axis for finite values ofX (Fig. 4b–d), but
remain in the same halfk-plane forX → ±∞. Asω is kept above the curve{ω0(X)} (denoted byω � {ω0(X)}), no
branch switching may occur (Fig. 4b–d) as readily seen by inspection of Eq. (23). This property yields definitions
of thekl± branches that remain uniformly valid inX, for all complex frequenciesω � {ω0(X)}, even though the
medium may be locally AU.

Whenω ∈ {ω0(X)}, sayω = ω0(X0), the twokl± branches pinch atk0(X0) for X = X0 (Fig. 4e illustrates the
case of particular interest whereX0 = Xca). For frequenciesω ≺ {ω0(X)} below the absolute frequency curve, the
continuouskl curves connect the upper and lower halfk-planes asX is varied from−∞ to +∞ (Fig. 4f). Global
kl± branches can no longer be defined, but the+ and− superscripts may still be assigned according to causality in
the distinctX < Xca andX > Xac regions represented by thick lines in Fig. 4. Forω ≺ {ω0(X)} (Fig. 4f), thekl−

branch forX < Xca is connected to thekl+ branch in the regionX > Xac, across the AU domain (part of the curve
being represented by a thin line).

These considerations apply in particular to realω. For frequencies outside theωca
0 –ωac

0 interval, i.e.,ω � {ω0(X)},
the kl+ andkl− branches are globally defined, although causality considerations do not apply in the central AU
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Fig. 4. (a–f) Loci of linear spatial brancheskl(X, ω) of CGL equation in the complexk-plane for frequenciesω indicated in the complex
frequency plane on top sketch. Arrows on the curves indicate direction of increasingX. Thick lines pertain to the stable or CU regionsX < Xca

andX > Xac, thin lines to the central AU regionXca < X < Xac. (a–d) For frequenciesω � {ω0(X)}, the spatial brancheskl±(X) remain
distinct and are located in the same halfk-plane forX → ±∞, but they may cross thekr-axis for finite values ofX. As the frequency approaches
theω0(X) curve, the spatial branches move closer to each other. (e) For a frequency located on theω0(X) curve, hereω = ω0(X

ca), pinching
occurs at the corresponding absolute wave number, here atk = kca

0 , whenX = Xca. (f) Whenω ≺ {ω0(X)}, the continuous curves connect the
upper and lower halfk-planes asX → ±∞. Definition askl± branches still holds in the distinct CU domainsX < Xca andX > Xac, but not
in the central AU region.

domain. For frequencies in theωca
0 –ωac

0 interval, i.e.,ω ≺ {ω0(X)}, thekl+ andkl− branches turn one into the other
across the AU domain.

3.3. Nonlinear spatial branches

The goal of this section is to describe synthetically the qualitative properties of the nonlinear spatial branches
knl(X, ω) as functions ofX for different values of the real frequencyω. Finite amplitude waves are governed by the
nonlinear dispersion relation (20). Fig. 5 illustrates its properties in the case of the CGL equation, by projecting the
surface defined asω = Ωnl(k,X) in the(X, k, ω)-space onto the(X, k)-plane. Nonlinear spatial branchesknl(X, ω)

for a given real frequencyω are obtained as the level contoursΩnl(k,X) = Cst indicated by long dashed lines.
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Fig. 5. Projection of the CGL nonlinear dispersion relation surfaceω = Ωnl(k,X) on the(X, k)-plane. Nonlinear spatial branchesknl+(X, ω)
andknl−(X, ω) represented by constant frequency level curves (dashed lines) live within the nonlinear balloon bounded by the neutral stability
boundary (thick solid line). Nonlinear spatial branches display a saddle structure and, by convention,knl+ andknl− refer to the upper and lower
regions on either side of the steepest descent curve (thick dotted line) emerging from the saddle pointXnl

s , k
nl
s (solid dot) corresponding to

the frequencyωnl
s . The real partskl±

r of the linear spatial branches (thin solid lines) are also shown outside the nonlinear balloon for the same
frequencies as the nonlinear branches. Note their continuous connection at the neutral stability boundary.

Nonlinear wave trains only exist inside the nonlinear balloon of the(X, k)-plane, defined byΩ l
i (k,X) > 0 (see

Fig. 3b). Its neutrally stable boundary characterized byΩ l
i (k,X) = 0 is represented by the thick closed curve in

Fig. 5. Since the nonlinear dispersion relationω = Ωnl(k,X) is always a single-valued function ofk, the mapping in
the(X, k)-plane is one-to-one and all the nonlinear solutions are contained inside the neutral stability boundary. By
contrast,knl(X, ω) is not ensured to be a single-valued function ofω. We have deliberately chosen a configuration
displaying this double-valuedness, which is made manifest here by the saddle point structure in the dashed contour
levelsΩnl(k,X) = Cst. Following the definition adopted in Section 2.3, the nonlinear spatial branches are labeled
knl+ andknl− according to the sign of the “nonlinear group velocity”∂Ωnl/∂k. Accordingly, theknl+ andknl−

domains of Fig. 5 are precisely connected via the steepest descent curve (short dashed line) emerging from the
saddle point (solid dot).

In order to emphasize the relationship between linear and nonlinear branches, the linear spatial brancheskl±(X, ω)
have also been displayed by thin solid lines in Fig. 5 through their real partkl±

r (X, ω) at the same frequencies. Note
that linear branches continuously connect to nonlinear branches at the neutral stability boundary. This property is
not surprising: at the neutral stability boundary in the(X, k)-plane, the linear branchkl(X, ω) is purely real and
equals its nonlinear counterpartknl(X, ω).

As discussed in Section 3.2 (Fig. 4), the linear spatial branches are globally defined askl+ orkl− forω � {ω0(X)}.
While lowering the frequency, starting from large positive values, thekl+ and/orkl− branch may cross thekr-axis in
the complexk-plane (Fig. 4b–d). As this linear wave number branch moves into the opposite halfk-plane, it becomes
spatially amplified and gives birth to a nonlinear branch. This corresponds in the(X, k)-plane to the emergence of
aknl branch connected at the boundary of the nonlinear balloon to akl

r branch (Fig. 5).
By further lowering the frequency, switching between the nonlinear branches may take place, as implied by the

saddle structure of the dashed curves in Fig. 5. When the frequency decreases, pinching betweenknl− andknl+ will
take place forω = ωnl

s at the saddle point(Xnl
s , k

nl
s ) of the nonlinear dispersion relation (20) in the(X, k)-plane.

Below this saddle point frequency, the nonlinear spatial branches move into the left- and right-hand sectors bounded
by the saddle point asymptotes. For a given frequency in this range, nonlinear spatial branches are indeed generated
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at the boundary of the nonlinear balloon but they fail to exist in the heart of the nonlinear region surrounding the
saddle point. This behavior is provoked by the merging ofknl+ andknl− on the steepest descent line (thick dotted
line of Fig. 5) and their subsequent disappearance. The implications of such a nonlinear saddle point structure on
global mode selection are profound, as discussed in Section 4.6.

4. Globally synchronized structures

Having investigated local instability properties of the spatially developing medium, we now turn to the study
of globally synchronized solutions of system (1) and associated bifurcations. Such global modes are defined as
stationary time-periodic solutions satisfying

ψ

(
x, t + 2π

ωg

)
= ψ(x, t),

whereωg is the global real frequency. Selection criteria for self-sustained global oscillations are derived below and
the leading-order approximations of their global frequency and spatial structure are obtained. The properties of the
medium which dictate the selected global mode type are identified and the ensuing bifurcations are analyzed as
global control parameters are varied.

4.1. Boundary conditions and nonlinear eigenvalue problem

To completely determine the global mode problem, proper boundary conditions in connection with Eq. (1) have
to be specified. Global modes are defined as intrinsic oscillations which are due to the dynamics of the central
region and not to perturbations invading the system fromX = ±∞. Consequently, the boundary conditions must
be causal: the solution close to the boundaries is necessarily dictated by the intrinsic oscillations occurring in the
central region. Thus, far downstream nearX = +∞ the solution is necessarily made up of a+ branch caused by
the dynamics governing the central region upstream of it. Similarly, the solution necessarily involves a− branch
towardsX = −∞. Such boundary conditions atX = ±∞ will be referred to as causal.

When the medium is assumed to be stable in the far downstream and upstream regions, causal boundary conditions
are equivalent with decaying ones. Indeed, in the stable regions no nonlinear solutions exist. Causality then requires
a linearkl+ (kl−) branch towardsX = +∞(−∞). Due to stability,kl+

i > 0 andkl−
i < 0, thus the solution

necessarily decays towardsX = ±∞.
However, the medium may remain CU up toX = ±∞. In such instances, decaying boundary conditions are not

necessarily fulfilled. However, causality still holds: if the solution remains fully nonlinear down toX = +∞, it is
there necessarily made up of theknl+ branch only. Thus, proper boundary conditions for the global mode problem
do not necessarily require exponential decay, provided they satisfy causality.

Since a global mode is a solution over the entireX-axis, it necessarily connects a− branch atX = −∞ to
a + branch atX = +∞. This crossover from− to + branches may only be achieved for specific frequencies.
The search for global modes is thus a nonlinear eigenvalue problem for the global frequencyωg. The manner in
which this crossover takes place in the central region gives rise to different types of global modes as described
below.

4.2. Steep global modes

According to Pier et al. [34], the spatial structure of steep global modes is characterized by the presence of a
sharp front at the upstream boundaryXca of the AU region. The sketch in Fig. 6a represents the envelope|ψ | and



B. Pier et al. / Physica D 148 (2001) 49–96 63

Fig. 6. Structure of steep global mode obtained by direct numerical simulation of CGL equation. (a) Envelope|ψ | and real partψr as functions of
downstream distanceX. The sharp front located at the upstream boundaryXca of AU region initiates the fully nonlinear development extending
down to the neutral stationX2. (b) Analytically computed linear spatial brancheskl±(X) of steep global frequencyωca

0 in the complexk-plane.
Pinching occurs for the absolute wave numberkca

0 atX = Xca. Thick lines pertain to the stable or CU regionsX < Xca andX > Xac, thin lines
to the central AU regionXca < X < Xac. (c) Corresponding linearkl±

r (solid) and nonlinearknl+ (dashed) spatial branches in the(X, k)-plane.
Local wave number of simulation in (a) follows path indicated by thick line. Three domains are identified: thekl− branch prevails in the upstream
linear l− regionX < Xca; the front atXca is associated with a jump in wave number, and in its wake theknl− branch develops in the fully
nonlinear nl+ domainXca < X < X2 extending towards the boundary of the nonlinear balloon (shaded); thekl+ branch continuously takes
over in the linear l+ region downstream of the neutral stationX2.

real partψr of a steep global mode obtained by direct numerical simulation of the CGL equation (4). The length
of the computational domain isL = 102. Linear and parabolic variations are, respectively, used forω0,r(X) and
ω0,i(X), as in Fig. 3a, so thatωca

0 = 0.4,ωac
0 = 0,ωmax

0,i = 0.5 andXca = 3
16L,Xac = 11

16L. Other coefficients take
the constant valuesk0 = 0.5 − 0.8i, ωkk = 1 − i andγ = 0.1 − i.

The front at the locationXca of marginal absolute instability [ω0,i(X
ca) = 0] is precisely of the type obtained

in Section 2.4: it oscillates at the real absolute frequencyωg = 0.42 ∼ ωca
0 = 0.40 and allows a crossover

between the upstreamkl− and the downstreamknl+ branches. Indeed, in Fig. 6c the numerically obtained local
wave number Re((−i/ψ)∂ψ/∂x) represented by a thick line follows the corresponding analytically determined
kl±

r (X, ω
ca
0 ) (thin solid curves) andknl+(X, ωca

0 ) (thin dashed curve). The exponential decay of the upstream tail
of the front is determined by the imaginary part of the corresponding absolute wave numberkca

0 ≡ k0(X
ca). The

upstreamkl−(X, ωg) branch extending towardsX = −∞ is precisely generated at the pinch pointX = Xca in
the complexk-plane (Fig. 6b). As depicted in the(X, k)-plane of Fig. 6c, nonlinear travelling waves following the
knl+ branch prevail in the regionXca < X < X2 extending down to the locationX2 where theknl+ branch meets
the boundary of the nonlinear balloon in the(X, k)-plane. At the neutrally stable stationX2 the amplitude of the
nonlinear travelling wave vanishes and the linear branchkl+(X, ωg) continuously takes over in the downstream
linear regionX > X2.

The following frequency selection criterion then holds: the steep global frequencyωg is given by the real absolute
frequencyωca

0 prevailing at the front locationXca separating the CU and AU regions. In other words,

ωg = ω0(X
ca), ω0,i(X

ca) = 0. (24)

The front atXca effectively acts as a wave maker for the entire flow. It may be interpreted as a local oscillator
inducing the linear upstream− branch and the nonlinear downstream+ branch.
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4.3. Saddle-node bifurcation to steep global modes

It should be noted that the steep global mode criterion (24) is also fulfilled by the absolute frequencyωac
0 prevailing

at the downstream boundaryXac of the AU region. Thus, wheneverωmax
0,i > 0, two steep global modes exist: one

of frequencyωca
0 with a front at the upstream boundaryXca of the AU region and one of frequencyωac

0 with a front
at its downstream boundaryXac (see Fig. 3a). Whenωmax

0,i < 0, no AU region is present and no steep global mode
exists. Thus,ωmax

0,i constitutes the global control parameter governing the existence of steep global modes. When
ωmax

0,i is varied, transition to steep global modes occurs via a saddle-node bifurcation atωmax
0,i = 0 as demonstrated

below.
The spatial structure of a solution with a front atXca has been detailed in the previous section. The structure

of a solution with a front atXac is similar. Indeed, both linearkl±(X, ωac
0 ) branches equalkac

0 ≡ k0(X
ac) at

X = Xac. Due to the assumptionk0,i < 0, thekl− branch is again exponentially damped while thekl+ branch is
amplified. As a result, nonlinear travelling wavesknl+ are only present downstream of the front (X > Xac) and
linear damped waveskl− upstream of the front (X < Xac). Thus, the nonlinear part of such a global mode extends
in the downstream CU region, whereas the central AU domain is covered by an exponentially decaying upstream
tail.

Let us now show that an upstream front is a stable configuration whereas a downstream front is unstable. Consider
a small displacement of the upstream front from its equilibrium locationXca towardsX > Xca. The front now
experiences a slightly AU medium, hence, according to Dee and Langer [16], the nonlinear part grows and the front
propagates towards its decaying edge, i.e., upstream. When this front is displaced towardsX < Xca, it penetrates
into a CU region and is thus pushed downstream. In any case the front is seen to return to its equilibrium position
Xca. Thus, the corresponding steep global mode is an attractor onto which direct numerical simulation converges.

On the contrary, a downstream front displaced from its equilibrium positionXac towards the AU regionX < Xac

continues to propagate upstream and completely invades the AU domain. When the front is displaced towards the
CU regionX > Xac, it is swept away downstream towardsX = +∞. A downstream front is therefore unstable.

Thus whenωmax
0,i > 0, a pair of steep global modes exists: the mode with a front at the upstream (resp. downstream)

boundary of the AU region is stable (resp. unstable). In the limitωmax
0,i ↓ 0, the AU domain shrinks and the front

locations move in closer to each other,Xca ↑ Xmax andXac ↓ Xmax. Whenωmax
0,i = 0 both front frequenciesωca

0
andωac

0 equalω0(X
max), and both steep global modes coincide. Whenωmax

0,i < 0, the domain is nowhere AU and
no steep global mode exists.

This behavior is typical of a saddle-node bifurcation: while decreasing the bifurcation parameterωmax
0,i , a stable

and an unstable solution meet and disappear at the critical valueωmax
0,i = 0. Note that in general the steep global

mode remains fully nonlinear for allωmax
0,i > 0. Indeed, for 0< ωmax

0,i � 1 the extent of the convectively unstable
domain remainsO(1) (in terms ofX) and so does the nonlinear region where the global mode lives.

4.4. Linear global modes

The linear global instability of the unperturbedψ = 0 state has been studied by Chomaz et al. [7] and Le Dizès
et al. [25]. The instability properties were derived from an analytic continuation of the local absolute frequency
ω0(X) in the complexX-plane, as summarized below.

Linear global modes are assumed to be of the formψ(x, t) = φ(X)e−iωgt of complex global frequencyωg.
The spatial functionφ is defined over the complexX-plane and the local complex wave number then satisfies the
linear dispersion relation (19) with complexX. A linear global mode is entirely made up of linear spatial branches
kl±. Due to causal boundary conditions, thekl− branch prevailing nearX = −∞ must necessarily connect to the
kl+ branch nearX = +∞. This can be achieved at a saddle pointXl

s of the absolute frequency in the complex
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Fig. 7. Curvesω0(Xr + iXi) in the complex frequency plane for different values ofXi whenXr varies along the entire real axis. Bold curve
pertains toXi = 0. The linear saddle point frequencyωl

s is obtained at a cusp of this set of curves and is seen to lie belowωmax
0 , towards the

center of curvature of theω0(Xr) curve.

X-plane.1 The frequency of the linear global mode is then equal to the saddle point frequencyωl
s, defined by

ωl
s = ω0(X

l
s),

dω0

dX
(Xl

s) = 0, (25)

or equivalently by

ωl
s = Ω l(kl

s, X
l
s),

∂Ω l

∂k
(kl

s, X
l
s) = ∂Ω l

∂X
(kl

s, X
l
s) = 0. (26)

Linear global instability is determined by the sign ofωl
s,i ≡ Imωl

s, whenωl
s,i < 0 (resp.ωl

s,i > 0) the stateψ = 0
is linearly stable (resp. unstable).

4.5. Hysteresis

The existence of nonlinear steep global modes is determined by the sign ofωmax
0,i , while the linear global instability

of the unperturbed stateψ = 0 is dictated by the sign ofωl
s,i . It is now shown qualitatively that alwaysωmax

0,i ≥ ωl
s,i ,

and in generalωmax
0,i > ωl

s,i . Thus, steep global modes may exist in globally linearly stable media (situations where

ωl
s,i < 0< ωmax

0,i ), and the saddle-node bifurcation implies hysteretic behavior asωmax
0,i is varied.

The relative position ofωmax
0,i andωl

s,i is most conveniently illustrated in the complex frequency plane as sketched
in Fig. 7. The solid curve representsω0(X) for realX. The AU region corresponds to theX-interval over which
ω0(X) lies in theωi > 0 half-plane. The maximumωmax

0,i is reached atX = Xmax. Thus, steep global modes exist

whenever the curveω0(X) crosses the realω-axis. The complex frequencyωl
s is obtained at a saddle point of the

analytically continued functionω0(X). For most situations of physical interest,ω0,i(X) is an increasing–decreasing
function on the realX-axis, whileω0,r(X) is simply a smooth function. The dashed curves of Fig. 7 represent the
loci of ω0(Xr + iXi) for different values ofXi whenXr varies along the entire real axis. The saddle point frequency
ωl

s is obtained at a cusp of this set of curves and lies below theω0(Xr) curve, towards its center of curvature. Thus,
it follows clearly thatωmax

0,i > ωl
s,i and one recovers the well-known result that global linear instability requires an

AU region of finite extent [7,25].
In the neighborhood ofωmax

0 , the absolute frequencyω0(X) may be approximated by the Taylor expansion

ω0(X) ∼ ωmax
0 + ω0X(X −Xmax)+ 1

2ω0XX(X −Xmax)2 (27)

1 Only linear global modes with a double turning point are considered here. The reader is referred to Le Dizès et al. [25] for a detailed analysis
of linear global modes with two simple turning points.
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Fig. 8. Global linear and nonlinear stability in the(ωmax
0,i , ω0X,r)-plane. Global stability is governed by the sign ofωmax

0,i . Whenωmax
0,i > 0, the

medium is globally nonlinearly unstable although globally linearly stable in the gray region.

with ω0X,i = 0 andω0XX,i < 0. The linear saddle point, solution of (25), is then explicitly given by

Xl
s = Xmax − ω0X,r

ω0XX
, ωl

s = ωmax
0 − 1

2

(ω0X,r)
2

ω0XX
, (28)

thus

Imωl
s = ωmax

0,i + 1

2

(ω0X,r)
2

|ω0XX|2 ω0XX,i .

Only if dω0,r(X
max)/dX = 0, does the saddle pointXl

s coincide withXmax on the realX-axis and, under such a
condition,ωl

s = ω0(X
max). The difference betweenωmax

0,i andωl
s,i is seen to depend on the magnitude ofω0X,r ≡

dω0,r(X
max)/dX and to scale as(ω0X,r)

2. The influence of the two parametersωmax
0,i andω0X,r on global linear and

nonlinear instability is illustrated in Fig. 8.
The following scenario holds as the global control parameterωmax

0,i is varied at a fixedω0X,r setting. When
ωmax

0,i < 0 (left-hand half-plane of Fig. 8), the unperturbed state is stable, no nonlinear global mode exists. When

ωmax
0,i > 0 whileωl

s,i < 0 (shaded region of Fig. 8), a pair of steep global modes exist, one of which is stable, the

other unstable. However, the unperturbed state is still linearly globally stable,2 but nonlinearly unstable. Only for
ωmax

0,i large enough such thatωl
s,i > 0 (clear region inside parabola of Fig. 8), does the basic state become linearly

unstable. Whereas the global saddle-node bifurcation is controlled byωmax
0,i , the extent of the hysteresis range in

ωmax
0,i is governed by a second control parameter, namelyω0X,r.

4.6. Soft global modes

The existence of soft global modes has been analyzed in an earlier study [33]. Their structure is now briefly
summarized, as well as their relationship to steep global modes. The sketch in Fig. 9a represents the envelope|ψ |
and real partψr of a soft global mode obtained by direct numerical simulation of the CGL equation (4). The length
of the computational domain isL = 102. Linear and parabolic variations are, respectively, used forω0,r(X) and
ω0,i(X) so thatωca

0 = 0.5,ωac
0 = 0.6,ωmax

0,i = 0.5 andXca = 1
5L, Xac = 4

5L. Other coefficients take the constant
valuesk0 = 1.0 − 0.1i, ωkk = 1 − 0.5i andγ = 0.2 − i.

In contrast to steep modes, no front is present and soft modes display an overall smoothly varying envelope and
wave number (thick curve in Fig. 9c). The connection between the upstream− branch and the downstream+ branch
occurs here in the core of the nonlinear region, at a saddle point of the nonlinear dispersion relation (20).

2 The unperturbed state is, however, locally unstable.
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Fig. 9. Structure of soft global mode obtained by direct numerical simulation of CGL equation. (a) Overall smoothly varying envelope|ψ | and
real partψr as functions of downstream distanceX. (b) Analytically computed linear spatial brancheskl±(X) of nonlinear saddle point frequency
ωnl

s in the complexk-plane. Both linear branches cross thekr-axis and give birth to their nonlinear counterparts at the respective neutral stations.
Thick lines pertain to the stable or CU regionsX < Xca andX > Xac, thin lines to the central AU regionXca < X < Xac. (c) Corresponding
linearkl±

r (thin solid) and nonlinearknl± (thin dashed) spatial branches in the(X, k)-plane. Pinching of nonlinear branches occurs forknl
s at

X = Xnl
s in the core of the nonlinear region. Local wave number of simulation in (a) follows path indicated by thick line. Four domains are

identified: the central nonlinear nl− and nl+ regions prevail upstream and downstream ofXnl
s where the nonlinear spatial branchesknl− and

knl+ meet; at the upstreamX1 and downstreamX2 boundaries of the nonlinear balloon (shaded) the nonlinear spatial branches are continuously
connected to their respective linear counterpartskl± prevailing in the semi-infinite linear regions l− and l+, respectively.

As already discussed in Section 3.3, the nonlinear branchesknl±(X, ω), formally defined as the level contours
Ωnl(k,X) = Cst, may display a saddle point(Xnl

s , k
nl
s ) in the (X, k)-plane (solid dot in Fig. 5). More precisely,

pinching of the nonlinear branches, defined by the condition

knl+(Xnl
s , ω

nl
s ) = knl−(Xnl

s , ω
nl
s ) = knl

s ,

then occurs at the real stationXnl
s for the real saddle point frequencyωnl

s of Ωnl such that

ωnl
s = Ωnl(knl

s , X
nl
s ),

∂Ωnl

∂k
(knl

s , X
nl
s ) = ∂Ωnl

∂X
(knl

s , X
nl
s ) = 0 (29)

with the saddle condition

(
∂2Ωnl

∂k∂X
(knl

s , X
nl
s )

)2

− ∂2Ωnl

∂k2
(knl

s , X
nl
s )
∂2Ωnl

∂X2
(knl

s , X
nl
s ) > 0. (30)

Note the formal analogy of this nonlinear saddle point criterion (29) with its linear counterpart (26) which involves
in general complex values ofkl

s andXl
s. The upstreamknl−(X, ωnl

s ) branch and downstreamknl+(X, ωnl
s ) branch are

precisely initiated at the nonlinear saddle pointXnl
s , as depicted in Fig. 9c. These nonlinear travelling waves prevail

in the rangeX1 < X < X2, whereX1 andX2 denote the neutrally stable stations of frequencyωnl
s at the boundary

of the nonlinear balloon in the(X, k)-plane. AtX1 andX2, the amplitudes of the nonlinear travelling wavesknl−

andknl+, respectively, vanish and give way to their linear counterpartskl− andkl+, respectively.
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For the CGL equation (4) withω0(X) of the form (27), all other coefficients being kept uniform inX, the nonlinear
saddle point location is explicitly obtained as

Xnl
s = Xmax + γiω0X,r

Im(γ ?ω0XX)
, (31)

knl
s = k0,r + Re(γ ?ωkk)

Im(γ ?ωkk)
k0,i, (32)

and the soft global mode frequency reads

ωnl
s = ωmax

0,r − γr

γi
ωmax

0,i + γi(ω0X,r)
2

2 Im(γ ?ω0XX)
+ |γ ?ωkk|2

2γi Im(γ ?ωkk)
k2

0,i . (33)

The numerically obtained global frequencyωg = 0.64 of Fig. 9 very favorably compares with the analytical
prediction (33) ofωnl

s = 0.65.
Condition (30) requires that(Im γ ?ωkk)(Im γ ?ω0XX) < 0. It was shown in [33] that in situations where

Im(γ ?ωkk) > 0, (34)

the nonlinear branchesknl± exist in the neighborhood ofXnl
s for frequencies such thatω > ωnl

s . Whenω ↓ ωnl
s , the

branches pinch atknl
s forX = Xnl

s , and forω < ωnl
s , they fail to be defined aroundXnl

s . In the following it is always
assumed that the possible frequencies for the nonlinear spatial branches lie in the rangeω > ωnl

s . The opposite
situation is exactly analogous and applies when Im(γ ?ωkk) < 0.

4.7. Transition between soft and steep global modes

The selection mechanisms governing steep and soft global modes are now compared. The steep criterion (24)
only involves the boundary of the AU domain on the physicalX-axis, regardless of the characteristics of the regions
X 6= Xca. Nevertheless, a steep global mode only exists if the nonlinearknl+(X, ωca

0 ) branch can be followed
fromXca down to the boundary of the nonlinear balloon and if there it can be continuously connected to the linear
branchkl+(X, ωca

0 ). In contrast, the soft criterion (29) involves a saddle point of the nonlinear dispersion relation.
Again, a soft global mode only exists if the nonlinear spatial branches issuing from this nonlinear pinch point may
effectively be continued via corresponding linearkl± branches in the respective downstream and upstream linear
domains.

Selection of either steep or soft global modes depends not only on the local criteria (24) and (29), but also
on the necessity to enforce the boundary conditions. The key argument in the following derivation is based on a
careful monitoring of the linear wave number branches in the complexk-plane and of their nonlinear counterparts
in the(X, k)-plane as the global frequency is varied. As always, the CGL equation is used to illustrate the different
scenarios. The connection between linear and nonlinear spatial branches is shown to crucially depend on the relative
magnitude of the characteristic frequenciesωnl

s andωca
0 . In all instances, only one global mode, steep or soft, is

capable of continuously convertingkl− atX = −∞ to kl+ atX = +∞, as X is varied. The two main scenarios of
interest are illustrated in Figs. 10 and 11, respectively, as discussed below.

Since nonlinear global modes necessarily involve real frequencies, let us focus on frequencies on the realω-axis.
As shown in Section 3.2, for large positive or negativeω the linear spatial branches do not cross thekr-axis in the
complexk-plane. Since nonlinear spatial branches are assumed to exist forω > ωnl

s , we start with large positive
values of the frequency.

Asω is decreased, thekl±(X, ω) branches move in closer to each other and one or both cross thekr-axis for finite
values ofX. A change in sign ofkl

i signifies that the corresponding branch is spatially growing: downstream spatial
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Fig. 10. Evolution of CGL spatial branches with decreasing real frequency in a situation where the soft global mode is selected. The left sequence
illustrates the evolution of the real part of linear brancheskl±

r (X, ω) (solid lines) and of nonlinear branchesknl±(X, ω) (dashed lines) in the
(X, k)-plane. Connecting points between linear and nonlinear branches are indicated with tick marks. In the right sequence, corresponding
complex linearkl±(X, ω) branches are sketched in the complex(kr, ki)-plane; superimposed on the same graphs are the curves(knl±, R2) of the
nonlinear spatial branches. (a), (b) For frequenciesω > ωnl

s linearkl± spatial branches successively cross thekr-axis in the complexk-plane and
give birth to the nonlinearknl± branches between the corresponding neutral stations. (c) For the nonlinear saddle point frequencyωnl

s , nonlinear
spatial branches pinch atknl

s whenX = Xnl
s . This pinch point joiningknl− andknl+ branches gives rise to a soft global mode connecting the

kl− branch nearX = −∞ to thekl+ branch prevailing nearX = +∞. (d), (e) For frequenciesω < ωnl
s , the nonlinear spatial branches fail to

exist in the neighborhood ofXnl
s , but linearkl± branches are still defined. (e) Whenω = ωca

0 , the linear branches in turn pinch atk = kca
0 at the

upstream boundaryXca of AU region. However, this pinch point is not associated with a steep global mode since theknl+ branch prevailing for
X > Xca is not connected to thekl+ branch extending toX = +∞.
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Fig. 11. Evolution of CGL spatial branches with decreasing real frequency in a situation where the steep global mode is selected. The left
sequence illustrates the evolution of the real part of linear brancheskl±

r (X, ω) (solid lines) and of nonlinear branchesknl±(X, ω) (dashed lines)
in the(X, k)-plane. Connecting points between linear and nonlinear branches are indicated with tick marks. In the right sequence, corresponding
complex linearkl±(X, ω) branches are sketched in the complex(kr, ki)-plane; superimposed on the same graphs are the curves(knl±, R2) of
the nonlinear spatial branches. (a), (b) For frequenciesω > ωca

0 linear spatial branches remain separated, nonlinear branches exist between
the corresponding neutral stations. (c) For the front frequencyωca

0 , linear spatial branches pinch atkca
0 whenX = Xca. A sharp front atXca

associated with a wave number jump fromkl− to knl+ then gives rise to a global mode connecting thekl− branch nearX = −∞ to thekl+
branch prevailing nearX = +∞. (d), (e) For frequenciesω < ωca

0 , branch switching betweenkl+ andkl− occurs. (e) Whenω = ωnl
s , the

nonlinear branches meet at the nonlinear saddle point locationXnl
s . However, this saddle point is not associated with a global mode since no

continuous connection to thekl− branch prevailing nearX = −∞ exists.

growth forkl+
i < 0 and upstream spatial growth forkl−

i > 0. As already mentioned (Section 2.3) a spatially growing
branchkl± gives way to its nonlinear counterpartknl± as a neutrally stable station is crossed in the(X, k)-plane.

Nonlinearknl branches are by construction always real-valued. However, to illustrate their relationship with the
linearkl branches they are also represented in the complexk-planes of Figs. 10 and 11. For clarity their missing
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imaginary part is replaced by the square of the amplitude of the corresponding nonlinear solution. This avoids the
collapse of theknl branches onto thekr-axis, and brings to the fore the continuity between linear and nonlinear
branches at the neutral stations wherekl

i as well as the nonlinear amplitude vanish.
In the following discussion representations in the(X, kr)- and the(kr, ki)-planes are always shown in parallel.

Although the+ and− superscripts may not be derived from causality considerations in the AU domain, linear as
well as nonlinear+ and− branches may be defined without ambiguity as long as the linear and nonlinear branches
remain distinct (cf. Sections 3.2 and 3.3).

The branch switching scenario asω decreases depends on the relative values of the characteristic frequenciesωnl
s

andωca
0 . The frequencyωac

0 which corresponds to an unstable steep global mode with a front at the downstream
boundary of the AU domain does not play an essential part. For clarity assume thatωca

0 > ωac
0 andωnl

s > ωac
0 . If

these assumptions are not satisfied, the same selection mechanisms as discussed below prevail, although the detailed
topology of spatial branches may be different. Two possibilities now arise:ωnl

s > ωca
0 orωnl

s < ωca
0 .

The scenario forωnl
s > ωca

0 is illustrated in the sequence of Fig. 10. Asω is decreased, the two linear spatial
branches successively cross thekr-axis while remaining separated as depicted in Fig. 10a and b. Each crossing
gives birth to a corresponding nonlinear branch connected to its linear counterpart at the neutrally stable locations
wherekl is real. Both linear and nonlinear+ and− branches are well identified and separated. Whenω ↓ ωnl

s , the
nonlinear branches gradually approach each other. Forω = ωnl

s (Fig. 10c), theknl+ branch meets theknl− branch
at knl

s for X = Xnl
s as determined by (29). This is the soft global mode configuration, where the nonlinear saddle

point atXnl
s connects the nonlinearknl−(X, ωnl

s ) in the regionX < Xnl
s to the nonlinearknl+(X, ωnl

s ) in the region
X > Xnl

s . Further outward, the nonlinearknl± branches give way to their respective linear counterpartskl± at the
locations of their respective neutral growth. When decreasing the global frequency to valuesω < ωnl

s , the nonlinear
branches fail to exist in the neighborhood ofXnl

s (Fig. 10d). Asω reachesωca
0 (Fig. 10e), linear spatial branches do

pinch atX = Xca, but the nonlinear spatial branchknl+ prevailing aroundXca cannot be continued far downstream
towards thekl+ branch extending down toX = +∞; there is no global mode of frequencyωca

0 .
The scenario forωca

0 > ωnl
s is sketched in the sequence of Fig. 11. Asω decreases, the first characteristic frequency

encountered is nowωca
0 . Whenω ↓ ωca

0 (Fig. 11a–c), the linear branches approach and pinch atkca
0 for X = Xca

determined by (29). Sincekca
0,i < 0, the relevant branches in a neighborhood ofXca arekl− andknl+. A front of

frequencyωca
0 atXca allows a discontinuous jump in wave number fromkl−(Xca, ωca

0 ) = kca
0 to knl+(Xca, ωca

0 ).
This front performs the connection between− and+ branches necessary to obtain a steep global mode: further
downstream, the amplitude of the nonlinearknl+ branch vanishes at a neutrally stable station and there the linearkl+

branch takes over toX = +∞. Note that thekl+(X, ωca
0 ) branch necessarily crosses thekr-axis; thekl−(X, ωca

0 )

branch however may or may not cross. Forω = ωca
0 , the nonlinear branches, if they both exist, do not meet.

Decreasing furtherω towardsωnl
s (Fig. 11d and e), the nonlinear branches in turn approach and pinch forω = ωnl

s .
However, sinceωnl

s < ωca
0 , the linearkl± branches have undergone branch switching forω = ωca

0 . As can be seen
in Fig. 11e, the nonlinear branches issuing atknl

s , X
nl
s cannot be continued towards thekl− branch nearX = −∞.

In this situation, due to global considerations, no soft mode exists, although the local criterion (29) may be satisfied.
This completes the discussion of the global mode selection mechanism: the type of selected global mode depends

on the relative values of the linear pinchpoint frequencyωca
0 and nonlinear pinchpoint frequencyωnl

s . If

ωnl
s < ωca

0 ,

linear spatial branches meet first as the overall frequency is lowered: the steep criterion (24) yields a global solution
on the entireX-axis with a sharp front located atXca. However, if

ωca
0 < ωnl

s ,
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the nonlinear saddle point is encountered first and a soft global mode with overall smoothly varying envelope and
wave number prevails. There exists also situations where the nonlinear dispersion relation displays no saddle point
in the nonlinear balloon. Then a steep mode is necessarily obtained. The preceding close inspection of spatial linear
and nonlinear branches guarantees that the selection criteria for steep and soft global modes are mutually exclusive,
and that all situations are accounted for.

According to this discussion, when a global control parameter is continuously varied, the transition mechanism
between soft and steep global modes is the following. Starting with a system where a soft mode is selected, i.e.,
whereωnl

s > ωca
0 , two possibilities arise if the control parameter is changed:

• The saddle point frequencyωnl
s may equal the front frequencyωca

0 for a critical value of the control parameter.
Beyond this value,ωnl

s < ωca
0 , and a steep mode prevails. The transition to a steep mode of the same frequency

takes place whenωnl
s = ωca

0 .
• The nonlinear saddle point may reach the boundary of the nonlinear balloon and disappear while stillωnl

s > ωca
0 .

Then, transition to a steep mode again occurs, but in this situation the global frequency is discontinuous at
transition.

This will be fully justified in Section 4.9, where we map out the domains of existence of soft and steep global modes
in an appropriate control parameter space. To identify the relevant control parameters, a discussion of the role of
the absolute wave number is first required.

4.8. Role of the absolute wave number

The local instability properties are seen to be essentially controlled by the streamwise evolution of the absolute
frequencyω0(X) and wave numberk0(X) which in principle can be varied independently. The criterion for steep
global modes (24) only depends on the local absolute frequencyω0(X) regardless of the local absolute wave number
k0(X). The soft global mode criterion (29), however, depends onk0(X) through the complete nonlinear dispersion
relation. In this section, the role of the absolute wave number is discussed by varyingk0(X) in the CGL equation,
all other coefficients remaining fixed.

From expressions (23) for the linear spatialkl± branches it is readily seen that a change ink0(X) by some
constant value, sayκ, results in a displacement of thekl± curves in the complexk-plane. Under this process, the
linear pinchpoint properties are not affected. Nonlinear characteristics, however, are closely related to the crossing
of thekr-axis by thekl± branches; it follows that changes ink0,i strongly influence the nonlinear properties of the
medium, unlike changes ofk0,r. This calls for two distinct physical interpretations ofk0,r andk0,i , respectively.

Consider the uniform CGL equation (6) withk0 replaced byk0−κr. Then, under the change of unknown function

ψ(x, t) = φ(x, t)eiκrx,

the original CGL equation (6) is recovered forφ. This shows that the only effect of a change ink0,r is a change in
wavelength; linear spatial growth or decay rates, frequencies as well as nonlinear amplitudes remain the same. A
variation ofk0,r results in a change of carrier wave but does not alter the linear or the nonlinear stability properties
of the system. In the spatially dependent CGL equation (4), the following change of unknown function

ψ(x, t) = φ(x, t)exp

(
i

ε

∫ X

κr(u)du

)

results in modifying the local absolute wave number tok0(X)− κr(X). Any slowly modulated carrier wave defined
by the real functionκr(X) may thus be used to transform the real part of the absolute local wave number. Under
such a transformation, the global mode selection criteria as well as the characteristic frequencies remain unaltered:
the functionk0,r(X) may then be chosen arbitrarily since it does not affect the local and global dynamics.



B. Pier et al. / Physica D 148 (2001) 49–96 73

In order to bring to the fore the role ofk0,i(X), it is convenient, in the remainder of this section, to selectk0,r(X)

so that the functionωkk(X)k0(X) appearing in front of the advection term∂ψ/∂x in (4) is real [12]. Under such a
condition,

k0,r(X) = −ωkk,r(X)

ωkk,i(X)
k0,i(X),

and the CGL equation reads

∂ψ

∂t
+ |ωkk|2
ωkk,i

k0,i
∂ψ

∂x
= −i

(
ω0 + 1

2
ωkkk

2
0

)
ψ + i

2
ωkk

∂2ψ

∂x2
− iγ |ψ |2ψ. (35)

The form (35) clearly indicates that the real factor

U(X) = |ωkk(X)|2
ωkk,i(X)

k0,i(X)

may be interpreted as an advection velocity. Since causality requires thatωkk,i < 0, a negative (positive)k0,i is
readily seen to correspond to advection towardsX = +∞ (X = −∞). Thus, the sign ofk0,i controls the advection
direction whereas its magnitude is directly related to the advection velocity. As stated in Section 1, it is assumed
thatU(X) > 0, i.e.,k0,i(X) < 0 in the entire domain. The basic advection is then directed towardsX = +∞.

In order to further discuss the role ofk0,i in the selection of global modes, consider, for simplicity, thatk0,i is
constant over the entire domain. A change ink0,i is seen to be associated with a displacement of thekl± curves
along theki -axis in the complexk-plane. Its effect on the nonlinear balloon and nonlinear spatial branches in the
(X, k)-plane is outlined in Fig. 12. Since the functionω0(X) is kept fixed, a change ofk0,i leaves the extent of the AU

Fig. 12. Evolution of CGL nonlinear balloon and spatialknl± branches in the(X, k)-plane as the advection towardsX = +∞ is increased.
Vertical dashed lines indicate AU domain extending overXca < X < Xac. (a) Without mean advection (k0,i = 0), spatial branches display
symmetry with respect to the nonlinear saddle point wave numberknl

s and the nonlinear domain exactly spans the AU region,Xsc = Xca and
Xac = Xcs. (b)–(d) With increasing downstream advectionk0,i < 0, the nonlinear balloon inflates and extends beyond the AU region,Xsc< Xca

andXac< Xcs. During this process the fraction of the nonlinear balloon covered by the downstreamknl+ branches increases with respect to the
knl− branches. Simultaneously, the nonlinear saddle point(Xnl

s , k
nl
s ) is seen to descend to eventually leave the nonlinear balloon.
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rangeXca < X < Xac unaltered, as indicated by vertical dashed linesX = Xca andX = Xac in Fig. 12. Without
mean advection,k0,i = 0 (Fig. 12a), the nonlinear balloon exactly spans the AU region. In this situation, local linear
instability coincides with local absolute instability:Xsc = Xca andXac = Xcs. Nonlinear spatial branches cover
the nonlinear balloon symmetrically with respect tok = knl

s . Fig. 12b–d is obtained for increasing negative values
of k0,i , i.e., increasing advection towardsX = +∞. Increasing|k0,i | then shifts thekl± branches (23) towards
negativeki in the complexk-plane, thereby enhancing the instability of the downstreamkl+ branches and reducing
the instability of the upstreamkl− branches. Under such circumstances, the onset of linear instability no longer
coincides with transition to absolute instability: the nonlinear balloon inflates and extends beyond the AU range into
the CU regionsXsc < X < Xca andXac < X < Xcs. The basic flow advection breaks theknl+/knl− symmetry,
and the part of the nonlinear balloon spanned by theknl+ branches increases to the detriment of theknl− branches.
During this process, the nonlinear saddle point moves towards the lower neutral stability boundary and eventually
leaves the nonlinear balloon. The advection velocity, measured byk0,i , thus strongly affects the existence of the
nonlinear saddle point and hence the existence of smooth global modes.

In the remainder of this section, we temporarily allow advection in the positive or negative direction so thatk0,i

may change sign. It has been shown in Section 4.2 that among the two stationary fronts atXca andXac, only the
one located at the upstream boundary of the AU region is stable. Since flow direction is directly related to the sign
of k0,i , the stable steep global mode frequency isωca

0 for k0,i < 0 andωac
0 for k0,i > 0. These are indeed the fronts at

the stations of local marginal absolute instability with their nonlinear wave train covering the AU domain and their
exponentially decaying tail extending into the CU region (see also Fig. 13). The soft global mode frequencyωnl

s has
been obtained in (33), and, in contrast to the steep global mode frequenciesωca

0 andωac
0 , it is seen to depend onk0,i .

In the previous section, it has been demonstrated that the global mode of largest frequency is selected; thus, the
transition scenario between steep and soft global modes as a function ofk0,i is derived from the relative values of
ωca

0 , ωac
0 andωnl

s (k0,i), as displayed in Fig. 13. According to (33), the soft frequencyωnl
s is largest fork0,i = 0,

all other coefficients being kept fixed. Thus, soft modes prevail when advection is small enough,ωnl
s > ωca

0 and
ωnl

s > ωac
0 . With increasing downstream advection (k0,i < 0), the nonlinear saddle point frequencyωnl

s decreases.
Whenωnl

s < ωca
0 , the soft mode is replaced by a steep mode with a sharp front atXca (left-hand side of Fig. 13).

Similarly, if k0,i increases from 0 (k0,i > 0), which corresponds to advection towardsX = −∞, the nonlinear

Fig. 13. Transition between steep and soft global modes as a function ofk0,i in CGL equation. Black arrows indicate advection direction. For
small advection velocities (k0,i small), the saddle point frequencyωnl

s is larger than the front frequenciesωca
0 andωac

0 , and thus a soft global
mode is selected. With increasing advection towardsX = +∞ (k0,i < 0), the saddle point frequencyωnl

s decreases, and, whenk0,i < k−
0,i the

soft mode is replaced by a steep global mode with a front at the left boundary of the AU region. Similarly, with increasing advection towards
X = −∞ (k0,i > 0), the saddle point frequencyωnl

s again decreases, and atk0,i = k+
0,i transition takes place to a steep global mode with a front

at the right boundary of the AU region.
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saddle point frequencyωnl
s again decreases. Whenωnl

s < ωac
0 , the soft mode is now replaced by a steep mode with

a front atX = Xac (right-hand side of Fig. 13). Sincek0,i > 0, the front atXac is now the stable one: upstream
and downstream directions have been interchanged. In any case, the front location corresponds to the upstream
boundary of the AU region. The critical transition valuesk−

0,i < 0 andk+
0,i > 0 between soft and steep global modes

are defined byωca
0 = ωnl

s andωac
0 = ωnl

s , respectively.

4.9. Domains of existence in control parameter space

Now that the roles ofωmax
0,i , ω0X,r andk0,i have been separately discussed, the domains of existence of steep and

soft global modes may be obtained in the three-dimensional space of these control parameters (Fig. 14). Consider
the CGL equation (4) withω0(X) of the form (27), all other coefficients being assumed uniform inX for simplicity.
The front frequenciesωca

0 andωac
0 then read

ωca
0 , ω

ac
0 = ωmax

0,r − ω0XX,r

ω0XX,i
ωmax

0,i ∓ ω0X,r

√
2ωmax

0,i

−ω0XX,i
. (36)

They exist wheneverωmax
0,i > 0 and their values are seen to be effectively independent ofk0,i .

The selected global mode type depends on the relative values of the front frequencies (36) and the nonlinear
saddle point frequencyωnl

s (33). However, note that the nonlinear saddle point formally defined by (31) and (32)
only exists if(knl

s , X
nl
s ) lies in the nonlinear balloon, i.e., if

Ω l
i (k

nl
s , X

nl
s ) > 0. (37)

For the CGL equation under study, one readily obtains

Ω l
i (k

nl
s , X

nl
s ) = ωmax

0,i + 1

2
ω0XX,i

(
γi

Im γ ?ω0XX

)2

(ω0X,r)
2 + |ωkk|2 Im γ 2ω?kk

2(Im γ ?ωkk)2
(k0,i)

2. (38)

WheneverΩ l
i (k

nl
s , X

nl
s ) < 0, the nonlinear saddle point does not exist, and only a steep global mode is obtained.

In the control parameter space of Fig. 14, the domain where condition (37) is satisfied is located above the surface
labeledΩ l

i (k
nl
s , X

nl
s ) = 0. According to (38), this surface is a paraboloid entirely contained in the half-space

ωmax
0,i ≥ 0 and tangent to the planeωmax

0,i = 0 atω0X,r = k0,i = 0. Below this surface no soft mode may exist and

only steep modes are obtained. Above this surface, the soft global frequencyωnl
s must be compared toωca

0 andωac
0 .

We only consider situations with advection towardsX = +∞, i.e., the half-spacek0,i < 0, so that onlyωca
0 comes

into consideration for steep modes. Within the region where a nonlinear saddle point exists, transition between soft
and steep modes occurs whenωnl

s = ωca
0 . This transition surface is derived from (33) and (36) and is sketched in

Fig. 14. It is seen to meet the surfaceΩ l
i (k

nl
s , X

nl
s ) = 0 along a curve in the planek0,i = 0. As may be inferred from

these critical surfaces, the parameter space is divided into four regions (Fig. 14):
• (a) Below the global threshold,ωmax

0,i < 0, no front and no saddle point exists, the unperturbed stateψ = 0
remains stable.

• (b) Whenωmax
0,i > 0 andΩ l

i (k
nl
s , X

nl
s ) < 0, no saddle point exists and a steep global mode prevails.

• (c) WhenΩ l
i (k

nl
s , X

nl
s ) > 0 andωnl

s < ωca
0 , a saddle point exists but the steep mode is selected.

• (d) WhenΩ l
i (k

nl
s , X

nl
s ) > 0 andωnl

s > ωca
0 , the soft mode is selected.

Thus, at global mode onsetωmax
0,i = 0, transition occurs always via a steep global mode except for the triply

degenerate caseωmax
0,i = k0,i = ω0X,r = 0. With increasingωmax

0,i , transition from a steep to a soft mode occurs for

finite values ofωmax
0,i either as soon as the nonlinear saddle point comes into existence (on the surfaceΩ l

i (k
nl
s , X

nl
s ) =

0) or when its frequency reaches the steep frequency (on the surfaceωnl
s = ωca

0 ).
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Fig. 14. Domains of existence of steep and soft global modes in the three-dimensional control parameter space(ω0X,r, k0,i , ω
max
0,i ) of CGL

equation. A nonlinear saddle point exists above the surfaceΩ l
i (k

nl
s , X

nl
s ) = 0. The associated frequencyωnl

s is larger than the front frequency
ωca

0 above the surface labeledωnl
s = ωca

0 . Hence soft global modes prevail in region (d). In region (c), steep modes are selected according to
ωnl

s < ωca
0 . In region (b), no nonlinear saddle point exists and only steep modes are obtained. In region (a), below global thresholdωmax

0,i < 0,
the unperturbed state is stable.

4.10. Summary of transition mechanisms

The main global mode selection mechanisms have been shown to be governed by three distinct control parameters.
The global bifurcation parameter is the maximum absolute growth rate over the entire mediumωmax

0,i . Nonlinear
global modes exist whenever a region of absolute instability is present (ωmax

0,i > 0). The transition to a steep global
mode occurs discontinuously atωmax

0,i = 0 through a saddle-node bifurcation. In the absence of absolute instability
(ωmax

0,i < 0), no self-sustained global modes exist and the basic state is globally stable.
The basic state remains globally linearly stable up to a finite positive value ofωmax

0,i . The hysteresis width in

ωmax
0,i is governed byω0X,r and scales as(ω0X,r)

2. The advection parameterk0,i strongly influences transition from
steep to soft nonlinear global modes. Soft modes exist for small values ofk0,i , whereas for increasing upstream
or downstream advection, steep modes prevail. The main global mode properties may be inferred from the three
above-mentioned control parameters.

5. Asymptotic spatial structure of global modes

The preceding results have been derived under the assumption that the global mode is, at each station close to
the local wave train at the global frequency. This local wave train is governed by the local linear dispersion relation
(19) in regions where the amplitude is small, whereas it follows the local nonlinear dispersion relation (20) in finite
amplitude domains. These considerations, which only involve the local characteristics of the medium, yield the
leading-order WKBJ approximation to the spatial structure. Within this framework, the selection criteria for steep
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Fig. 15. Spatial structure of (a) steep and (b) soft global modes. (l±) outer semi-infinite linear regions nearX = ±∞ with respective linear
spatialkl± branch; (nl±) central nonlinear regions of sizeO(1) with respective nonlinear spatialknl± branch; (tl±) weakly nonlinear transition
layers of widthO(ε1/2) connecting linear and nonlinear branches of same superscript; (fl) front layer of sizeO(ε2/3) connecting thekl− and
knl+ branches and selecting the steep global mode; (sp) saddle point layer of sizeO(ε1/2) connecting theknl± branches and selecting the soft
global mode.

and soft global modes have been identified and the leading-order steep (24) and soft (29) frequencies have been
derived.

The objective of this section is to incorporate the previous results into a consistent WKBJ approximation scheme
[2] in order to obtain higher-order correction terms, and to establish that the global mode structures outlined in
the preceding sections may effectively be constructed by matching together extended wave packets prevailing in
different regions.

The organization of the following sections is motivated by the spatial structure of both steep and soft global modes
illustrated in Fig. 15. As already discussed, global modes display nonlinear regions of finite amplitude as well as
linear regions of infinitesimal amplitude. In the outer semi-infinite linear regions (l±) extending towardsX = ±∞
(Section 5.1) the respective complex linear spatial branchkl± prevails. The central nonlinear regions (nl±) are of
finite extent, i.e., order unity measured in terms ofX, and they are dominated by the respective nonlinear spatial
branchknl± as discussed in Section 5.2. These extended regions are connected via three types of narrowtransition
layers:
• The front layer(fl) of sizeO(ε2/3) located at the upstream boundary of the steep global mode nonlinear region

connectskl− andknl+ branches (Section 5.3).
• The nonlinear saddle point layer(sp) of sizeO(ε1/2) allows crossover between theknl± branches within the

nonlinear soft global mode region (Section 5.4).
• Weakly nonlinear transition layers(tl±) of sizeO(ε1/2) at the downstream end of the steep global mode nonlinear

region and at both ends of the soft global mode nonlinear region connect the fully developed nonlinear branches
with their linear counterparts (Section 5.5).
Each of these regions is analyzed in turn to obtain a uniformly valid asymptotic approximation over the entire

range−∞ < X < +∞. Close inspection of the front layer and the nonlinear saddle point layer yields higher-order
corrections of the steep (72) and soft (88) global frequencies, respectively. Since the width of the narrow layers is
O(ε1/2) or O(ε2/3) measured in units ofX, their characteristic scale is intermediate between the inhomogeneity
length scaleO(1) and the instability length scaleO(ε). Thus, although the medium may be considered uniform in
the transition layers, they still display many wavelengths, typicallyO(ε−1/2) orO(ε−1/3).

In the preceding sections, the bifurcation study was largely based on the CGL equation (4) and a complete under-
standing of the global selection mechanisms was achieved in this context. In this section, the WKBJ approximation
scheme is presented in the more general framework of PDE (1).
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5.1. Linear WKBJ instability waves

In the semi-infinite linear regions extending towardsX = ±∞ (l± in Fig. 15a and b), the global mode amplitude
exponentially decays on the fastx-scale. These regions are thus governed by the linear equation (2). Under the
slowly varying medium hypothesis (3) a solution of (2) with global frequencyωg may be obtained in terms of
WKBJ approximations [2]. The spatial structure is described by a rapidly varying complex phase, accounting for
the local wavelength and spatial decay rate, and a slowly varying envelope. For a given value of the frequencyωg,
the solution reads

ψ(x, t) = Al(X)exp

(
i

ε

∫ X

kl(u)du− iωgt

)
+ c.c., (39)

wherekl(X) is one of the linear spatial branches associated with the frequencyωg. The functionsAl(X) andkl(X)

implicitly depend onωg; for simplicity their frequency dependence is omitted.
In classical WKBJ fashion, the slowly varying envelopeAl(X) is expanded in powers ofε as

Al(X) ∼ Al
0(X)+ εAl

1(X)+ ε2Al
2(X)+ · · · . (40)

Thus, spatial differentiation takes the form

∂ψ

∂x
= [(ikl(X)+ ε∂X)A

l(X)] exp

(
i

ε

∫ X

kl(u)du− iωgt

)
+ c.c. (41)

Upon substituting (39)–(41) into the governing equation (2) and bearing in mind thatΩ l(−i∂x) = iL(∂x), see (8),
one obtains

ωg(A
l
0 + εAl

1 + · · · ) = Ω l(kl(X)− iε∂X,X)(A
l
0 + εAl

1 + · · · ). (42)

Note that differentiation with respect to the fast variable, i.e., multiplication by ikl(X), does not commute with the
slow derivative operator∂X. The linear operator appearing in (42) admits the expansion

Ω l(kl(X)− iε∂X,X) = Ω l(X)− iε(Ω l
k(X)∂X + 1

2k
l
X(X)Ω

l
kk(X))+O(ε2) (43)

with the notations

Ω l(X) ≡ Ω l(kl(X),X), Ω l
k(X) ≡ ∂Ω l

∂k
(kl(X),X), etc.

At lowest-order, Eq. (42) reduces to the linear dispersion relation (19), i.e.,

ωg = Ω l(kl(X),X), (44)

which yields the local wave numberkl(X) for a given frequencyωg.
The orderε terms read

[ωg −Ω l(kl(X),X)]Al
1(X) = −iΩ l

k(X)
dAl

0

dX
− i

2
Ω l

kk(X)k
l
X(X)A

l
0(X).

By invoking (44), one obtains the obvious solvability condition forAl
0(X), namely

dAl
0

dX
= −1

2
kl
X(X)

Ω l
kk(X)

Ω l
k(X)

Al
0(X). (45)
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Thus, the first-order asymptotic approximation to the solution of the linearized equation reads

ψ ∼ Al
0(X1)exp

(
−1

2

∫ X

X1

kl
X(u)

Ω l
kk(u)

Ω l
k(u)

du

)
exp

(
i

ε

∫ X

X1

kl(u)du− iωgt

)
+ c.c., (46)

whereX1 is some arbitrarily specified reference point. In each of the semi-infinite linear regions the respective
causalkl branch has to be chosen:kl− for X → −∞ andkl+ for X → +∞.

In the linear region, the nonlinear terms of (1) are seen to be exponentially smaller than the linear ones. Their
exact expressions are therefore irrelevant to this work and will not be computed here.

5.2. Nonlinear WKBJ wave trains

In the central nonlinear regions (nl± in Fig. 15a and b), the solution of (1) is obtained in terms of local nonlinear
wave trains (10). An asymptotic approximation scheme for nonlinear wave trains is derived in this section, which
is formally analogous to linear WKBJ theory.

The fast oscillations of the propagating wave and its slowly varying local wave number and amplitude suggest
the following change of variables:

ψ(x, t) = ψ(θ;X),
where the real phase functionθ(x, t) is 2π periodic and accounts for propagation on the fast space and time scales,
whereasX = εx allows for slow spatial modulation. Local frequency and wave number are defined as

ω = −∂t θ, k = ∂xθ.

For a synchronized global solution, the frequencyω = ωg is constant, whereas the local wave numberk = knl(X)

depends on the slow space variable.
Upon expanding the derivative operators according to

∂x = knl(X)∂θ + ε∂X, ∂t = −ωg∂θ ,

the governing equation (1) is recast in the form

ωg∂θψ + F(knl(X)∂θ + ε∂X;X)[ψ ] = 0. (47)

Again note that differentiation ofψ(θ;X) with respect to the fast variable does not commute with∂X sinceknl(X)

depends onX. Nextψ is expanded according to

ψ ∼ ψ0 + εψ1 + ε2ψ2 + · · · ,
and substituted into (47).

The lowest-order inε yields the local equation

ω∂θψ + F(k∂θ ;X)[ψ ] = 0, (48)

whereX acts as an external parameter. WhenX is considered frozen, the family of local nonlinear wave trains
Ψ (θ; k,X) is recovered. This equation admits solutions only ifω = Ωnl(k,X). In other words, for a global
frequencyωg, the nonlinear spatial branchknl(X) is derived from the local nonlinear dispersion relation (20) as

ωg = Ωnl(knl(X),X), (49)
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and the leading-order solutionψ0 then reads

ψ0 = Ψ (θ; knl(X),X). (50)

The functionΨ is 2π periodic in the phase variableθ which accounts for the fast propagation through

θ = 1

ε

∫ X

knl(u)du− ωgt + θ0(X). (51)

The so far undetermined slowly drifting phase functionθ0(X) obeys a solvability condition to be obtained at next
order.

TheO(ε) terms in (47) require some care. For clarity of presentation, assume that spatial differentiation only
occurs in the linear operator,

F(∂x;X)[ψ ] = L(∂x;X)[ψ ] +N (X)[ψ ].

The linear terms are expanded as

L(knl(X)∂θ +ε∂X;X)[ψ0(θ;X)+ εψ1(θ;X)+ · · · ]

+ ∼ L(X)[ψ0]ε

(
L(X)[ψ1] + L′(X)[∂Xψ0] + 1

2

dknl

dX
L′′(X)[∂θψ0]

)
+O(ε2),

where the notationL(X) is shorthand forL(knl(X)∂θ ;X) and the primes denote differentiation ofL(∂x;X) with
respect to its first argument. The nonlinear terms are expanded as

N (X)[ψ0 + εψ1 + · · · ] = N (X)[ψ0] + ε
∂N (X)[ψ0]

∂ψ
ψ1 +O(ε2).

Thus (47) yields atO(ε),

L[ψ1] = −L′(X)[∂Xψ0] − 1

2

dknl

dX
L′′(X)[∂θψ0], (52)

where the linear differential operatorL on the left-hand side is defined as

L ≡ ωg∂θ + L(X)+ ∂N (X)[ψ0]

∂ψ
. (53)

Thus,ψ1 satisfies a linear differential equation with respect toθ with X-dependent coefficients. The operatorL is
singular since one may readily verify that

L[Ψθ ] = 0 with Ψθ ≡ ∂θΨ (θ; knl(X),X).

Thus (52) admits solutions forψ1 only if its right-hand side satisfies a solvability condition.
Let us introduce an inner product for 2π periodic functions ofθ defined by

〈φ,ψ〉 = 1

2π

∫ 2π

0
φ(θ)ψ(θ)dθ. (54)

The adjoint operatorL† of L is then obtained via successive integration by parts through the relation〈φ,Lψ〉 =
〈L†φ,ψ〉, and it reads

L† = −ωg∂θ + L(−knl(X)∂θ ;X)+ ∂N (X)[ψ0]

∂ψ
. (55)
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LetΨ †
θ be the adjoint eigenfunction ofΨθ . Taking the inner product of (52) withΨ †

θ and substituting

∂Xψ0 = dθ0
dX

Ψθ + dknl

dX
Ψk + ΨX,

yields the following solvability condition forθ0(X),

dθ0

dX
〈Ψ †
θ ,L

′Ψθ 〉 + 1

2

dknl

dX
〈Ψ †
θ ,2L

′Ψk + L′′Ψθ 〉 + 〈Ψ †
θ ,L

′ΨX〉 = 0. (56)

This entirely specifies the leading-order approximation to the global nonlinear solution

ψ(x, t) ∼ Ψ

(
1

ε

∫ X

knl(u)du− ωgt + θ0(X); knl(X),X

)
, (57)

where the parametric dependence ofknl(X) on the global frequencyωg is entirely determined by (49).

5.3. Front layer

According to Section 4.2, the front of steep global modes is located at the station of local marginal absolute
instabilityXca and it is associated with a wave number jump from thekl− to theknl+ branch. On the slow scaleX,
the front discontinuously connects the linear solution (46) of wave numberkl− prevailing in the upstream domain
X < Xca to the nonlinear solution (57) of wave numberknl+ on the downstream side of the frontX > Xca. In this
section, the linear solution is shown to match to the nonlinear solution through a narrow front layer (fl) as depicted
in Fig. 15a. The formulation essentially follows the same approach as in the asymptotic description of the front
boundary layer arising in nonlinear dynamo waves developed by Bassom et al. [1] and is based on linear turning
point theory [48].

The envelope of the outer linear solution is governed by the amplitude equation (45) which is singular at a turning
pointX0 of the dispersion relation (44) defined by

ω0(X0) = ωg. (58)

Forωg = ωca
0 , the turning point is atX0 = Xca. However, it is to be anticipated that the global frequency does not

exactly equalωca
0 . As outlined below, it is convenient to implement a matching procedure in the turning point region

for an arbitrary complex global frequencyωg. Thus, consider the linear governing equation (2) for complexX.
The results of Section 5.1 pertaining to linear instability waves remain valid in the complexX-plane, provided that
Ω l(k,X) and henceω0(X) are analytically continued for complex values ofX. Then (58) associates to a frequency
ωg the turning pointX0(ωg) in the complexX-plane.

Expansion of the dispersion relation (44) in the neighborhood of the turning pointX0 yields

0 = 1
2Ω

l
kk,0(k

l(X)− k0)
2 +Ω l

X,0(X −X0)+ h.o.t., (59)

wherek0 is the associated absolute wave numberk0 ≡ k0(X0) and the subscript 0 denotes evaluation at(k0, X0).
By definition of the turning point,Ω l

k,0 = 0, and under the assumption that the turning point is simple,Ω l
X,0 6= 0.

Thus

kl(X) ∼ k0 ±
√√√√−2Ω l

X,0

Ω l
kk,0

(X −X0)
1/2.
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The linear amplitude equation (45) then reduces to

dA0

dX
∼ − A0(X)

4(X −X0)
.

HenceA0(X) ∼ Cst(X − X0)
−1/4 asX → X0, and the complete behavior of the outer linear solution (46) as

X → X0 reads

ψ ∼ Cst(X −X0)
−1/4 exp


 2i

3ε

√√√√−2Ω l
X,0

Ω l
kk,0

(X −X0)3


ei(k0x−ωgt) + c.c. (60)

Here it is assumed that the square root branch cut is chosen so that the wave numberkl− prevailing in the domain
X → −∞ is recovered.

It is seen that in the neighborhood of the turning pointX0, the amplitudeA0 becomes singular. Balance of
dominant terms, as shown below, yields an inner turning point region of sizeO(ε2/3). Thus, define an inner variable
X̃ by

X = X0 + ε2/3X̃, (61)

and expandψ as

ψ = Ã(X̃)ei(k0x−ωgt) + c.c. (62)

with

Ã(X̃) = C̃st[Ã0(X̃)+ ε2/3Ã2/3(X̃)+ · · · ], (63)

whereÃ0(X̃) isO(ε0). Spatial differentiation now becomes∂x = ik0 + ε1/3∂
X̃

. In this inner transition layer, the
leading-order wave number is constant and equal tok0, thus∂

X̃
and ik0 now commute. The governing equation (2)

then yields

ωgÃ(X̃) = Ω l(k0 − iε1/3∂
X̃
,X0 + ε2/3X̃)Ã(X̃) ∼ [Ω l(k0, X0)+ ε2/3(X̃Ω l

X,0 − 1
2Ω

l
kk,0∂X̃X̃)]Ã(X̃),

whereωg = Ω l(k0, X0). The scalingX−X0 ∼ ε2/3X̃ andx ∼ ε−1/3X̃ guarantees the balance of dominant terms
at orderO(ε2/3) in the previous equation and leads to the following Airy equation for the leading-order amplitude:

1
2Ω

l
kk,0

d2Ã0

dX̃2
= X̃Ω l

X,0Ã0(X̃). (64)

Thus,Ã0(X̃) is a linear superposition of the Airy functionsAi(−λX̃) andBi(−λX̃) with

λ3 = −2Ω l
X,0

Ω l
kk,0

.

Upon choosing forλ the solution with|Arg λ| < π/3, theBi component exponentially grows whereas theAi
component decays according to

Ai(−λX̃) ∼ 1

2
√
π
(−λX̃)−1/4 exp


2i

3

√√√√−2Ω l
X,0

Ω l
kk,0

X̃3


 , (65)
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asX̃ → −∞ [2]. Expressing the outer solution (60) in terms of the inner variableX̃, shows that it matches with
the inner solution (62) provided that

Ã(X̃) = C̃st[Ai(−λX̃)+O(ε2/3)] (66)

with Cst = ε1/6((−λ)−1/4/2
√
π)C̃st.

Thus, for any frequencyωg, linear instability waves are governed by the Airy equation (64) in a region of size
O(ε2/3) located at the turning point of the linear local dispersion relation. The location of the turning point in the
complexX-plane depends onωg. For frequenciesωg = ωca

0 + δω, close to the marginal absolute frequency, the
turning point is located at

X0 ∼ Xca + δω

ω0,X(Xca)
.

ForO(ε2/3) frequency corrections,δω = ε2/3ω2/3, the inner Airy region in the complexX-plane contains in its
neighborhood the pointXca on the realX-axis.

Before analyzing in more detail the properties of the Airy solutions on theX̃-scale, let us turn to the front structure.
As discussed in Section 5.3, a uniform medium at the transition between convective and absolute instability admits
stationary front solutions oscillating at its real absolute frequency. Thus, the original nonlinear governing equation
(1) rewritten atX = Xca as

ωca
0
∂ψ

∂θ
+ F(∂x;Xca)[ψ ] = 0, (67)

admits the front solutionΨf (x, θ), which is 2π periodic in the phase functionθ = ωca
0 t . Towardsx = +∞, this

solution approaches a fully nonlinear wave train of the form (50). Thus,

Ψf (x, ω
ca
0 t) ∼ Ψ [knl+(Xca, ωca

0 )x − ωca
0 t; knl+(Xca, ωca

0 ),X
ca] as x → +∞.

Towardsx = −∞, the exponential decay rate is dictated by the absolute wave numberkca
0 = k0(X

ca) and the front
solution reads

Ψf (x, ω
ca
0 t) ∼ (cst

0 + cst
1 x)ei(kca

0 x−ωca
0 t) + c.c., (68)

where the secular term is due to the double rootkl+ = kl− = kca
0 of the linear dispersion relation. In the uniform

medium, the front has no preferred location. A translation of1x only changes the phase byknl+(ωca
0 )1x in the

asymptotic behavior towards the nonlinear sidex = +∞ and leads to an additional factor eikca
0 1x in the upstream

exponentially decaying tail.
The exponentially decaying tail (68) has to be matched with (62) in the Airy region. Due to the secular term in

(68), matching with (62) is only possible at the zeroes of the Airy function. The Airy functionAi appearing in (66)
admits real negative zerosai . Thus, the zeros of̃A0 are located at̃Xi = −ai/λ. In terms of the outer variableX
these occur at

Xi ≡ X0(ωg)+ ε2/3X̃i = Xca + ε2/3
(
ω2/3

ω0,X
− ai

λ

)
+O(ε4/3). (69)

Whereas the linear WKBJ approximations as well as the turning point region may be investigated in the complex
X-plane, the front involves a nonlinear wave train and is thus necessarily restricted to the realX-axis. Requiring
that theith zero (69) of the Airy function is on the realX-axis yields the frequency correction term

ω2/3 = ai
|ω0,X|2

|λ|2
Im λ

Imω0,X
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for a zero located at

Xi ∼ Xca + ε2/3 ai

|λ|2
Im(ω?0,Xλ)

Imω0,X
.

SinceXca is the transition location from convective to absolute instability, Imω0,X is positive. Under the slightly
more restrictive assumption thatπ/3< Argω0,X < 2π/3, we are guaranteed that Im(ω?0,Xλ) < 0. In most situations
of physical interest, variations ofω0,r are small compared to those ofω0,i and thus the condition on Argω0,X is
readily fulfilled.

So far the matching conditions yield a countable set of frequencies

ωg ∼ ωca
0 + ε2/3aiΩ2/3 with Ω2/3 = |ω0,X|2

|λ|2
Im λ

Imω0,X
, (70)

each being associated with theith zeroai < 0 of the Airy function. The corresponding fronts are located at

X ∼ Xca − ε2/3aiX2/3 with X2/3 = −Im(ω?0,Xλ)

|λ|2 Imω0,X
> 0. (71)

SinceX2/3 > 0, higher-order global modes display a front located further downstream in the AU domain. These
situations are likely to be unstable since the exponentially decaying tail of the front partly penetrates into the AU
domain. Such a higher-order front prevailing in a slightly AU medium tends to move upstream, until it reaches the
most upstream possible station associated witha0. Thus we argue, although we have not proven the result, that the
only stable global mode solution is obtained for the first zero indexed bya0. Up toO(ε2/3), the global frequency
and the front location therefore, respectively, read

ωg ∼ ωca
0 + ε2/3a0Ω2/3, X ∼ Xca − ε2/3a0X2/3 (72)

with

a0 = −2.3381. . . .

This completes the investigation of the detailed structure of the front region.

5.4. Fully nonlinear saddle point layer

The nonlinear saddle point is defined as the locationXnl
s where the two nonlinear wave number branches meet.

The saddle point frequencyωnl
s is given by the criterion (29). In the nonlinear regions surrounding the saddle location

Xnl
s the asymptotic approximation of the global solution is of the form (57) and the slowly drifting phase function

θ0(X) is governed by the solvability condition (56).

At the saddle point, the first-order differential equation (56) forθ0 becomes singular since〈Ψ †
θ ,L

′Ψθ 〉 = 0 at
Xnl

s (cf. Eq. (90)). Thus, the nonlinear WKBJ approximation worked out in Section 5.2 is no longer valid in the
neighborhood ofXnl

s , becauseθ0 varies there on a spatial scale which is faster thanX. In this section, a nonlinear
saddle point layer atXnl

s is introduced, (sp) in Fig. 15b, and a second-order differential equation for the phaseθ0 is
derived after rescaling the spatial variable in the neighborhood ofXnl

s . This inner solution in the saddle point region
allows a smooth crossover between the WKBJ wave trains in both nonlinear regions.

Let us introduce an inner local space variableX̃ in the saddle point region defined as

X = Xnl
s + ε1/2X̃,
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and expandψ according to

ψ ∼ ψ̃0 + ε1/2ψ̃1/2 + εψ̃1 + · · · . (73)

The subsequent analysis yields the higher-order corrections to the global frequency as

ωg ∼ ωnl
s + ε1/2ω1/2 + εω1 + · · · . (74)

Replacing the spatial derivative∂x in the inner region byknl
s ∂θ + ε1/2∂

X̃
, the linear operator expands as3

L(knl
s ∂θ + ε1/2∂

X̃
,Xnl

s + ε1/2X̃) = Ls + ε1/2(L′
s∂X̃ + X̃LX,s)

+1
2ε(L

′′
s∂X̃X̃ + 2X̃L′

X,s∂X̃ + X̃2LXX,s)+O(ε3/2). (75)

Substituting the expansions (73)–(75) into the governing equation (1), one recovers at leading order

ωnl
s ∂θ ψ̃0 + L(knl

s ∂θ ,X
nl
s )ψ̃0 +N (Xnl

s )[ψ̃0] = 0.

Thus,

ψ̃0 = Ψs ≡ Ψ (θ + θ̃0(X̃); knl
s , X

nl
s ), (76)

where the fast phase function in the inner saddle point layer readsθ = knl
s x − ωnl

s t and the slow phasẽθ0(X̃) is a
so far an undetermined function varying on the intermediate length scaleX̃.

The nonlinear term is expanded as

N (Xnl
s + ε1/2X̃)[Ψs + ε1/2ψ̃1/2 + εψ̃1 +O(ε3/2)] = Ns + ε1/2(X̃NX,s +Nψ,sψ̃1/2)

+ε(1
2X̃

2NXX,s + X̃NXψ,sψ̃1/2 + 1
2Nψψ,sψ̃

2
1/2 +Nψ,sψ̃1)+O(ε3/2), (77)

where

Ns ≡ N (Xnl
s )[Ψs], Nψ,s ≡ ∂ψN (X

nl
s )[Ψs], NX,s ≡ ∂XN (X

nl
s )[Ψs], etc.

The orderε1/2 problem reads

Lsψ̃1/2 + ω1/2Ψθ,s + dθ̃0
dX̃
L′

sΨθ,s + X̃(LX,sΨs +NX,s) = 0, (78)

where

Ls ≡ ωnl
s ∂θ + Ls +Nψ,s.

LetΨ †
θ,s be the adjoint eigenfunction ofΨθ,s. Eq. (78) admits solutions for̃ψ1/2 if the following solvability condition

is met:

ω1/2〈Ψ †
θ,s, Ψθ,s〉 + dθ̃0

dX̃
〈Ψ †
θ,s,L

′
sΨθ,s〉 + X̃〈Ψ †

θ,s,LX,sΨs +NX,s〉 = 0.

In Section 5.4.1 below, the last two terms of this equation are shown to vanish (90) and (91). Thus, the solvability
condition requires that

ω1/2 = 0.

There is no correction to the global frequency at orderε1/2 and no equation for̃θ0 is obtained at this order.

3 Subscript “s” always denotes evaluation at∂x = knl
s ∂θ ,X = Xnl

s , k = knl
s .
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Withω1/2 = 0 and using (92) and (93), the general solution of the linear inhomogeneous equation (78) is obtained
as

ψ̃1/2 = X̃ΨX,s + dθ̃0
dX̃

Ψk,s + Ã(X̃)Ψθ,s, (79)

whereÃ(X̃) is an arbitrary real amplitude function.
At orderε, the following inhomogeneous equation forψ̃1 is obtained

Lsψ̃1 +1

2

d2θ̃0

dX̃2
(2L′

sΨk,s + L′′
sΨθ,s)+ 1

2

(
dθ̃0
dX̃

)2

(2L′
sΨθk,s + L′′

sΨθθ,s +Nψψ,s(Ψk,s)2)

+X̃dθ̃0

dX̃
((LX,s +NXψ,s)Ψk,s + L′

X,sΨθ,s + L′
sΨθX,s +Nψψ,sΨk,sΨX,s)

+1

2
X̃2(2(LX,s +NXψ,s)ΨX,s + LXX,sΨs +NXX,s +Nψψ,s(ΨX,s)2)

+dθ̃0

dX̃
Ã(X̃)(L′

sΨθθ,s +Nψψ,sΨθ,sΨk,s)+ X̃Ã(X̃)((LX,s +NψX,s)Ψθ,s +Nψψ,sΨθ,sΨX,s)

+dÃ

dX̃
L′

sΨθ,s + 1

2
Ã(X̃)2Nψψ,s(Ψθ,s)

2 + L′
sΨX,s + ω1Ψθ,s = 0. (80)

This equation admits solutions for̃ψ1 if the inner product of the forcing terms (everything exceptLsψ̃1) with

Ψ
†
θ,s vanishes. The different inner products are computed in Section 5.4.1. From (94)–(96), it follows that all the

terms involving the functionÃ(X̃) vanish: this function remains undetermined at this order. Using (97)–(99), the
solvability condition forθ̃0 reads

A
d2θ̃0

dX̃2
= B

(
dθ̃0
dX̃

)2

+ 2CX̃
dθ̃0
dX̃

+DX̃2 − E − 2ω1, (81)

where

A = 〈Ψ †
θ,s,2L

′
sΨk,s + L′′

sΨθ,s〉
〈Ψ †
θ,s, Ψθ,s〉

, B = Ωnl
kk,s, C = Ωnl

kX,s, D = Ωnl
XX,s, E = 〈Ψ †

θ,s,L
′
sΨX,s〉

〈Ψ †
θ,s, Ψθ,s〉

.

Let

Θ(X̃) = exp

[
−B
A
θ̃(αX̃)− Cα2

2A
X̃2
]

(82)

with

α4 = A2

4(C2 − BD)
. (83)

Note thatC2 − BD > 0 since(knl
s , X

nl
s ) is a saddle point ofΩnl(k,X). Rewriting the solvability condition (81) in

terms ofΘ yields the parabolic cylinder equation [2]

d2Θ

dX̃2
=
(

1

4
X̃2 − ν − 1

2

)
Θ, (84)
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where

ν + 1

2
= 1

2

AC− B(E + 2ω1)√
A2(C2 − BD)

.

This solution in the inner saddle point layer needs to be matched with the wave trains (57) in the outer nonlinear
regions. In terms of the inner variablẽX, the phase of the outer nonlinear solutions (57) expands as

1

ε

∫ Xnl
s +ε1/2X̃

Xnl
s

knl(u)du− ωgt + θ0(X) = (knl
s x − ωnl

s t)+ 1

2
knl
X,sX̃

2 +O(ε1/2). (85)

Matching to the phaseknl
s x − ωnl

s t + θ̃0(X̃) of the inner solution (76) wheñX → ±∞ requires that

θ̃0(X̃) ∼ 1
2k

nl
X,sX̃

2 when X̃ → ±∞. (86)

At the saddle point, the derivative of the wave number reads

knl
X,s =

−Ωnl
kX,s +

√
(Ωnl

kX,s)
2 −Ωnl

kk,sΩ
nl
XX,s

Ωnl
kk,s

= −C + √
C2 − BD

B
. (87)

Using (86) with (87) in (82) shows that the functionΘ(X̃) behaves asymptotically as

lnΘ(X̃) ∼ −1
4X̃

2,

whenX̃ → ±∞. The only solution of (84) satisfying this asymptotic behavior and taking only non-negative values
is obtained forν = 0 and simply reads

Θ(X̃) = exp(−1
4X̃

2).

Thus, the asymptotic expansion (86) is exact for allX̃. Then the soft global mode frequency reads toO(ε)

ωg ∼ ωnl
s + εω1 (88)

with

ω1 = 1

2B
(AC− BE−

√
A2(C2 − BD)).

5.4.1. Computation of inner products
The values of the inner products used in the previous analysis are obtained from

Ωnl(k,X)∂θΨ + L(k∂θ ,X)Ψ +N (X)[Ψ ] = 0. (89)

Differentiating (89) separately with respect toθ , k andX, taking the inner product of the three results withΨ †
θ , and

exploiting the fact that the derivativesΩnl
k andΩnl

X vanish at the saddle point(knl
s , X

nl
s ), yields

〈Ψ †
θ,s,L

′
sΨθ,s〉 = 0, (90)

〈Ψ †
θ,s,LX,sΨs +NX,s〉 = 0. (91)

LsΨk,s = −L′
sΨθ,s, (92)

LsΨX,s = −LX,sΨθ,s −NX,s. (93)

From these identities, the particular solution (79) to Eq. (78) follows.
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The orderε problem in the saddle point region specified by (80) requires to compute inner products by double
differentiation. Differentiating (89) separately with respect toθθ , θk andθX, and taking the inner product of the

three results withΨ †
θ at the saddle point, one obtains

〈Ψ †
θ,s,Nψψ,s(Ψθ,s)

2〉 = 0, (94)

〈Ψ †
θ,s,L

′
sΨθθ,s +Nψψ,sΨθ,sΨk,s〉 = 0, (95)

〈Ψ †
θ,s, (LX,s +NXψ,s)Ψθ,s +Nψψ,sΨθ,sΨX,s〉 = 0. (96)

Differentiating (89) separately with respect tokk, kXandXXsimilarly yields at the saddle point

〈Ψ †
θ,s,2L

′
sΨθk,s + L′′

sΨθθ,s +Nψψ,s(Ψk,s)2〉 = −Ωnl
kk,s〈Ψ †

θ,s, Ψθ,s〉, (97)

〈Ψ †
θ,s, (LX,s +NXψ,s)Ψk,s + L′

X,sΨθ,s + L′
sΨθX,s +Nψψ,sΨk,sΨX,s〉 = −Ωnl

kX,s〈Ψ †
θ,s, Ψθ,s〉, (98)

〈Ψ †
θ,s,2(LX,s +NXψ,s)ΨX,s + LXX,sΨs +NXX,s +Nψψ,s(ΨX,s)2〉 = −Ωnl

XX,s〈Ψ †
θ,s, Ψθ,s〉. (99)

Results (94)–(99) are invoked to cast the phase evolution equation in its final form (81).

5.5. Weakly nonlinear transition layers

Frequency corrections for steep and soft global modes have been derived by performing a detailed asymptotic
analysis of the corresponding narrow transition layers where their respective frequency selection mechanism takes
place: the front layer for steep modes and the nonlinear saddle point layer for soft modes. The only type of layer
that remains to be investigated in order to obtain uniformly valid asymptotic approximations for global modes is
the weakly nonlinear transition layer. This layer applies to the downstream end of the steep mode nonlinear region
(tl+ in Fig. 15a) and to both ends of the soft mode nonlinear region (tl± in Fig. 15b). It should be emphasized that
these layers are slaved to the dynamics imposed by the front or the nonlinear saddle point frequency.

A smooth transition between nonlinear and linear solutions occurs at the boundary of the nonlinear balloon (Figs. 3
and 5) in the(X, k)-plane. Consider a global solution of frequencyωg. Its local linear and nonlinear wave number
brancheskl(X, ωg) andknl(X, ωg) are derived, respectively, from the curvesΩ l(k,X) = ωg andΩnl(k,X) = ωg.
A knl(X, ωg) branch is connected at the border of the nonlinear balloon to the corresponding linearkl(X, ωg) branch
at the particular stationX = Xt(ωg) for k = kt (ωg) where the pair(kt , Xt ) is defined by

ωg = Ω l(kt , Xt ) = Ωnl(kt , Xt ). (100)

As demonstrated in Sections 4.2 and 4.6, a continuous transition between linear and nonlinear wave number branches
occurs at the downstream boundary of the nonlinear region of a steep global mode and at both downstream and
upstream boundaries of the nonlinear region of a soft global mode. At a downstream boundary, theknl+ branch
prevailing in the regionX < Xt is continuously connected to thekl+ branch forX > Xt . At an upstream boundary,
transition fromkl− for X < Xt to knl− for X > Xt occurs.

WhenX → Xt from within the nonlinear region, the amplitude of the nonlinear wave train decays, nonlinearities
weaken, higher harmonics become slaved to the fundamental, and eventually a linear instability wave takes over. In
the present section, we show how the connection between linear and nonlinear solutions is achieved across a narrow
transition layer located atXt .
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Let us focus on an upstream transition layer (tl−), i.e., the solution is fully nonlinear forX > Xt and decays
exponentially forX < Xt . The same analysis applies in the downstream transition layer (tl+). The asymptotic
behavior of the nonlinear wave trainsΨ (θ; k,X) is first derived as(k,X) approaches the neutral stability boundary
of the nonlinear balloon (Section 5.5.1). This result is then used along the particular path(knl(X),X) to derive
expansions for the modulus (Section 5.5.2) and phase (Section 5.5.3) of the global mode asX ↓ Xt . This outer
expansion is shown in Section 5.5.4 to match with the inner solution prevailing in the transition layer. Finally, the
inner solution is matched in Section 5.5.5 to the outer linear WKBJ approximation prevailing in the regionX < Xt .

5.5.1. Weakly nonlinear behavior
In the nonlinear balloon of the(X, k)-plane characterized byΩ l

i (k,X) > 0, the governing equation (1) admits
local solutions of the form (50). Let us first study the behavior of the periodic functionsΨ (θ; k,X) in the(k,X)-plane
as(k,X) approaches the boundary of the nonlinear balloon, i.e.,Ω l

i (k,X) ↓ 0.
The nonlinear operatorF [ψ ] in (1) is expanded in powers ofψ so as to read

∂ψ

∂t
= L(∂x,X)[ψ ] +

∞∑
r=2

Nr (∂x,X)[ψ ], (101)

where the operatorsNr are ofrth order inψ . In all generality, eachNr depends on∂x , but to simplify the subsequent
computations, it is assumed that theNr ’s do not involve spatial derivation, i.e.,

Nr (∂x,X)[ψ ] = Nr(X)ψ
r . (102)

The results would remain valid for any nonlinear operator with spatial derivatives, but the notation and results
become unwieldy in more general cases. The method is easily extended to specific examples.

The 2π periodic functionΨ is expanded as the Fourier series

Ψ (θ; k,X) =
∑
n

Ψ (n)(k,X)einθ , (103)

whereΨ (−n) = (Ψ (n))?. Due to the invariance of the governing equation under the transformationθ → θ + Cst,
Ψ (1)(k,X) may be chosen to be real for each(k,X).

Substituting (102) and (103) into (101) yields the equations for the harmonic components ofΨ ,

∆(n)(k,X)Ψ (n)(k,X) = i
∞∑
r=2

Nr(X)
∑

n1+···+nr=n
Ψ (n1)(k,X) · · ·Ψ (nr )(k,X) (104)

with the definition

∆(n)(k,X) = nΩnl(k,X)−Ω l(nk, X).

WhenΩ l
i (k,X) ↓ 0, the term∆(1)(k,X) vanishes, whereas the∆(n)(k,X) remain finite for|n| 6= 1. Thus, in this

limit, the components with|n| 6= 1 are slaved to the fundamentaln = ±1 and scale as

Ψ (n)(k,X) =
{
O[(Ψ (1)(k,X))|n|] if n 6= 0,

O[(Ψ (1)(k,X))2] if n = 0,
(105)

whenΩ l
i (k,X) ↓ 0. The dominant terms of (104) forn = 2 read

∆(2)(k,X)Ψ (2)(k,X) = iN2(X)[Ψ
(1)(k,X)]2 +O[(Ψ (1))4], (106)
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and forn = 0,

∆(0)(k,X)Ψ (0)(k,X) = 2iN2(X)Ψ
(1)(k,X)Ψ (−1)(k,X)+O[(Ψ (1))4]. (107)

Forn = 1, Eq. (104) yields

∆(1)(k,X)Ψ (1)(k,X) = 2iN2(X)[Ψ
(2)(k,X)Ψ (−1)(k,X)+ Ψ (1)(k,X)Ψ (0)(k,X)]

+3iN3(X)|Ψ (1)(k,X)|2Ψ (1)(k,X)+O[(Ψ (1))5]. (108)

Substituting (106) and (107) into (108) yields the leading-order expression forΨ (1)

|Ψ (1)(k,X)|2 ∼ ∆(1)(k,X)

3iN3(X)− 2N2(X)2((1/∆(2)(k,X))+ (2/∆(0)(k,X)))
. (109)

Thus,

|Ψ (1)(k,X)|2 = O[∆(1)(k,X)],

and

Ψ (1)(k,X) = O[
√
Ω l

i (k,X)]. (110)

5.5.2. Asymptotic amplitude decay of outer nonlinear wave trains
The preceding results, valid for any(k,X) whenΩ l

i (k,X) ↓ 0 are now used to derive the asymptotic behavior
of the nonlinear wave train (57) of specific frequencyωg asX ↓ Xt . Let us expand the nonlinear solution (57) into
harmonic components as follows:

Ψ (θ; knl(X),X) =
∑
n

(ψ
(n)
0 (X)+ εψ

(n)
1 (X)+ · · · )exp

{
in

(
1

ε

∫ X

knl(u)du− ωgt

)}
. (111)

Then, according to (103),

ψ
(n)
0 (X) = Ψ (n)(knl(X),X)einθ0(X).

From (105) and (110) withΩ l
i (k

nl(X),X) = O(X −Xt), it follows that, for eachn 6= 0,

ψ
(n)
0 (X) = O[(X −Xt)

|n|/2] as X ↓ Xt . (112)

The asymptotic behavior ofψ(1)0 (X) for X ↓ Xt is derived from (109) as

ψ
(1)
0 (X) ∼ Ψ

(1)
0 eiθ0(X)(X −Xt)

1/2 (113)

with

|Ψ̂ (1)
0 |2 = ∆

(1)
X,t

3iN3,t − 2(N2,t )2(1/∆
(2)
t + 2/∆(0)t )

, (114)

where subscriptt means evaluation atX = Xt andk = kt = knl(Xt ), and

∆
(1)
X,t = d

dX
∆(1)(knl(X),X)

∣∣∣∣
X=Xt

.
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In the same fashion one obtains for the second harmonic

ψ
(2)
0 (X) ∼ Ψ̂

(2)
0 ei2θ0(X)(X −Xt) (115)

with, according to (106),

Ψ̂
(2)
0 = N2,t

∆
(2)
t

(Ψ
(1)
0 )2. (116)

In the bulk of the nonlinear region the harmonic spectrum is fully developed but towards the neutral stability
boundary the higher-order harmonics become slaved to the fundamental. Since the higher-order harmonics decay
faster thanΨ (1) as the neutral stability boundary is approached, the nonlinear solution is approximated by a purely
sinusoidal wave of vanishing amplitude. Matching to a linear solution in the regionX < Xt therefore becomes
possible.

5.5.3. Diverging slow phase of outer nonlinear wave trains
So far only the behavior of the amplitude asX ↓ Xt has been obtained. In this section the asymptotic behavior

of the slow phaseθ0(X) near the neutral stability boundary of the nonlinear region is computed.
Let us write the phase solvability condition (56) as

0 = dθ0

dX
〈Ψ †
θ ,L

′Ψθ 〉 + 1

2

dknl

dX
〈Ψ †
θ ,L

′′Ψθ 〉 +
〈
Ψ

†
θ ,L

′
(

dknl

dX
Ψk + ΨX

)〉
. (117)

According to (103) the nonlinear solutionΨ admits the expansion

Ψ (θ + θ0(X); knl(X),X) =
∑
n

Ψ (n)(knl(X),X)einθ0(X) einθ .

Tedious but straightforward calculations [35] based on this Fourier expansion lead to the asymptotic behavior of
the various inner products appearing in (117). One ultimately finds that

〈Ψ †
θ ,L

′Ψθ 〉 = (X −Xt)[L
′(ikt ;Xt)+ c.c.]|Ψ̂ (1)

0 |2 +O[(X −Xt)
2],

〈Ψ †
θ ,L

′′Ψθ 〉 = (X −Xt)[L
′′(ikt ;Xt)+ c.c.]|Ψ̂ (1)

0 |2 +O[(X −Xt)
2],

〈Ψ †
θ ,L

′(knl
XΨk + ΨX)〉 = 1

2[iL′(ikt ;Xt)+ c.c.]|Ψ̂ (1)
0 |2 +O[X −Xt ].

Upon substituting these results into (117), the governing equation for the slow phase at the boundary of the nonlinear
region becomes

dθ0

dX
= −1

2

1

X −Xt

ImL′(ikt ;Xt)
ReL′(ikt ;Xt) +O[(X −Xt)

0].

Hence,θ0 diverges logarithmically as

θ0(X) = −1

2

ImL′(ikt ;Xt)
ReL′(ikt ;Xt) ln(X −Xt)+ Cst +O[X −Xt ], (118)

whenX ↓ Xt .

5.5.4. Inner transition layer solution
The asymptotic matching of a finite amplitude nonlinear wave train to an exponentially decaying linear solution

takes place via a narrow inner transition layer atXt between the nonlinear and linear regions.
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Define an inner variablẽX in the neighborhood ofXt by X = Xt + ε1/2X̃. The outer solution obtained in the
previous section is rewritten in terms of this inner variable. The fast phaseθ reads

θ ≡ 1

ε

∫ Xt+ε1/2X̃

knl(u)du− ωgt = (ktx − ωgt)+ 1

2
knl
X,t X̃

2 +O(ε1/2), (119)

whereas the slow phaseθ0 of Eq. (118) is expanded as

θ0 ∼ −1

2

ImL′(ikt ;Xt)
ReL′(ikt ;Xt) ln X̃ + Cst. (120)

Thus, asX ↓ Xt , keeping only the leading-order terms in the harmonics|n| ≤ 2 of the outer solution given by (111)
yields the following expansion:

ψ ∼ ε1/4X̃1/2[Ψ̂ (1)
0 ei(θ+θ0) + c.c.] + ε1/2X̃

(
iN2,t

∆
(2)
t

[(Ψ̂ (1)
0 )2 e2i(θ+θ0) + c.c.] + iN2,t

∆
(0)
t

2|Ψ̂ (1)
0 |2

)
+O(ε3/4).

(121)

This behavior of the outer solution in terms of the inner variableX̃ suggests to expand the harmonic components
of the inner solution as

ψ ∼
∑
n

εn/4(ψ̃
(n)
0 (x, X̃)+ ε1/2ψ̃

(n)
1/2(x, X̃)+ · · · )e−inωgt (122)

with ψ̃(0)0 = 0 sinceψ(0) = O(|ψ(1)|2). Each component of the inner expansion has to be matched forX̃ → +∞
with the corresponding component of the outer expansion in the nonlinear region. Due to the presence of slow and
fast spatial scales̃X andx, the spatial derivative in the governing equation (1) now reads∂x + ε1/2∂

X̃
.

Forn = 1, the leading-order problem reads

ωgψ̃
(1)
0 = iL(∂x;Xt)[ψ̃(1)0 ].

Hence

ψ̃
(1)
0 = Ã

(1)
0 (X̃)eikt x, (123)

whereÃ(1)0 (X̃) is a slowly varying amplitude. Forn = 2, the leading-order problem reads

2ωgψ̃
(2)
0 − iL(∂x;Xt)[ψ̃(2)0 ] = iN2,t ψ̃

(1)
0 ψ̃

(1)
0 , (124)

which yields the solution

ψ̃
(2)
0 = iN2,t

∆
(2)
t

[Ã(1)0 (X̃)]2 e2ikt x . (125)

Forn = 0, the orderε1/2 problem

0 = L(∂x;Xt)[ψ̃(0)1/2] + 2N2,t |ψ̃(1)0 |2

yields

ψ̃
(0)
1/2 = 2iN2,t

∆
(0)
t

|Ã(1)0 (X̃)|2. (126)
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Forn = 1, the orderε1/2 terms read

0 = iωgψ̃
(1)
1/2 + L(∂x;Xt)[ψ̃(1)1/2] + [L′(∂x;Xt)∂X̃ + X̃LX(∂x;Xt)]ψ̃(1)0

+3N3,t |ψ̃(1)0 |2ψ̃(1)0 + 2N2,t [ψ̃
(2)
0 ψ̃

(−1)
0 + ψ̃

(0)
1/2ψ̃

(1)
0 ]. (127)

This inhomogeneous differential equation inx admits solutions forψ̃(1)1/2 only if the resonant part in eikt x of the
forcing terms vanishes. Upon using (123), (125) and (126) in (127), this leads to the solvability condition

0 = L′(ikt ;Xt)
dÃ(1)0

dX̃
+ LX(ikt ;Xt)X̃Ã(1)0 (X̃)+

(
3N3,t + 2i(N2,t )

2

(
1

∆
(2)
t

+ 2

∆
(0)
t

))
|Ã(1)0 (X̃)|2Ã(1)0 (X̃).

(128)

This amplitude equation for̃A(1)0 (X̃) is of the form

dÃ(1)0

dX̃
+ ((ar + iai)X̃ + (br + ibi)|Ã(1)0 (X̃)|2)Ã(1)0 (X̃) = 0, (129)

and its solutions are

Ã
(1)
0 (X̃)

Ã
(1)
0 (0)

= exp[−1
2(ar + iai)X̃2 − 1

2i(bi/br) ln(1 + 2br |Ã(1)0 (0)|2∫ X̃0 e−aru2
du)]√

1 + 2br |Ã(1)0 (0)|2∫ X̃0 e−aru2du
, (130)

whereÃ(1)0 (0) is the integration constant. Matching of the inner solutionψ̃
(1)
0 to the outer nonlinear solutionψ(1)0

of (113) requires that|Ã(1)0 (X̃)| ∼
√
X̃ asX̃ → +∞. This implies that

1 + 2br |Ã(1)0 (0)|2
∫ +∞

0
e−aru2

du = 0, |Ã(1)0 (0)|2 = −1

br

√
ar

π
.

With this value for|Ã(1)0 (0)| the inner solution (130) admits for̃X → +∞ the asymptotic expansion

Ã
(1)
0 (X̃) ∼

√
−ar
br
X̃ exp

i

2

[(
bi

br
ar − ai

)
X̃2 + bi

br
ln X̃ + Cst

]
. (131)

Comparison of (128) and (129) yields

ar+iai = LX(ikt ;Xt)
L′(ikt ;Xt) = −ikl

X,t , br + ibi = |Ψ̂ (1)
0 |−2

∆
(1)
X,t

iL′(ikt ;Xt) = −|Ψ̂ (1)
0 |−2

(
iknl
X,t + LX(ikt ;Xt)

L′(ikt ;Xt)
)

with |Ψ̂ (1)
0 |2 obtained in (114). Thus,

−ar
br

= |Ψ̂ (1)
0 |2, bi

br
ar − ai = knl

X,t , − bi
br

= ImL′(ikt , Xt )
ReL′(ikt , Xt )

.

This completes the proof that the fundamental component of the outer nonlinear solution given by Eq. (121)
completely matches the fundamental component of the inner weakly nonlinear solutionε1/4Ã

(1)
0 (X̃)ei(kt x−ωgt),

whereÃ(1)0 (X̃) is given by (130).
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5.5.5. Matching to the outer linear solution
AsX ↑ Xt , the outer linear WKBJ approximation (39) reads, at leading order,

ψ ∼ Al
0(Xt )ei(kt x−ωgt) exp

(
i

2
kl
X,t X̃

2
)

+ c.c., (132)

when expressed in terms of the inner variableX̃. Using (130), the asymptotic behavior of the inner solution as
X̃ → −∞ yields

ψ ∼ ε1/4 Ã
(1)
0 (0)√

2
ei(kt x−ωgt) exp

(
−ar + iai

2
X̃2 − i

2

bi

br
ln 2

)
+ c.c. (133)

Sincear + iai = −ikl
X,t , both expansions (132) and (133) asymptotically match provided that

Al
0(Xt ) = ε1/4 Ã

(1)
0 (0)√

2
e−ibi (ln 2)/2br .

Thus, at leading order, the weakly nonlinear inner expansion (133) exactly matches the outer linear WKBJ approx-
imation (39). In the inner transition layer the slaved higher-order harmonics scale asε|n|/4 and automatically match
their slaved counterparts in the outer linear region.

6. Conclusions

It has been demonstrated that a wide class of one-dimensional nonlinear evolution equations with spatially varying
coefficients may support two types of fully nonlinear self-sustained global modes in a doubly infinite domain. Steep
global modes are triggered by the presence of a sharp stationary front located at the upstream transition point between
local convective and absolute instability. This front acts as a source and imposes its real absolute frequency to the
entire medium. Soft global modes are due to the presence of a saddle point of the local nonlinear dispersion relation
which again acts as a source and imposes its frequency to the entire medium, as given by saddle point conditions.

A necessary condition for the occurrence of either of these modes is the existence of a region of local absolute
instability. Recall that linearly unstable global modes given by a complex saddle point of the local linear dispersion
relation [7,25,30] also require a range of local absolute instability. But, this range must in general be of finite
extent whereas nonlinear global modes exist, however small the AU domain. The relationship between linear global
instability and the existence of fully nonlinear global modes is non-trivial: in the generic case, nonlinear global
instability does not coincide with linear global instability. The nature of the various global bifurcation scenarios
constitute the major result of the present investigation. Steep global modes occur right at local absolute instability
onset below the linear global instability threshold, via a saddle-node bifurcation, while the medium is still linearly
globally stable.

Soft global modes generically do not appear at local absolute instability onset but only for a sufficiently large
domain of local absolute instability. Furthermore, they are more likely to be observed in systems with weak advection.
It is essential to note that steep and soft global modes are mutually exclusive, as dictated by the relative magnitude
of their respective frequencies. The existence and selection of either kind of global modes has been confirmed by
direct numerical simulations of the CGL equation with varying coefficients for small but finite values ofε. As a
word of caution, it should be stated that soft global modes are likely to be more fragile than their steep counterparts.
They may become unstable whenever the region of local absolute instability protrudes beyond the central nonlinear
regions, in the tails of the extended wave packet. This lack of robustness is all the more acute as the WKBJ limit
ε = 0 is approached.
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In several physical systems [1,37] linear and nonlinear global instabilities have been found to occur at the
same value of the global control parameter. This peculiar feature takes place in situations where the entire spatial
dependence is accounted for in a single real spatially varying parameter, sayR(X), which displays an extremum
at a real positionXmax such that dR(Xmax)/dX = 0. Under these circumstances, the local linear dispersion
relation is necessarily of the formΩ l(k,X) = Ω l

?[k, R(X)] and the local absolute frequency is readily obtained
asω0(X) = ω0?[R(X)]. The real stationXmax is then simultaneously associated with a maximum ofω0,i(X) and
with a saddle pointXl

s of ω0(X).
The analytical structure underlying the spatial distribution of steep and soft global modes has been systematically

derived in the WKBJ approximationε � 1. It has been shown that for a wide class of one-dimensional evolution
equations the various inner layers and outer regions may be matched together to arrive at a consistent description
valid over the entire spatial domain. In particular, higher-order frequency corrections have been obtained.

It should be emphasized that the different transition scenarios depend on the precise form of the linear and
nonlinear dispersion relations. Due to the number of parameters required to specify the spatial variations of the
medium, only situations of physical significance have been presented and a comprehensive survey of all possible
configurations has not been attempted.

This study has been undertaken in order to understand the nature of synchronized structures in real slowly
varying open shear flows. In the latter framework, the local linear dispersion relation is obtained from the Rayleigh
or the Orr–Sommerfeld equation, whereas the local nonlinear dispersion relation requires the computation of finite
amplitude structures in a streamwise periodic interval. In this context, steep global modes may be constructed as
reported elsewhere [35,36].
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A family of slowly spatially developing wakes with variable pressure gradient is
numerically demonstrated to sustain a synchronized finite-amplitude vortex street
tuned at a well-defined frequency. This oscillating state is shown to be described
by a steep global mode exhibiting a sharp Dee–Langer-type front at the streamwise
station of marginal absolute instability. The front acts as a wavemaker which sends
out nonlinear travelling waves in the downstream direction, the global frequency
being imposed by the real absolute frequency prevailing at the front station. The
nonlinear travelling waves are determined to be governed by the local nonlinear
dispersion relation resulting from a temporal evolution problem on a local wake profile
considered as parallel. Although the vortex street is fully nonlinear, its frequency is
dictated by a purely linear marginal absolute instability criterion applied to the local
linear dispersion relation.

1. Introduction
The qualitative behaviour of spatially developing free shear flows such as wakes, jets

and mixing layers may be reasonably well understood within the framework of linear
instability theory. In this context, one may distinguish between amplifiers, the dynamics
of which are sensitive to inflow perturbations, and oscillators, which sustain intrinsic
global modes tuned at a well-defined frequency. Co-flow mixing layers, constant-
density jets, and wakes below the onset of Kármán vortex shedding belong to the
former class, while mixing layers with a sufficiently strong countercurrent (Strykowski
& Niccum 1991), wakes in the Kármán vortex shedding régime (Provansal, Mathis &
Boyer 1987; Triantafyllou, Triantafyllou & Chryssostomidis 1986), and inhomogenous
jets (Monkewitz et al. 1990) belong to the latter class. The amplifier or oscillator
behaviour is intimately related to the convective or absolute nature of the linear
instability (Huerre & Rossi 1998). Note however that absolute instability may also
induce a rapid transition to turbulence as strikingly demonstrated by Lingwood (1995,
1996) for rotating disk boundary layers.

One of the central problems regarding the dynamics of flow oscillators is concerned
with the prediction of the overall frequency and associated spatial structure, hereafter
referred to as the global mode. For real flows, governed by the Navier–Stokes equations,
this question has until now been studied solely in the framework of linear theory
(Monkewitz, Huerre & Chomaz 1993). The objective of the present analysis is to
address the same issue in the fully nonlinear régime.

† Present address: Department of Applied Mathematics and Theoretical Physics, University of
Cambridge, Silver Street, Cambridge CB3 9EW, UK.
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Koch (1985) appears to be the first to have related the onset of global oscillations in
wakes to the existence of an absolutely unstable region immediately downstream of the
obstacle. Further progress in our understanding of frequency selection mechanisms has
typically proceeded in two distinct steps. The theoretical formulation is first established
for relatively simple one-dimensional evolution models such as the celebrated complex
Ginzburg–Landau (CGL) equation (Cross & Hohenberg 1993). It is then adapted
and generalized to real flows governed by the Navier–Stokes equations. This line of
thought has been fully implemented in the linear approximation. Linear global modes
pertaining to the CGL equation with varying coefficients on an infinite interval
have been analysed by Chomaz, Huerre & Redekopp (1991), and Le Dizès et al.
(1996). The formulation essentially relies on the assumption of slow spatial variations
characterized by the slow space variable X = εx, where ε � 1 is a small non-
uniformity parameter. A complex local absolute frequency ω0(X) may then be defined
in classical fashion (Briggs 1964, Bers 1983, Huerre & Monkewitz 1990) by imposing
a zero group velocity condition on the local linear dispersion relation. Under these
conditions, the complex global frequency ωs of self-sustained linear structures is given
by the saddle point criterion

ωs = ω0(Xs) with
dω0

dX
(Xs) = 0, (1.1)

where it is understood that ω0(X) has been analytically continued in the complex X-
plane. Whenever ωs,i ≡ Imωs > 0, the medium is globally unstable. Global instability
then requires a finite region of local absolute instability where ω0,i(X) > 0 for real X,
as demonstrated by Chomaz et al. (1991) and Le Dizès et al. (1996). The same
criterion (1.1) was previously derived by Soward & Jones (1983) for oscillating states
in Taylor–Couette flow between concentric spheres. As shown by Monkewitz et al.
(1993) it also holds for the two-dimensional Navier–Stokes equations linearized about
an arbitrary slowly streamwise developing shear flow. It should be emphasized that
other frequency selection criteria have been proposed. In spatially developing flows
of semi-infinite streamwise extent, say x > 0, the global frequency is given by the
absolute frequency ω0(0) at the upstream boundary (Monkewitz et al. 1993; Woodley
& Peake 1997; Taylor & Peake 1999). The initial resonance principle conjectured by
Monkewitz & Nguyen (1987) is of particular interest in the present context: according
to these authors, in spatially developing flows with an absolutely unstable region, the
first streamwise station of non-negative absolute growth rate imposes its absolute
frequency on the global oscillations.

The theoretical prediction (1.1) has been tested in direct numerical simulations.
Schär & Smith (1993) have numerically investigated the flow behind a vertical
cylinder in the shallow-water wave régime. At a critical value of the Froude number,
the wake is observed to undergo a transition to large-scale Kármán vortex shedding.
When all nonlinear terms in the numerical code are turned off, the wake beats at
a global frequency ωg ∼ 0.17 + 0.045i. Application of criterion (1.1) leads to the
prediction ωg ∼ 0.19 + 0.040i, which compares very favourably with the computed
value. However, when all nonlinearities are restored, the observed global frequency
becomes ωg ∼ 0.27, which is noticeably different from the predicted linear value.
Such a comparison clearly calls for a fully nonlinear formulation of the global mode
problem. A similar comparative study has recently been undertaken by Hammond &
Redekopp (1997) in the case of the wake behind a blunt-edged plate. At a Reynolds
number 25% above global onset, the numerically determined non-dimensional global
frequency is found to be ωg/2π ∼ 0.1000, whereas the saddle-point criterion (1.1)
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yields ωs,r/2π ≡ Reωs/2π ∼ 0.1006. In view of the linear nature of the criterion,
such a close agreement is somewhat surprising. It is worth noting, however, that the
complex absolute frequency ω0(X) has been computed on the mean velocity profile in
the presence of finite-amplitude oscillations and not on the undisturbed basic flow, as
in the case of Schär & Smith (1993). Nonlinear effects are thereby partially accounted
for through the Reynolds stresses which produce the mean flow.

The next step in the theoretical analysis of spatially developing flows would nat-
urally involve a weakly nonlinear formulation in the vicinity of global mode onset.
As emphasized by Le Dizès et al. (1993), this approach is fraught with difficulties. For
slowly spatially developing flows the Landau constant governing the nature of the
bifurcation has neither a well-defined limit nor a constant sign as ε goes to zero. As a
result, the bifurcation keeps switching between subcritical and supercritical. In order
to circumvent these technical difficulties, it seems appropriate to directly proceed to a
fully nonlinear approach.

Most nonlinear studies have so far been restricted to amplitude evolution equa-
tions in one space dimension. Linear absolute/convective instability concepts have
been generalized to finite-amplitude disturbances by Chomaz (1992): the propagation
direction of fronts separating the basic state from the bifurcated state, as originally
defined by Dee & Langer (1983), Saarloos (1988, 1989) and Saarloos & Hohenberg
(1992), is found to essentially determine the absolute/convective nature of the in-
stability in the nonlinear régime. Fully nonlinear global modes on a semi-infinite
domain (x > 0) governed by Ginzburg–Landau-type model equations with constant
coefficients have been thoroughly analysed by Couairon & Chomaz (1996, 1997a, b).
Whenever the medium is nonlinearly absolutely unstable, an upstream travelling front
is pinned at the upstream boundary point and a nonlinear global mode is sustained.
The corresponding analysis of the finite interval problem has been addressed by
Tobias, Proctor & Knobloch (1998) and Chomaz & Couairon (1999). Couairon &
Chomaz (1999) have further investigated the existence of nonlinear global modes
of the real Ginzburg–Landau equation with varying coefficients on the semi-infinite
domain x > 0. In this case, spatial inhomogeneities due to both a boundary point and
varying bulk properties are combined. Although this model constitutes only a crude
approximation of real flows, predicted scaling laws for the global mode amplitude and
the position of its maximum agree surprisingly well with experimental and numerical
results pertaining to the wake structure behind bluff bodies.

Fully nonlinear global modes on an infinite interval, have also been investigated
for the CGL equation with varying coefficients in order to mimic the streamwise
non-uniformity of spatially developing shear flows. Two distinct varieties of nonlinear
objects are then possible. Soft global modes obtained by Pier & Huerre (1996) satisfy a
saddle-point frequency selection criterion applied to the local nonlinear dispersion re-
lation governing finite-amplitude states. The corresponding extended spatial structure
displays smoothly varying amplitude and wavenumber everywhere. By contrast, steep
global modes, as described by Pier et al. (1998), obey a marginal stability criterion:
the steep global frequency coincides with the real absolute frequency at the transition
station between linear convective and absolute instability. More specifically, the steep
global mode is triggered at the upstream boundary Xca of the absolutely unstable
domain and is tuned at the associated real absolute frequency

ωca
0 = ω0(X

ca) where ω0,i(X
ca) = 0. (1.2)

This condition is merely the linear frequency criterion put forward by Dee & Langer
(1983), according to which the front velocity is such that, in the co-moving frame, the
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medium is marginally absolutely unstable. The associated spatial structure consists of
a stationary sharp front located at the transition station and separating an upstream
decaying tail from a finite-amplitude downstream wavetrain. The front acts as a wave
maker and imposes its frequency on the entire flow. In contrast with soft global modes,
the wavenumber exhibits a sharp jump across the front. Similar nonlinear states
with sharp Dee–Langer-type fronts were previously identified in amplitude evolution
models of solar and stellar magnetic activity cycles by Meunier et al. (1997). The
reader is referred to Soward (2001) for a review of related wkbj asymptotic studies
in the astrophysical context.

The transition scenarii towards fully nonlinear global modes have been analysed
by Pier (1999) and Pier, Huerre & Chomaz (2001) for the CGL evolution model in
an infinite domain. The results of interest to the present investigation are as follows.
The onset of steep global modes takes place via a saddle node bifurcation as soon
as a point of local linear absolute instability appears within the medium. Since linear
global modes in general become unstable only for a finite region of local linear
absolute instability, the transition to a steep mode occurs while the medium is still
globally linearly stable. Paradoxically, the onset of local linear absolute instability is
seen to provide an accurate criterion for the bifurcation to fully nonlinear steep global
modes while it is only a necessary condition for linear global instability. Local linear
absolute instability in a sense prevails over global linear instability and dictates the
nature of the observed finite-amplitude state.

The objective of the present study is to demonstrate that nonlinear self-sustained
structures in real shear flows may be described in terms of steep global modes
triggered by a stationary front located at the streamwise station of marginal absolute
instability. Strong supporting evidence for this line of thought has recently been given
by Delbende & Chomaz (1998) in a direct numerical simulation of the nonlinear
impulse response in a parallel wake. The nonlinear wavepacket is observed to be
confined between the same leading and trailing edges as its linear counterpart. The
sharp fronts delineating the saturated wavepacket then travel according to the linear
Dee & Langer (1983) velocity selection criterion.

In order to strictly enforce the weak streamwise non-uniformity condition underly-
ing all the above notions, the basic flow must be carefully chosen. Bluff body wakes
present a recirculation bubble near the obstacle which violates this assumption. To
bypass this difficulty, we consider a ‘synthetic’ wake with no solid obstacle(!) and no
reverse flow region, which still displays the essential features of wake flows, namely a
region of local absolute instability. The basic ansatz is the same as in the numerical
simulations of wakes ‘without obstacles’ performed by Triantafyllou & Karniadakis
(1990): vortex streets are produced by a wavemaker within the wake flow itself and
the obstacle is only necessary in real laboratory experiments to generate the basic
flow!

The outline of the study is as follows. The general formulation is presented in § 2
together with the spatially developing basic wake flow derived as a solution of the
Prandtl boundary layer equations. The ensuing local properties of linear instability
waves are described in § 3 in terms of a local linear dispersion relation at each
downstream station. Corresponding local properties of fully nonlinear travelling
waves are presented in § 4 as solutions of a local nonlinear dispersion relation.
These linear and nonlinear waves constitute the elementary building blocks of the
globally synchronized structures in the upstream and downstream regions of the wake.
Attention is then given in § 5 to the missing link, namely the front structure supported
by the wake profile at the marginally absolutely unstable station. Following the
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procedure proposed by Pier (1999) and Pier et al. (2001), the front is obtained as the
limit state of the spatial response to time-harmonic forcing in a parallel wake, when
the convective/absolute transition is reached. The self-sustained structures supported
by the spatially developing basic flow are documented in § 6, as computed by direct
numerical simulation of the Navier–Stokes equations. Finally, § 7 is concerned with
the interpretation of these results in terms of the constitutive elements identified in
the previous sections.

2. General formulation and basic flow
Two-dimensional incompressible flows are conveniently studied in terms of the

streamfunction Ψ (x, y, t) governed by the vorticity equation
(
∂

∂t
+
∂Ψ

∂y

∂

∂x
− ∂Ψ

∂x

∂

∂y

)
∆Ψ =

1

Re
∆2Ψ. (2.1)

From the start non-dimensional variables based on the characteristic length and
velocity scales `? and U? have been introduced (see below (2.5)). The Reynolds
number is then defined as Re = `?U?/ν, where ν is the kinematic viscosity. If x and
y denote the streamwise and cross-stream coordinates, the corresponding x and y
velocity components are obtained as ∂Ψ/∂y and −∂Ψ/∂x, and the vorticity as −∆Ψ .

The basic flow is steady and assumed to slowly develop in the streamwise direction.
This is the case at large Reynolds numbers, where viscous spreading takes place on a
slow streamwise scale. The order of magnitude of the weak streamwise non-uniformity
is then effectively defined as

ε =
1

Re
� 1, (2.2)

which is the only small parameter of the present investigation. Under this quasi-
parallel flow approximation, the basic flow streamfunction Ψb only depends on y and
the slow streamwise coordinate

X = εx,

and it is expanded as

Ψb(y;X) ∼ Ψ0(y;X) + εΨ1(y;X) + ε2Ψ2(y;X) + . . . . (2.3)

The leading-order basic flow approximation Ψ0 is then readily shown to obey the
Prandtl boundary layer equation

(
∂Ψ0

∂y

∂

∂X
− ∂Ψ0

∂X

∂

∂y

)
∂Ψ0

∂y
= −dP

dX
+
∂3Ψ0

∂y3
, (2.4)

where the given streamwise pressure gradient dP/dX is the integration ‘constant’
arising in the integration of the leading-order vorticity equation. Corresponding basic
velocity components are then U0(y;X) = ∂Ψ0/∂y and εV1(y;X) = −ε∂Ψ0/∂X.

The basic flow is affected by viscous diffusion and by the externally applied
pressure field P (X) which allows its streamwise evolution to be precisely controlled.
The parabolic boundary layer equation (2.4) is numerically integrated from X = 0,
with the sech2 inlet velocity profile

U0(y; 0) = 1− ∆U

cosh2(y sinh−1 1)
. (2.5)

Such a non-dimensional representation holds when the previously introduced velocity
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Figure 1. Streamwise development of the basic flow. (a) Velocity profilesU0(y;X) at different stream-
wise X locations. (b) Evolution of centreline velocity U0(0;X). The smallest value U0(0;X) = 0.01
is reached at X = 0.4. (c) Basic pressure field P (X).

scale U? is specified to be the streamwise basic flow inlet velocity at y = ±∞. The
length scale `? is chosen to be the half-width of the wake so that, in non-dimensional
variables, U0(1; 0) = 1

2
[U(∞; 0) + U(0; 0)]. The non-dimensional parameter ∆U

measures the depth of the wake at the inlet and, in the present paper, we choose
∆U = 0.8.

In the upstream part of the flow, an adverse pressure gradient is carefully tailored
in order to generate a central region of absolute instability, while avoiding reverse
flow. The characteristics of the resulting basic flow are displayed in figure 1. For the
adverse pressure gradient sketched in figure 1(c), the centreline velocity (figure 1b)
decreases from 1− ∆U = 0.2 at the inlet to reach a minimum 0.01 at the streamwise
station X = 0.4. The relatively strong adverse pressure gradient close to the inlet
slows down the basic flow while increasing the wake depth and rounding off the dip
of the profile (figure 1a). Further downstream a uniform pressure is reached and thus
the flow evolves solely under the action of viscosity: the wake depth decreases and
slow diffusive spreading takes place.

Note that the Reynolds number in the boundary layer equation (2.4) has been
scaled out and incorporated in the slow streamwise variable X = εx. As a result, the
above basic flow applies to all large Reynolds numbers: changes in Re are simply
handled by a dilatation of the streamwise coordinate according to x/X = Re, the
velocity profile shapes remaining unaltered.

The total streamfunction is then decomposed into steady basic and unsteady
perturbation contributions according to

Ψ (x, y, t) = Ψb(y;X) + ψ(x, y, t). (2.6)

Substitution of (2.6) with (2.3) into the governing equation (2.1), yields

∆ψt + Ψ0,y∆ψx −Ψ0,yyyψx + (ψy∂x − ψx∂y)∆ψ
+ ε[Ψ1,y ∆ψx −Ψ0,X ∆ψy −Ψ1,yyyψx +Ψ0,Xyyψy − ∆2ψ] = O(ε2), (2.7)

where the subscripts t, x, y and X denote differentiation with respect to these variables.
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The slow streamwise variations of the basic flow call for an analysis of the per-
turbation field in terms of both linear and nonlinear wkbj approximations (Bender
& Orszag 1978). The properties of local linear and nonlinear wavetrain solutions
sustained by the basic flow are derived in the following two sections.

3. Local linear instability waves
Following e.g. Crighton & Gaster (1976) and Monkewitz et al. (1993), in the linear

approximation ψ is sought in the form of a slowly varying wavetrain of frequency ω:

ψ(x, y, t) = ψ?(y;X) exp

(
i

ε

∫ X

k(u)du− iωt

)
+ c.c., (3.1)

where k(X) denotes the local complex wavenumber and

ψ?(y;X) ∼ ψ0(y;X) + εψ1(y;X) + . . . (3.2)

accounts for the local cross-stream structure. Substitution of expressions (3.1), (3.2)
into the linearized version of (2.7) shows that the leading-order approximation ψ0 is
governed by the local Rayleigh equation

(kU0(y;X)− ω)

(
∂2ψ0

∂y2
− k2ψ0

)
− kU0,yy(y;X)ψ0 = 0. (3.3)

Linear eigenmodes Ψ`(y; k, X) that are solutions of (3.3) and exponentially decaying
at y = ±∞ are obtained when the complex frequency ω and complex wavenumber k
are bound by the local linear dispersion relation

ω = Ω`(k, X), (3.4)

at each station X. For a given wavenumber and a given wake velocity profile
there exists a set of eigenfunctions to the Rayleigh equation. We only consider the
sinuous mode (ψ even) since it is the most amplified (Drazin & Reid 1981). In what
follows, the functions Ψ` and Ω` always refer to this particular eigenfunction and
eigenvalue respectively. For definiteness, the linear Ψ` eigenfunctions are normalized
by Ψ`(0; k, X) = 1.

The Rayleigh equation (3.3) has been solved via a Chebyshev spectral method
(Canuto et al. 1988). The Chebyshev collocation points −16ξi=−cos[iπ/(ny+1)]6+1
for i = 0, . . . , ny + 1 are mapped onto −∞ 6 yi 6 +∞ through the transformation

√
2

ly
y =

ξ

1− ξ2
. (3.5)

The parameter ly dictates the distribution of collocation points on the y-axis: half
are located in the interval −ly < y < ly and are approximately equispaced; the re-
maining points extend towards y = ±∞ and their density decreases algebraically. For
a given k, the differential Rayleigh equation is thus recast into a linear eigenvalue
problem: the frequency ω and cross-stream distribution Ψ` are obtained as eigen-
values and eigenfunctions respectively. As many eigenfunctions as collocation points
are obtained. The relevant sinuous eigenfrequency is then identified by inspection of
its eigenfunction. The complete linear dispersion relation Ω`(k, X) is generated by
continuation in k and X. Note that, since the eigenfunctions Ψ` exponentially decay
towards y = ±∞ as e−|kry|, the transformation (3.5) is appropriate for this problem. In
general ny = 50 collocation points with ly = 5 are found to be sufficient to accurately
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Figure 2. Isocontours of sinuous mode temporal growth rates Ω`
i in the (X, k)-plane in the interval

0.2 < X < 2.0 of figure 1. Solid contours are separated by δΩ`
i = 0.01, dashed contours by

δΩ`
i = 0.002. Larger growth rates occur in the upstream region whereas instability weakens further

donwnstream. The unstable domain is bounded by the neutral curve kc(X) (thick line).

resolve the eigenfunction and precisely obtain the frequency; however for small values
of kr a larger ny is necessary. As a validation, the mode shape is required not to vary
when doubling the number of collocation points.

The dispersion relation (3.4) yields the local wavenumber k`(X,ω) as a function of
the global frequency. Thus at leading order in the wkbj expansion

ψ(x, y, t) ∼ A0(X)Ψ`
(
y; k`(X,ω), X

)
exp

(
i

ε

∫ X

k`(u, ω)du− iωt

)
+ c.c., (3.6)

where the slowly varying complex amplitude function A0(X) could be determined at
next order by a secularity condition.

Local linear instability is characterized by the temporal growth of real wavenum-
bers. Figure 2 illustrates the streamwise evolution of sinuous temporal growth
rates Ω`

i (k, X) ≡ ImΩ`(k, X) in the (X, k)-plane for the basic flow of figure 1. All wake
profiles exhibit long-wavelength instability and the wake flow remains linearly unstable
far downstream. However, the maximum temporal growth rate Max{Ω`

i (k, X), k real}
decreases with X. The unstable domain in the (X, k)-plane is defined by the condition
Ω`
i (k, X) > 0. Its boundary yields the neutral curve kc(X) (thick line in figure 2)

associated through (3.4) with a real frequency. Linear growth of unstable waves is
limited by nonlinear saturation effects: the corresponding nonlinear wavetrains are
then obtained as discussed in the next section.

The local complex absolute frequency ω0(X) and absolute wavenumber k0(X) are
defined via dispersion relation (3.4) as

ω0(X) = Ω`(k0(X), X) with
∂Ω`

∂k
(k0(X), X) = 0. (3.7)

The locus of ω0(X) pertaining to the basic wake flow is represented in the complex
ω-plane in figure 3(a) and the corresponding streamwise variation of absolute growth
rate ω0,i(X) is sketched in figure 3(b). According to these sketches, the properties of
the flow under consideration present the following desirable features. The upstream
region extending from the inlet at X = 0 to Xca = 0.24 is convectively unstable (CU).
The adverse pressure gradient prevailing in this domain induces an increase of ω0,i
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Figure 3. (a) Locus of local absolute frequency ω0(X) in the complex frequency plane.
(b) Local absolute growth rates ω0,i(X) as a function of streamwise station.

which leads to absolute instability at Xca. Beyond this station of marginal absolute
instability, the flow displays a central absolutely unstable (AU) region extending over
the interval Xca < X < Xac, with Xac = 0.55. In the absence of further adverse
pressure gradient, the flow then returns to convective instability far downstream
X > Xac.

According to Pier et al. (1998), the boundaries of the AU region are of par-
ticular interest. These specific locations are defined by real absolute frequencies,
ωca

0 ≡ ω0(X
ca) = 0.190 and ωac

0 ≡ ω0(X
ac) = 0.150 respectively. Note that ωca

0 > ωac
0 ,

a feature which has been observed for all wake flows of the present study. Although
not essential to the observation of steep global modes, this inequality was taken as a
working assumption in Pier et al. (2001). The largest absolute growth rate occurs at
Xmax = 0.38 where ωmax

0 ≡ ω0(X
max) = 0.144 + 0.010i.

Following Chomaz et al. (1991) and Monkewitz et al. (1993), we may analyse the
linear global instability of the present flow by applying the saddle point criterion (1.1).
The analytic continuation of ω0(X) in the complex X-plane yields a saddle point at
Xs = 0.43+0.03i, associated with a linear global mode of frequency ωs = 0.143+0.008i.
Since ωs,i > 0, the wake flow is linearly globally unstable.

4. Local fully nonlinear travelling waves
In regions where perturbations reach finite amplitude levels, the flow is governed

by the complete nonlinear equation (2.7). The experiments of Provansal et al. (1987)
as well as the numerical simulations of Hammond & Redekopp (1997) reveal that
nonlinear structures in wakes are propagating in the streamwise direction: they are
locally periodic and their (x, t)-dependence occurs solely via a phase function with
only slow streamwise deformations. Guided by these observations and following the
wkbj formalism, we seek nonlinear slowly varying wavetrains to equation (2.7) of the
form

ψ(x, y, t) = ψ?(θ, y;X) with θ =
1

ε

∫ X

k(u)du− ωt, (4.1)

where ψ? is a 2π-periodic function of θ, and k(X) is the real local wavenumber.
Following the nonlinear wkbj approximation scheme of Pier & Huerre (1996) and
Pier et al. (2001), the nonlinear wavetrain is again expanded as

ψ?(θ, y;X) ∼ ψ0(θ, y;X) + εψ1(θ, y;X) + . . . . (4.2)

At leading order, one obtains

(kU0(y;X)− ω)
∂

∂θ

(
∂2ψ0

∂y2
+ k2 ∂

2ψ0

∂θ2

)
− kU0,yy(y;X)

∂ψ0

∂θ

+ k

(
∂ψ0

∂y

∂

∂θ
− ∂ψ0

∂θ

∂

∂y

)(
∂2ψ0

∂y2
+ k2 ∂

2ψ0

∂θ2

)
= 0. (4.3)
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As shown below, this partial differential equation in θ and y admits periodic solutions
Ψn`(θ, y; k, X) when the real frequency ω and the real wavenumber k are related by
the local nonlinear dispersion relation

ω = Ωn`(k, X), (4.4)

at each station X. The dispersion relation (4.4) yields the local nonlinear wavenum-
ber kn`(X,ω) as a function of the global frequency. Thus at leading order in the
nonlinear wkbj expansion

ψ(x, y, t) ∼ Ψn`

(
1

ε

∫ X

kn`(u, ω)du− ωt+ θ0(X), y; kn`(X,ω), X

)
, (4.5)

where the slowly varying phase function θ0(X) could be determined at next order by
a solvability condition.

Due to the separation of scales, the phase function θ governs the fast oscillations
on a typical instability length scale, whereas X accounts for the slow development of
the basic velocity profile and is not involved in spatial differentiation. Hence local
properties at a given streamwise station X are recovered by freezing the X-dependence
of the velocity profile and studying the corresponding strictly parallel flow. Thus the
term ‘local’ always refers to properties of strictly parallel flows obtained by extending
towards x = ±∞ the velocity profile prevailing at a specific downstream station X.

The local nonlinear travelling waves Ψn`(θ, y; k, X) are now shown to arise nat-
urally from a purely temporal analysis of the strictly parallel flow U0(y;X) obtained
by freezing X. To this extent, the slow coordinate X is regarded as an external
control parameter, frozen at a constant value although x varies on the entire real
axis. The initial value problem of interest is the study of the development of a
spatially periodic perturbation of given real wavenumber k. The initial evolution of
such a small-amplitude perturbation is dictated by the linear temporal growth rate
Ω`
i (k, X). Whenever Ω`

i > 0, its amplitude exponentially grows until nonlinearity sets
in. Stabilizing nonlinearities lead to saturation at finite amplitude and, at large time, a
fully nonlinear solution is obtained with streamwise periodicity imposed by the initial
wavenumber k. In the absence of secondary instabilities, a propagating nonlinear wave
solution is reached, and its frequency yields the nonlinear dispersion relation (4.4).
The same thought experiment may be carried out at each streamwise station X. It
should be emphasized that, without viscous dissipation, the above procedure does not
single out a unique attracting wavetrain solution onto which the system converges
for large time. In order to circumvent this difficulty, we have chosen to regard the
pertinent finite-amplitude states as long-time saturated solutions of the full viscous
vorticity equation
(
∂

∂t
+U0(y)

∂

∂x

)
∆ψ0 −U0,yy(y)

∂ψ0

∂x
+

(
∂ψ0

∂y

∂

∂x
− ∂ψ0

∂x

∂

∂y

)
∆ψ0 =

1

Re
∆2ψ0, (4.6)

for the perturbation stream function ψ0. In the above expression, the basic flow is
strictly parallel and its parametric dependence on X has been omitted. Note that
the viscous term ∆2ψ0/Re would only appear at higher order if the wkbj asymptotic
scheme were strictly applied. The use of a large but finite Re is brought in to select
a unique periodic nonlinear wavetrain. The precise value of Re will later be proven
unimportant.

One should also note that such a solution can only be preserved at large time
if the basic wake shear is maintained steady and parallel. In the calculation, this
is achieved by separating basic and perturbation fields. In effect, as in the direct
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numerical simulations of shear flows, e.g. Ehrenstein & Koch (1995), it is implicitly
assumed that a body force is present to counteract viscous diffusion of the basic
flow. Note that the extra terms introduced in the equations for the basic flow and
perturbations are higher-order corrections: they are introduced for computational
convenience, and in the limit ε = 1/Re→ 0 the original equation is recovered.

The temporal evolution of an initial spatially periodic perturbation ψ0(x, y, t) of real
wavenumber k is treated by solving (4.6) on a streamwise periodic interval of given
wavelength 2π/k. The temporal linear sinuous eigenmode of real wavenumber k
is chosen as initial perturbation, and, in the linear régime, it evolves according
to Ω`(k, X). Whenever Ω`

i (k, X) > 0, it is amplified, and nonlinear terms come
into play to promote higher harmonics as well as a non-fluctuating mean flow
correction. The long-time finite-amplitude state is precisely the nonlinear travelling
wave ψ0(x, y, t) = Ψn`(kx−ωt, y) solution of frequency ω of the nonlinear dispersion
relation (4.4) for the basic flow at the station X under consideration. In order to
complete the specification of the temporal evolution problem, we assume that the
flow rate is unaltered by the presence of the finite-amplitude perturbations.

An example of a nonlinear travelling wave state of wavenumber k = 0.30 is
illustrated in figure 4 for the basic velocity field (thick line in figure 4a) at X = 1.0.
This wavenumber is linearly amplified according to Ω` = 0.183 + 0.029i. Beyond a
transient régime, a periodic state is reached, at the numerically determined nonlinear
frequency Ωn`(k, X) = 0.205. In figure 4(a), the basic velocity profile U0(y) (thick
line) is compared with the nonlinear mean flow correction u(0)(y) (thin line) and
the total mean flow U0 + u(0) (dashed line). The non-fluctuating component of the
perturbation field is seen to essentially reduce the depth of the wake and to increase
its width. Contour levels of the perturbation vorticity field −∆ψ0 are displayed in
figure 4(b). The periodic spatial structure is seen to consist of a double row of
counter-rotating vortices as one would expect in a Kármán vortex street. The main
vortex street is surrounded by two vortex rows of smaller amplitude and opposite
sign. The whole nonlinear structure propagates in the downstream direction at the
celerity Ωn`/k = 0.68, slower than the far-field basic velocity U0(±∞) = 0.84. Since the
basic flow is maintained, such a periodic state persists at large time and the nonlinear
frequency is well defined. Note however that the mean flow correction u(0)(y) (thin
line in figure 4a) is observed to slowly diffuse in the y-direction over a slow viscous
time scale.

Such nonlinear states naturally only exist in the unstable domain of the (X, k)-plane,
defined by a positive linear growth rate (figure 2). Isocontours of Ωn` in this region
are represented in figure 5(a) and they should be compared to the corresponding
isocontours of Ω`

r displayed in figure 5(b). At the neutral stability boundary (thick
curves in figure 5), the linear temporal growth rate vanishes and the finite-amplitude
wavetrains smoothly turn into the linear neutral eigenmodes. As a result, on the
neutral curve

Ωn`(k, X) = Ω`
r (k, X) and Ω`

i (k, X) = 0.

Note that linear and nonlinear frequencies identically vanish for k = 0.
A careful comparison of figures 5(a) and 5(b) reveals that the nonlinear frequencies

are always larger than the linear ones. Thus nonlinear interactions tend to increase
the celerity ω/k of the wavetrains. It should be emphasized that the nonlinear iso-
frequency curves in the (X, k)-plane displayed in figure 5(a) precisely coincide with the
nonlinear spatial branches kn`(X,ω) at the corresponding frequency, as introduced in
the nonlinear wavetrain (4.5).
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The numerical technique used to solve (4.6) is based on the spectral method of
Ehrenstein & Koch (1989) suitably adapted to wake flows. The streamfunction is
decomposed into harmonic components as

ψ0(x, y, t) =
∑

−∞<n<∞
φ(n)(y, t)e

inkx, (4.7)
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with φ(−n)(y, t) = φ?(n)(y, t), where ? denotes the complex conjugate. Substitution of (4.7)
into the governing equation (4.6) and identification of corresponding exponentials
leads to the modal equations

[
∂tDn + ink[U0(y)Dn −U0,yy(y)]− 1

Re
D2
n

]
φ(n) + ik

∑

−∞<m<∞
Nn−m,m = 0, (4.8)

where Dn = ∂yy − (nk)2 and

Nn,m = m(∂yφ(n))(Dmφ(m))− nφ(n)(Dm∂yφ(m)). (4.9)

Assuming that the nonlinear perturbation does not change the pressure gradient at
y = ±∞ and leaves the flow rate unaltered, equation (4.8) may be integrated twice
for n = 0 to obtain the mean flow distortion equation

∂φ(0)

∂t
− 1

Re

∂2φ(0)

∂y2
= 2kIm

∑

m>0

mφ?(m)

∂φ(m)

∂y
. (4.10)

The unknown functions φ(n)(y, t) all vanish at y = ±∞, and the mean flow correction
reads u(0) = ∂φ(0)/∂y.

The set of modal equations (4.8), (4.10) is truncated at a finite number of harmonics
|n| 6 nh and again a Chebyshev collocation method with ny collocation points is
implemented in the y-direction together with the mapping (3.5). Thus the governing
equation (4.6) has been recast as a system of ny(2nh + 1) real algebraic ordinary
differential equations of the first order in time. These are solved via a fourth-order
Runge–Kutta scheme of time step δt. In the particular example of figure 4 at Re = 100
and t = 6000, nh = 5, ny = 71, ly = 5 and δt = 0.05. It has been checked that higher
resolutions leave the results unchanged.

The temporal evolution of the wavenumber spectrum is illustrated in figure 6. The
kinetic energy En(t) of each harmonic is sketched as a function of time on both loga-
rithmic and linear scales. If u(n) = ∂yψ(n)e

inkx + c.c. and v(n) = −inkψ(n)e
inkx + c.c. denote

the velocity field associated with the nth harmonic (n > 0), its energy is defined as

En(t) =

∫ +∞

−∞

∫ 2π/k

0

1
2
(u2
n + v2

n)dx dy.

During the linear growth phase (t < 800, figure 6a), all harmonics are exponentially
amplified. The measured slope of the fundamental E1 (thick line) in the semi-log
plot is 0.0255, and precisely coincides with its theoretical value given by 2Ω`

i / ln 10.
Higher harmonics En(t) (n > 1, dashed lines) are naturally slaved to the fundamental
and grow as [E1(t)]

n whereas the mean flow correction E0(t) (thin solid line) scales as
[E1(t)]

2.
Beyond the nonlinear transient régime (800 < t < 2000), the system relaxes towards

a quasi-stationary travelling wave state. The duration of the transients depends on the
dissipation time scale as dictated by the magnitude of the selected Reynolds number.
The choice Re = 100 appears to be a good compromise between reasonably long
transients and inviscid-like dynamics. Although the motion is fully nonlinear, only
a few harmonic components partake in the dynamics. Even for the most unstable
wavenumber, only three harmonics are necessary to accurately capture the saturated
wave state.

The final nonlinear propagating wave and its frequency hardly depend on the
particular value of the Reynolds number, as illustrated in figure 7. For Re > 50, the
frequency changes by less than 0.0025. It is only for Re < 20 that drastic changes
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Figure 7. Variation of the nonlinear frequency Ωn` associated with k = 0.30 and X = 1.0 as a
function of the Reynolds number Re. Note the magnified vertical scale.

in the frequency occur! This insensitivity to Reynolds number fully justifies the
approach adopted in the present study. The addition of the viscous term in (4.6)
does not significantly affect the properties of the nonlinear wavetrain. In the present
calculation, the value Re = 100 has been deemed sufficient.
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5. Nonlinear spatial response and fronts in parallel wakes
At each downstream location we have now at our disposal a complete family of

linear as well as nonlinear local wavetrains which constitute the elementary building
blocks of a globally synchronized flow. Whereas the upstream region extending to the
inlet is expected to sustain small perturbation levels, correctly handled within a linear
approximation, the downstream wake should be made up of fully nonlinear travelling
wavetrains. In the framework of one-dimensional evolution models, it has been
demonstrated (Pier 1999) that, for steep global modes, a stationary front constitutes
the missing link converting the upstream linear waves into the downstream nonlinear
waves at a station of marginal local absolute instability. In this section it is shown
that an analogous front structure exists in wake flows. According to Dee & Langer
(1983) and van Saarloos (1987, 1988), a propagating front moves towards its decaying
edge if the basic state is AU, towards its finite-amplitude edge if the basic state is
CU, and a stationary front is obtained when the medium is exactly at the CU/AU
transition.

Here a slightly different point of view is adopted: instead of studying front propa-
gation, we focus on the spatial response of a CU profile to a localized time-harmonic
forcing and argue that the stationary front is recovered at the CU/AU transition.
This approach is motivated by the difficulty in directly computing the propagation
of a front connecting a fully nonlinear wavetrain to an unperturbed wake profile: in
the co-moving frame the flow is marginally AU and thus very sensitive to various
uncontrolled perturbations. In contrast, the signalling problem in a CU flow is not
affected since the response to noise is swept away, and the stationary régime is easily
identified.

Consider again a strictly parallel wake profile at a given streamwise station X. The
forced perturbation vorticity and streamfunction fields $ and ψ are then governed by
(
∂

∂t
+U0(y)

∂

∂x

)
$ +U0,yy(y)

∂ψ

∂x
+

(
∂ψ

∂y

∂

∂x
− ∂ψ

∂x

∂

∂y

)
$ =

∆$

Re
+ S(x, y, t), (5.1a)

∆ψ = −$, (5.1b)

where the temporally harmonic forcing function is taken to be of the form

S(x, y, t) = H(t)Af exp

(
−x

2 + (y − yf)2

`2
f

)
cosωft, (5.2)

with H(t) denoting the Heaviside unit step function, and ωf and Af the forcing fre-
quency and amplitude. The forcing is applied in a region of size `f centred at (0, yf).
Switching on the forcing at t = 0 produces a transient wavepacket together with
the steady-state response at the forcing frequency. Whenever the basic flow is CU,
transients move away from the source and a steady-state signal is left at the forcing
frequency. When the medium is AU, switch-on transients overwhelm the response at
the forcing frequency and the signalling problem is ill-posed. Hence only the spatial
problem for CU velocity profiles is considered in the following discussion.

The linear signalling problem in shear flows has been investigated by Huerre &
Monkewitz (1985). Here, the linear dispersion relation (3.4) gives rise to two linear
spatial branches k`+(X,ω) and k`−(X,ω). The response streamfunction then reads

ψ(x, y, t) ∝ Af
Ψ`(y; k`±(X,ωf), X)

(∂Ω`/∂k)(k`±(X,ωf), X)
exp i

[
k`±(X,ωf)x− ωft]+ c.c., (5.3)

where labels (+) and (−) pertain to the downstream (x > 0) and upstream (x < 0)
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Figure 8. Spatial response of a CU parallel wake to harmonic forcing of frequency ωf = 0.19,
amplitude Af = 10−3 and width `f = 1 applied at the origin and given by (5.2). Re = 100. (a) Basic
velocity profile at X = 1. (b) Total vorticity levels at t = 500. Positive contours 0.02, 0.04, . . . ,
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respectively. (c) Corresponding perturbation streamlines. Solid (dashed) isocontours pertain to the
levels 0.2, 0.4, . . . , 1.4 (−0.2, −0.4, . . . , −1.4). Close to the forcing location the downstream response
grows exponentially to reach a finite amplitude around x = 70. Further downstream, a nonlinear
travelling wave is generated. The entire streamwise extent −10 < x < 190 of the computational
domain is shown.

response respectively. Note again that for convenience the viscous dissipation term
∆$/Re has been added to (5.1a). Thus the linear dispersion relation Ω` and corre-
sponding eigenfunctions Ψ` are derived from the Orr–Sommerfeld equation rather
than the Rayleigh equation (3.3), the streamwise decay or growth rates being dictated
by k`±i ≡ Im k`±. An extensive survey of all the CU velocity profiles encountered
in the present study reveals that the linear k`−(X,ω) branches always remain in the
ki < 0 half-plane and thus never give rise to upstream amplification. Only downstream
spatial branches k`+ grow in a certain frequency range.

Whenever a linear spatial branch is amplified, nonlinear terms have to be taken into
account at some distance from the source, however small the forcing amplitude. As the
response reaches finite amplitude, nonlinear saturation prevents further amplification
and leads to a nonlinear travelling wave at the excitation frequency for some real
wavenumber kn`. Since this nonlinear propagating wavetrain is reached downstream
of the source, it is denoted as kn`+(X,ω). The forcing frequency ωf and the nonlinear
response wavenumber kn`+ satisfy the nonlinear dispersion relation (4.4). For a more
complete discussion of the relationship between linear and nonlinear spatial branches,
see Pier (1999) and Pier et al. (2001).

Figure 8 illustrates the spatial response of the parallel CU wake velocity profile (a)
prevailing at X = 1, at a Reynolds number Re = 100. Forcing is applied at the origin
yf = 0 with a frequency ωf = 0.19, amplitude Af = 10−3 and `f = 1. Total isovorticity
contours and perturbation streamlines are displayed in (b) and (c) respectively. Close
to the forcing location, the downstream response grows exponentially to reach a
finite amplitude around x ∼ 70. The measured nonlinear saturation wavenumber is
kn`+(X,ωf) = 0.27. The solid dot at (k, X) = (0.27, 1) in figure 5(a) lies close to the
contour level Ωn` = ωf = 0.19, which confirms that kn`+ = 0.27 is indeed a solution
of the nonlinear dispersion relation (4.4).

The signalling problem (5.1) is numerically integrated via a finite difference scheme
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with nx mesh points of size δx in the x-direction and ny Chebyshev collocation
points in the y-direction. According to the Poisson equation (5.1b), the perturbation
streamfunction ψ is generated by the vorticiy field $ which is confined within the shear
region. Thus, in general, ψ decays algebraically far away from the vortical region.
As a result, the algebraic transformation (3.5) is still well adapted to this problem.
The perturbation vorticity and streamfunction are both assumed to vanish at the
upstream boundary and at infinity in the cross-stream direction. The non-reflecting
boundary conditions introduced by Jin & Braza (1993)

∂$

∂t
= −

(
U0 +

∂ψ

∂y

)
∂$

∂x
+

1

Re

∂2$

∂y2
, (5.4a)

∂

∂t

∂ψ

∂x
= −

(
U0 +

∂ψ

∂y

)
∂2ψ

∂x2
+

1

Re

∂2

∂y2

∂ψ

∂x
, (5.4b)

are implemented at the outlet. The Poisson equation (5.1b) is solved by a generalized
Thomas algorithm with given boundary values of ψ at the inlet and ψx at the outlet.
Integration in time is performed with a second-order Runge–Kutta scheme of time
step δt.

The parameters chosen in the computation of figure 8 are nx = 400, δx = 0.5,
ny = 31, ly = 5, δt = 0.05. The entire streamwise extent of the computational domain
−10 < x < 190 is displayed to demonstrate that the outflow boundary is truly
non-reflecting.

In order to analyse the spatio-temporal structure of the nonlinear response, har-
monic components have been computed over one period in the stationary régime
according to the Fourier expansion

ψ(x, y, t) =
∑

−∞<n<+∞
φ(n)(x, y)e−inωft. (5.5)

Figure 9(a) displays a snapshot of the fundamental streamwise velocity u(1)(x, y) =
∂yφ(1)(x, y) + c.c. It is seen that at the onset of nonlinearity, the fluctuation amplitude
is higher than in the periodic nonlinear wavetrain reached further downstream.
The associated envelope |v(1)|(x, y) = 2|∂xφ(1)(x, y)| plotted in figure 9(b) effectively
represents the amplitude of the fundamental cross-stream velocity fluctuations. The
non-fluctuating component of the streamfunction at n = 0 is associated with the
nonlinear mean flow correction induced by Reynolds stresses. Figure 9(c) shows the
isocontours of the mean streamwise perturbation velocity u(0)(x, y) = ∂yφ(0)(x, y). In
the finite-amplitude region, the mean flow distortion is seen to fill up the dip of the
wake, thereby effectively reducing the shear experienced by the nonlinear travelling
waves.

The Fourier expansion (5.5) allows the streamwise evolution of the kinetic en-
ergy En(x) contained in each harmonic component to be monitored, defined as

En(x) =

∫ +∞

−∞

(|∂yφ(n)|2 + |∂xφ(n)|2
)

dy (n > 0), (5.6a)

E0(x) =

∫ +∞

−∞
1
2

(
(∂yφ(0))

2 + (∂xφ(0))
2
)

dy. (5.6b)

Semi-log plots of the streamwise evolution of En(x) are given in figure 10. In the
linear region, the fundamental component (thick line) grows exponentially according
to exp(−k`+i x) until a finite amplitude level is reached. The mean slope over the
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Figure 9. Same parallel wake spatial response as in figure 8. (a) Snapshot of fundamental streamwise
velocity u(1)(x, y). Solid (dashed) lines pertain to 0.02, 0.04, . . . , 0.14 (−0.02, −0.04, . . . , −0.14)
contour levels. (b) Contour levels of envelope of cross-stream velocity |v(1)|(x, y) (0.02, 0.04, . . . ,
0.20). (c) Isolevels of nonlinear mean streamwise velocity correction u(0)(x, y). Thick line separates
regions of positive (0.05, 0.10, . . . , 0.40 solid lines) and negative (−0.05 dashed line) levels.

interval 20 < x < 60 is 0.054, close to its theoretical linear value −2k`+i / ln 10 = 0.055
as predicted by the spatial branch k`+ = 0.316 − 0.064i computed from the Orr–
Sommerfeld equation. Although the numerical results are not as clean as in the
temporal evolution problem of figure 6, higher harmonics are nonetheless slaved to
the fundamental according to En(x) ∼ [E1(x)]n. Note however that the variations of the
mean-flow correction energy E0(x) are algebraic rather than exponential. Presumably,
the vortical structures produced in the nonlinear domain generate a global mean
pressure field which does not simply scale as [E1(x)]2 with the local linear spatial
instability properties. This feature is absent in the temporal evolution case where the
waves are strictly streamwise periodic.

With the exception of the mean flow correction, there is no feedback of the fully
nonlinear downstream wavetrain on the upstream linear region. A proof of this
assertion is obtained by measuring the nonlinear saturation location as a function
of the forcing amplitude. The saturation station xn` may be precisely defined from
the envelope of the fundamental cross-stream velocity component (see figure 9b)
along the centreline y = 0 as the location where |v(1)|(x, 0) reaches a preset value.
The resulting variation of xn` with − logAf displayed in figure 11 is clearly linear
with a measured slope of 35.5, which favourably compares with the theoretical value
− ln 10/k`+i = 36.0 predicted by linear theory. The nonlinear saturation station is
thus solely controlled by the linear growth phase: it depends only on the forcing
amplitude Af and linear spatial growth rate −k`+i .
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Figure 11. Evolution of nonlinear saturation station xn` with forcing amplitude Af in parallel
wake. All other parameter settings same as in figure 8.

The signalling problem (5.1) may be solved for any forcing frequency ωf and any
station X associated with a given CU wake velocity profile. As the AU threshold
at Xca is approached, the receptivity of the flow to forcing at the corresponding real
absolute frequency ωca

0 increases (Pier et al. 2001). At the marginal AU station Xca,
upstream and downstream spatial branches pinch, i.e. k`+(Xca, ωca

0 ) = k`−(Xca, ωca
0 ) =

k0(X
ca) ≡ kca0 and by definition Ω`

k (k
ca
0 , X

ca) = 0. Thus, according to (5.3), the spatial
response diverges. In other words, the forcing amplitude required to maintain a fixed
location of nonlinear saturation xn` vanishes as (X,ωf) → (Xca, ωca

0 ). In this limit,
a front structure is obtained connecting a downstream fully nonlinear wavetrain
to an upstream decaying tail without any forcing. This is precisely the stationary
Dee–Langer front residing in the marginally AU medium.

A numerical implementation of this strategy is illustrated in figure 12(a, b). The
forcing frequency is kept constant at ωf = 0.19 ' ωca

0 and the signalling problem
is solved at X = 0.20 and X = 0.22, all other parameters being kept at the same
settings. The resulting perturbation field is seen to only weakly depend on X as
the limit Xca = 0.24 is approached. The spatial response distribution arising from a
forced problem on the CU side of Xca in effect provides a good approximation of
the self-sustained front structure prevailing at Xca in the absence of forcing. The fact
that resonance takes place at Xca is not associated with any drastic change in the
perturbation field. It is only manifested by pinching of k`+ and k`− branches in the
complex k-plane.

It is naturally impractical to perform a numerical simulation at the actual CU/AU
transition since in this limit the forcing problem becomes ill-defined. However, one
may attempt to verify that the spatial response would reach such a self-sustained front-
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Figure 13. Evolution of spatial response nonlinear saturation station xn` as the marginal AU
wake profile at Xca is approached. Comparison of numerical measurements (dots) and theoretical
prediction derived from the linear dispersion relation (solid line).

like structure by tracking the nonlinear saturation station xn` as (X,ωf)→ (Xca, ωca
0 ).

Accordingly, the station xn` is measured for different wake velocity profiles pertaining
to X < Xca = 0.24, for ωf = ωca

0 = 0.19 while keeping the forcing amplitude Af at a
fixed constant value. Results are displayed in figure 13 together with the theoretically
predicted curve

xn` =
ln |Ω`

k (k
`+(X,ωca

0 ), X)|
−k`+i (X,ωca

0 )
+ const., (5.7)

arising from the forced response (5.3). It is straightforward to demonstrate via a Taylor
expansion of Ω`

k (k
`+(X,ωca

0 ), X) in the neighbourhood of Xca that |Ω`
k | ∝ |X−Xca|1/2.

Thus, according to (5.7), the nonlinear saturation station xn` scales as

xn` ∼ 1
2

ln |X −Xca|+ const. when X ↑ Xca.

The constant appearing in the theoretical prediction (5.7) depends on the forcing
amplitude Af and would in principle be determined by calculating the multiplicative
constant in (5.3). We are solely concerned here with the functional form of xn` versus X
and the constant has been adjusted to achieve a reasonable fit with the numerical
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data points. Due to the slow logarithmic divergence and the insufficient accuracy of
the measured xn` values, the theoretical curve only poorly fits the numerical data. This
somewhat mixed result is not too surprising: the perturbation field is exponentially
growing along the stream, and in order to check the validity of the scaling law (5.7),
one must extract from the numerics the prefactor multiplying the exponential term.
This process is numerically risky since a small error in the evaluation of the growth
rate drastically contaminates the evaluation of the prefactor. It is well known that
asymptotic limits are often hard to reach numerically!

6. Self-sustained global structures in a spatially developing wake
This part of the study is devoted to the detailed presentation of globally syn-

chronized self-sustained structures, as obtained by direct numerical simulation of the
spatially developing wake flow defined in § 2. Their interpretation in terms of the
previously identified elements is postponed to the next section.

Numerical simulations are performed in the vorticity/streamfunction formulation
(
∂

∂t
+U0(x, y)

∂

∂x

)
$ +U0,yy(x, y)

∂ψ

∂x
+

(
∂ψ

∂y

∂

∂x
− ∂ψ

∂x

∂

∂y

)
$ =

1

Re
∆$, (6.1a)

∆ψ = −$, (6.1b)

governing the dynamics of the perturbation fields. Note that the spatial variation of
the basic flow is here expressed in terms of x = XRe. The following results pertain to
a simulation at Re = 100 over the domain 0 < x < 200 (0 < X < 2). The numerical
scheme exactly follows the method implemented for the signalling problem in § 5 with
the parallel basic flow being replaced by the spatially developing wake. Harmonic
forcing is suppressed and perturbations are triggered by a small-amplitude initial
impulse close to the inlet. The precise localization of the impulse is unimportant
and it has been checked that the same final state is obtained for a variety of initial
conditions. In the initial stage, the impulse wavepacket grows and spreads in space to
perturb the entire domain. Perturbations at each streamwise station slowly synchronize
and eventually lead to a global structure tuned at an overall frequency. The following
results were obtained at t = 5000, with the parameters nx = 200, δx = 1.0, ny = 61,
ly = 6, δt = 0.05.

Isolines of basic and total vorticity are shown in figure 14(a, b), and of basic and
total streamwise velocity in figure 14(c, d). Comparison of basic and total fields shows
that the region close to the inlet is governed by small-amplitude dynamics, whereas
a nonlinear wavetrain develops further downstream. In figure 14(b) the two vorticity
layers of opposite sign are seen to be unstable and to give rise to periodic vortices
which completely mask the underlying basic wake flow. The Kármán-like vortex street
is more vividly illustrated by the streaklines in figure 14(e). Note that in sketches (a–d)
the cross-stream scale has been magnified for clarity, while x- and y-coordinates are
on the same scale in (e).

Snapshots of the perturbation vorticity, u- and v-velocity contours and streamlines
are displayed in figure 15(a–d). The interpretation of the global mode in terms of an
extended nonlinear wavepacket is illustrated by the centreline cross-stream velocity
v(x, 0, t) shown in figure 16.

Vorticity time series have been recorded at different locations within the flow in or-
der to ascertain the synchronized behaviour of the global structure. The examination
of the associated frequency spectra (figure 17) indicates that all stations are tuned to
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Figure 14. Self-sustained global structure at Re = 100 and t = 5000 in spatially developing wake
flow defined in figure 1. (a, b) Basic and total vorticity contours. Solid lines pertain to positive
levels (0.05, 0.10, 0.15, 0.20), dashed lines to negative levels (−0.05, −0.10, −0.15, −0.20). (c, d) Basic
and total streamwise velocity. Dashed lines represent the levels 0.95, 0.90, 0.85 above the outlet
free-stream velocity, solid lines pertain to the levels 0.80, 0.75, . . . , 0.10. (e) Corresponding streaklines.

the same global fundamental frequency ωg = 0.186± 0.002 and its harmonics. At the
station (x, y) = (54, 0) (figure 17a) the fluctuations are seen to be almost sinusoidal.
Further downstream on the centreline at (x, y) = (150, 0) (figure 17c) higher odd
harmonics are excited. Sketch (b) at (x, y) = (114, 5.6) shows that off the centerline all
harmonics are represented. Following the analysis of Dušek, Le Gal & Fraunié (1994)
and Dušek (1996), the spatial distribution of different harmonics may be computed
as displayed in figure 18. These graphs clearly demonstrate the wavetrain nature of
the global mode in the downstream region. The nonlinear structures sustained by
the basic wake flow give rise to a finite mean-flow distortion as shown in figure 19.
Reynolds stresses are seen to induce a mean-flow modification in the form of a pair of
counter-rotating large-scale vortices (figure 19a). The associated streamwise velocity
contours displayed in figure 19(b) reveal that the velocity defect of the basic wake
profiles has been reduced by nonlinearities. The corresponding overall entrainment
pattern is displayed in figure 19(c). Most of the dominant dynamics are captured by
the fundamental and mean-flow components: superposition of the u-velocity contours
pertaining respectively to the fundamental (figure 18a) and mean-flow distortion (fig-
ure 19b) yields a pattern which is indeed close to the total perturbation u-velocity
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Figure 16. Global mode structure: instantaneous centreline cross-stream velocity v(x, 0, t).
Same conditions as in figure 14.

contours (figure 15b). In the same line of thought as in § 5, one may display the stream-
wise evolution of the energy En(x) contained in each harmonic (see equations (5.6))
as shown in figure 20. Higher harmonics (n > 1) are seen to reach very low amplitude
levels even in the nonlinear region. This observation is also corroborated by the power
spectra of figure 17.

It may be concluded that the spatio-temporal development of the vortex street
is essentially determined by three components: the imposed unstable basic flow, the
fundamental wavetrain of frequency ωg which it sustains and the ensuing mean-flow
distortion produced by Reynolds stresses.
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Figure 17. Global mode power spectrum of vorticity time series at stations (a) x = 54, y = 0,
(b) x = 114, y = 5.6, (c) x = 150, y = 0, based on signal recorded over 5000 < t < 10000. Same
conditions as in figure 14.
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Figure 18. Global mode structure: fundamental velocity components. (a) Streamwise velocity
contours (0.05, 0.10, 0.15 solid lines, −0.05, −0.10, −0.15 dashed lines). (b) Cross-stream velocity
contours (0.05, 0.10, 0.15, 0.20 solid lines, −0.05, −0.10, −0.15, −0.20 dashed lines). Same conditions
as figure 14.

7. Interpretation of the vortex street as a steep global mode
The objective of this section is to demonstrate that the vortex street observed in

the direct numerical simulations of spatially developing wakes in § 6 is indeed a steep
global mode as defined by Pier et al. (1998). In other words, its frequency obeys the
marginal stability criterion (1.2) and its spatio-temporal structure is controlled by a
front which generates nonlinear travelling wavetrains further downstream.

The application of the steep frequency selection criterion (1.2) to the local absolute
frequency ω0(X) calculated in § 3 and displayed in figure 3 yields

Xca = 0.24 and ωca
0 = ω0(X

ca) = 0.190, (7.1)

to be compared with the observed global vortex street frequency ωg = 0.186. The
prediction (7.1), which is only a leading-order approximation in ε = 1/Re = 0.01,
is seen to be in excellent agreement with the value obtained by direct numerical
simulation. The observed frequency should also be compared with the complex
linear global frequency ωs = 0.143 + 0.008i obtained from the linear saddle-point
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Figure 20. Semi-log plot of global mode spatial energy distribution of different harmonics En(x).
Same conditions as in figure 14.

criterion (1.1). The complex ωs only applies to uniformly linear global mode structures,
and does not capture the nonlinear dynamics governing the present vortex street.

The global mode spatial distribution is compared with the associated front struc-
ture and local nonlinear travelling wavetrains in figure 21. Contour levels of the
fundamental streamwise velocity pertaining to the vortex street (figure 21a, already
displayed in figure 18a) are compared with the same field for the quasi-front of
frequency ωca

0 = 0.19 at X = 0.22 (figure 21b, already displayed in figure 12b). The
pattern in figure 12(b) has been suitably shifted in the streamwise direction and in
time so as to adjust amplitude and phase to those of figure 21(a). Although this
X-station is below the absolute transition point Xca = 0.24, the structure of the
fundamental is seen to be approximately reproduced by the front.

The same vortex street contour levels (figure 21a) are compared with those for
a fully nonlinear travelling wave at X = 1.40 obtained via temporal numerical
simulation (figure 21c). More specifically, the local wavenumber kn`+ = 0.27 prevailing
at X = 1.40 and ωca

0 = 0.19 is determined from the local nonlinear dispersion relation
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plotted in figure 5(a), and a streamwise periodic temporal simulation is performed
as detailed in § 4. Here again, the downstream region of the global mode is seen to
be approximately represented by nonlinear wavetrains which travel according to the
local nonlinear dispersion relation at each streamwise station.

Note however that the characteristic wavelengths of the quasi-front in (b) and
nonlinear travelling wave in (c) appear to be somewhat smaller to those of the
corresponding global mode structure in (a). This feature may be related to the
frequency difference between the two cases: ωca

0 = 0.190 in (b, c) and ωg = 0.186
in (a). The wavemaker triggering the vortex street is located at the marginally
AU station xca = ReXca = 24; however, full nonlinearity is only attained about a
wavelength downstream of this location. Thus the region where the global mode
structure reaches finite amplitude is actually pushed to the downstream side of the
AU region 24 < x < 55. This result is not all that surprising: the front characterizing
the streamwise transition between linear waves and a fully nonlinear wavetrain is
known to typically extend over one wavelength (see e.g. van Saarloos 1987).

8. Conclusion
This study has demonstrated that the steep global modes previously identified

and analysed in one-dimensional CGL evolution equations also arise in spatially
developing shear flows exhibiting a region of absolute instability. The self-sustained
structures have been shown to be controlled by a front located at the upstream edge
of the AU region which acts as a wavemaker to generate nonlinear travelling waves
in its wake. Provided that the streamwise variations of the underlying basic flow
are sufficiently slow (wkbj approximation), such wavetrains are governed at each
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station by the associated local nonlinear dispersion relation obtained from a purely
temporal evolution problem on the local shear flow profile considered as parallel. Fast
streamwise variations are confined to the front layer where the full Navier–Stokes
equations have to be resolved for the wave field on the fast x-scale.

It should again be noted that the stationary fronts identified in the present shear
flow framework are of the same nature as the propagating fronts studied in the
context of pattern formation: the criterion (1.2) is merely an application of the
marginal instability criterion of Dee & Langer (1983) and van Saarloos (1987, 1988).
The present findings are also consistent with the nature of the nonlinear impulse
response in parallel wakes studied by Delbende & Chomaz (1998). Furthermore, the
conjecture put forward by Monkewitz & Nguyen (1987) has been fully confirmed:
the first streamwise station Xca of non-negative absolute growth rate indeed supports
a front which imposes its frequency ωca

0 on the entire flow.
The present approach constitutes a significant departure from the landmark non-

linear hydrodynamic instability analyses of spatially evolving shear flows developed
by Goldstein & Leib (1988) and Goldstein & Hultgren (1988). These investigations
require the simultaneous enforcing of the assumptions of overall small wave amplitude
and slow streamwise variations. As a result, finite-amplitude effects arise only within
nonlinear critical layers of small cross-stream extent. An asymptotically consistent
description of the streamwise development of perturbations of given frequency may
then be obtained for convectively unstable shear flows. In the present study, the
small-amplitude assumption has been totally relaxed and only the slow streamwise
variation hypothesis has been retained. The fully nonlinear evolution of perturbations
of order unity may then be captured either for the forced problem in CU flows or for
self-sustained structures in flows with an AU region. Nonlinearities then extend over
the entire shear region in the cross-stream direction. Whereas critical layer studies
succeed in achieving a quasi-analytic formulation of the forced dynamics, the present
approach relies on local numerical simulations to identify the various constitutive
elements of the dominant wkbj approximation. It is surmised that the same fully
nonlinear theory is applicable to a wide variety of spatially evolving shear flows
whether they are in a self-sustained mode or subjected to forcing.

A systematic asymptotic approximation scheme of the kind presented in Pier et al.
(2001) has not been attempted here. Furthermore, the Reynolds number has been
kept relatively small at Re = 100. Larger values of Re increase the streamwise extent
of the computational domain and computing time. Moreover, exploratory simulations
indicate that secondary instabilities occur for the present basic flow beyond Re ∼ 200.
However, computation of the local nonlinear wavetrains on a streamwise periodic
interval is not affected by secondary instabilities. We therefore presume that a syn-
chronized finite-amplitude vortex shedding régime exists analytically for all large Re
but is unstable in the spatially developing simulation beyond Re ∼ 200. It is thus
impractical to push Re up to larger values in order to move closer to the wkbj limit
ε = 1/Re = 0.

It should be emphasized that the steep frequency selection criterion (1.2) which
has been demonstrated here to apply to real flows is purely based on the local linear
dispersion relation, although it pertains to fully nonlinear sychronized structures.
The saddle-point criterion (1.1) is also linear but it is solely applicable to strictly
linear global modes. And indeed, the numerically obtained ωg = 0.186 is much
closer to ωca

0 = 0.190 of criterion (1.2) than to ωs = 0.143 + 0.008i of criterion (1.1),
which in any case is incompatible with the saturated nonlinear wavetrains observed
downstream of the front at Xca. Furthermore, as demonstrated by Pier (1999), steep
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global modes are triggered as soon as local linear absolute instability appears, while
linear global modes become unstable only when the linear AU region is of sufficiently
large extent (Chomaz et al. 1991). To confirm this argument, the same simulation has
been carried out with a spatially developing wake obtained for a pressure gradient
designed to yield a minimum centerline velocity of 0.047 instead of 0.010 as in
figure 1. The saddle-point frequency is then ωs = 0.155 − 0.001i, which corresponds
to a decaying linear global mode. Nevertheless, there is still a small locally absolutely
unstable region 0.34 < X < 0.44 with ωmax

0,i = 0.001. In this case, a steep global mode
is observed in the direct numerical simulation, whereas no self-sustained structure
survives if nonlinear terms are turned off. This result is entirely consistent with the
transition scenario outlined in Pier et al. (2001).

It is somewhat paradoxical that the intricate complex X-plane analyses developed
over the years to uncover the selection properties of linear global modes are masked
in practice by the onset of local absolute instability which immediately prevails and
imposes its frequency and the overall structure of the synchronized oscillations.

As a final note of caution, it should be stressed that the present analysis cannot be
obviously extended to bluff-body wakes where the AU region lies immediately behind
the obstacle. In spite of the fact that the synthetic wake considered here is purely
co-flowing, it can nonetheless sustain a synchronized vortex street which qualitatively
displays the same features.

The authors are grateful to Jean-Marc Chomaz and Arnaud Couairon for en-
lightening discussions. The expert advice and suggestions of Carlo Cossu played an
essential rôle in the design and validation of the numerical scheme.
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The selection criteria governing "nite-amplitude synchronized oscillating states are discussed
for model systems and real wake #ows in a domain of in"nite streamwise extent. Two types of
nonlinear global modes are possible: hat modes with overall smoothly varying amplitude and
elephant modes with a sharp front. The vortex street in wake #ows is of elephant type, as
observed in direct numerical simulations of a real spatially developing wake. Furthermore, the
elephant frequency selection criterion is in excellent agreement with the numerically determined
vortex shedding frequency. ( 2001 Academic Press

1. INTRODUCTION

A VARIETY OF OPEN FLOWS may sustain globally synchronized oscillations. Wakes behind
blu!-bodies are well known [for a review see Williamson (1996)] to undergo a transition to
a periodic vortex shedding reH gime at moderate Reynolds numbers. Experimentally and
numerically, the features of a globally synchronized vortex street are now well documented
[e.g., Provansal et al. (1987), Hammond & Redekopp (1997)]. However, the selected
frequency of the global structure has not been theoretically predicted in the framework of
hydrodynamic stability theory. The aim of the present paper is to discuss recent progress
made in the identi"cation of resonance mechanisms which are responsible for global
synchronization in spatially developing #ows. We restrict here our attention to one-
dimensional complex Ginzburg}Landau (CGL) equations with spatially varying coe$-
cients in an in"nite domain and to two-dimensional spatially developing wake #ows
governed by the Navier}Stokes (NS) equations. The paper is mainly based on the recent
dissertation of Pier (1999) and the corresponding publications by Pier & Huerre (1996),
Pier et al. (1998), Pier et al. (2001) and Pier & Huerre (2001). For a general background on
the hydrodynamic stability theory of spatially developing #ows, the reader is referred to the
review articles and tutorial presentations of Huerre & Monkewitz (1990), Huerre & Rossi
(1998) and Huerre (2000). A brief summary of relevant issues is given below.

The existence of self-sustained oscillations in shear #ows is closely related to the
transition from convective to absolute instability (Briggs 1964; Bers 1983). In convectively
unstable (CU) systems, the basic #ow carries growing perturbations away in the down-
stream direction, and the system eventually returns to its unperturbed state. Hence, if a #ow
changes from local stability to convective instability, only its transient response to perturba-
tions is a!ected. In a locally stable con"guration all perturbations are damped, whereas in
a CU basic #ow they grow in the downstream direction. In the latter con"guration,
perturbations eventually leave the domain of interest: in the long term, the #ow is globally

*Present address: Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Silver
Street, Cambridge CB3 9EW, UK. E-mail: b.pier@damtp.cam.ac.uk.

0889}9746/01/040471#10 $35.00/0 ( 2001 Academic Press



stable and it may only be kept out of equilibrium if perturbations are continuously entering
the in#ow boundary. Thus, CU #ows may be interpreted as amplixers since perturbations
entering the inlet grow along the stream until they leave the system at the outlet.

In contrast, transition from convective to absolute instability drastically changes the
dynamical behaviour. In absolutely unstable (AU) systems, instabilities grow in situ and
survive for all times. A self-sustained nontrivial state may therefore be observed without
external input. Thus, as far as the long term asymptotic behaviour is concerned, transition
from local stability to convective instability proves irrelevant, whereas transition from
convective to absolute instability plays a crucial ro( le.

The above-mentioned instability properties are de"ned for in"nite and spatially
homogenous systems. Since real #ows develop in the streamwise direction, stable, CU and
AU domains may coexist as the local properties vary along the stream. Under the
assumption that the streamwise variations be small on a typical instability length scale, the
previous de"nitions still apply locally at each streamwise station. In wake #ows at
moderate Reynolds numbers, which are of particular interest to readers of this Special
Issue, the transient reH gime leads to a stationary time-periodic state; the #ow globally
behaves as an oscillator. Characteristics such as spatial structure and global frequency
become intrinsic to the #ow: They are selected in the bulk and largely independent of in#ow
conditions.

The following questions then arise. (i) Under which conditions does global instability
occur? Does global instability coincide with the onset of local absolute instability or is an
AU domain of "nite extent required? (ii) In the case of globally synchronized oscillations,
how is the global frequency determined? Which part of the #ow acts as a wave maker?
(iii) How is the global behaviour a!ected by nonlinearities? Are "nite-amplitude oscilla-
tions governed by linear or nonlinear selection criteria? What is the importance of the mean
#ow correction generated by nonlinear interactions?

In the following, these issues are preferentially addressed in the context of streamwise
developing #ows in an inxnite domain, whether in the form of CGL model equations or real
wakes. In the latter instance, we solely consider wakes produced by a velocity de"cit
introduced at some streamwise station and boldly set aside the wake producing body. This
assumption is in marked contrast with the recent investigations by Couairon & Chomaz
(1997, 1999a, b) of nonlinear global modes governed by one-dimensional CGL model
equations in semi-inxnite domains. In this case, global mode onset takes place whenever
a front succeeds in propagating upstream against the advecting #ow, thereby getting pinned
at the upstream boundary point. This precisely takes place when transition from convective
to absolute instability occurs at the upstream boundary. Furthermore, Couairon &
Chomaz (1999b) have derived scaling laws for the global mode characteristic length scale
and its streamwise shape near onset which are in excellent agreement with experimental and
numerical studies of vortex shedding behind blu! bodies by Goujon-Durand et al. (1994)
and Zielinska & Wesfreid (1995). Such a scenario is also supported by the direct numerical
simulations of the nonlinear impulse response in parallel wakes conducted by Delbende &
Chomaz (1998): although the impulse response is of "nite amplitude, its upstream edge is
governed by linear dynamics.

2. SCALE SEPARATION

The theoretical formulation underlying all global mode analyses, whether linear or non-
linear, essentially relies on the assumption of slow streamwise variations of instability
properties. This hypothesis is required if one is to establish a speci"c relationship between
global behaviour and local properties.
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At an intuitive level of understanding, in open systems the mean #ow introduces
a preferred streamwise direction along which the entire dynamics develops. Let x denote the
streamwise distance, increasing from the inlet to the outlet. The coordinate x appears both
as a variable in streamwise derivative operators related to the instability properties and as
a parameter to account for the streamwise evolution of the basic #ow. If j denotes a typical
instability length scale and ¸ the streamwise evolution length scale of the basic #ow, weak
inhomogeneity is characterized by the small parameter

e,
j
¸

@1. (1)

Under assumption (1), the parametric streamwise dependence of the dynamics only occurs
through the slow coordinate X"ex. At leading order, the slow parameter X may be
considered independent of the fast variable x. Local instability characteristics are then
retrieved by freezing X in the governing equations and studying the equivalent homogenous
system in the in"nite domain !R(x(#R. Hence the fast evolving local dynamics is
slaved to the slow evolution of the basic #ow. This technique is fully justi"ed by resorting to
the method of multiple scales (Crighton & Gaster 1976; Bender & Orszag 1978).

3. MODEL FLOWS AND REAL FLOWS

The global behaviour of spatially developing #ows has typically been studied in the context
of the one-dimensional CGL model or the complete two-dimensional Navier}Stokes (NS)
equations.

The spatially inhomogenous Ginzburg}Landau evolution equation for a complex "eld
t(x, t) may conveniently be written as
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where u
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and k
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denote the absolute frequency and wavenumber, respectively, u
kk

the
second derivative of the frequency with respect to wavenumber. The choice c

i
,Im c(0

ensures that nonlinearities are stabilizing everywhere. All complex coe$cients of equation
(2) depend on X"ex to enforce assumption (1) of weak spatial inhomogeneity.

For two-dimensional incompressible #ows, the total streamfunction W (x, y, t) is governed
by the nondimensional vorticity equation
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where y denotes the cross-stream coordinate and Re the Reynolds number. Real #ows ful"ll
the assumption of slow streamwise development in high Reynolds number situations, and
the inhomogeneity parameter then reads

e"
1

Re
. (4)
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When e@1, the leading-order time-independent basic #ow resulting from (3) obeys the
Prandte boundary-layer equation
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, (5)

where the streamwise pressure gradient dP/dX arises as an integration constant. Basic
streamwise and cross-stream velocity components are then obtained as ;(y ;X)"LW/Ly
and <(y ;X)"!eLW/LX, respectively. Decomposition of the total streamfunction into
basic "eld and "nite-amplitude perturbations according to W (x, y, t)":y

0
;(g;X) dg#

t(x, y, t) yields the governing vorticity equation for t (x, y, t) as
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Although real #ows are two dimensional, there is only one slow streamwise coordinate
X that accounts for the evolution of local instability properties as described by a local
dispersion relation. The study of two-dimensional #ows is more complex since cross-stream
eigenfunctions have to be computed; however, the analysis of CGL or NS global modes
proceeds in exactly the same manner since all the fast evolving features are slaved to X.

Note that in the CGL model (2) any variations of the complex coe$cients with X may be
considered. In the hydrodynamic context (6) however, the basic #ow;(y;X) governed by (5)
is uniquely determined by the inlet velocity pro"le, say ;(y;X"0), and the streamwise
pressure distribution P (X) for X'0. In a self-consistent formulation, the velocity pro"les
;(y;X) appearing as coe$cients in (6) cannot be arbitrarily speci"ed. In the present
analysis, a co#owing wake pro"le is chosen for ;(y; X"0) and the pressure "eld P (X) is
then carefully tailored so that the essential features of experimental wake #ows are
reproduced. In this procedure, a &&synthetic wake'' is thereby generated without requiring
the presence of a solid obstacle [cf. Figure 2(a)]!

4. LINEAR RESONANCE CRITERION

In a stricly linear framework, theoretically consistent results have "rst been derived by
Chomaz et al. (1991) for the linear version of model (2) and by Monkewitz et al. (1993) for
the linear version of the vorticity equation (6). The essential physical property is the
complex local absolute frequency u

0
(X) de"ned in classical fashion (Briggs 1964; Bers 1983)

by imposing a zero group velocity condition on the local linear dispersion relation

u"X l (k,X). (7)

The form of the CGL model (2) already displays its dependence on u
0
(X), whereas for real

#ows the dispersion relation (7) is derived by solving the Orr}Sommerfeld equation applied
to the velocity pro"les ;(y;X) prevailing at each station X.

The criterion for linear global instability is then based on the variations of u
0
(X) and

states that the complex frequency ul

s
of a self-sustained linear global mode is given by the

saddle-point condition
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where it is understood that u
0
(X) has been analytically continued in the complex X-plane.

In general, the saddle point Xl

s
does not occur on the real axis, and linear global instability

characterized by Imul

s
'0 requires an AU region of xnite extent in the slow variable X.

Thus, in the linear framework, absolute instability is a prerequisite for global instability.
However, it is not a su$cient condition: Linear global modes are observed to decay in time
for AU domains of "nite but small extent in X, which may correspond to very large AU
domains in terms of x.

The typical shape of a linear CGL global mode is sketched in Figure 1(a). Note that, in
general, maximum amplitude occurs downstream of ReXl

s
.

5. NONLINEAR RESONANCE CRITERIA

A weakly nonlinear approach (Le Dizès et al. 1993) conducted close to the onset of global
instability speci"ed by Imul

s
"0 has proven that the bifurcation analysis is ill-behaved and

suggested that only a fully nonlinear theory is appropriate. In the nonlinear framework, two
types of "nite-amplitude oscillating states have been identi"ed for the inhomogenous CGL
equation in in"nite media: soft or hat (Pier & Huerre 1996) and steep or elephant (Pier et al.
1998) nonlinear global modes [cf. Figure 1(b, c)]. Their selection criteria are obtained from
the local linear and nonlinear dispersion relations, as summarized below.

The local nonlinear dispersion relation is de"ned via a temporal evolution problem in the
following way. Consider a homogenous medium obtained by freezing X at a prescribed
value. An unstable spatially periodic perturbation of real wavenumber k grows according to
X l

i
(k,X)'0 until its amplitude reaches a "nite level. Due to stabilizing nonlinearities,

a fully nonlinear wavetrain is generated with spatial periodicity imposed by the initial
wavenumber. Its frequency, measured for each k, then yields the nonlinear dispersion
relation

u"Xnl(k,X). (9)

Whereas the local linear dispersion relation (7) yields a complex frequency for any complex
wavenumber, the nonlinear dispersion relation (9) is de"ned only for real wavenumbers
k associated with a positive growth rate X l

i
(k, X)'0 and it necessarily yields real frequen-

cies. For the CGL model (2), nonlinear wave-trains are "nite-amplitude harmonic waves of
the form Re*(kx~ut) and (9) reads u"Im (c*(X) X l (k, X))/Im c*(X). Computation of (9) for
real #ows, however, requires a numerical integration as discussed by Pier & Huerre (2000).

Hat global modes [Figure 1(b); Pier & Huerre 1996] have an overall smoothly varying
amplitude, and their real frequency unl

s
is selected at a saddle-point Xnl

s
of the nonlinear

dispersion relation according to
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Elephant global modes [Figure 1(c); Pier et al. 1998] are characterized by a sharp front
governed by the Dee & Langer (1983) marginal stability criterion and located at the
upstream transition station Xca between CU and AU regions. The entire structure is tuned
to the front frequency given by the corresponding real absolute frequency

uca
0
"u

0
(Xca) with Imu

0
(Xca)"0. (11)
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Figure 1. Shapes of CGL global modes. Shaded regions indicate extent of AU domain. (a) Linear global mode.
(b) Nonlinear soft global mode or hat mode. (c) Nonlinear steep global mode or elephant mode. The names &&hat''

and &&elephant'' have been chosen in reference to Saint}ExupeH ry (1946).

The detailed analysis of the transition scenarii between the unperturbed state and either
type of nonlinear global mode reveals (Pier 1999, Pier et al. 2001) that the two nonlinear
resonance criteria (10, 11) are mutually exclusive and that the appropriate global bifurcation
parameter is the maximum absolute growth rate over the entire medium u.!9

0,i
,

maxu
0,i

(X). Nonlinear global modes exist whenever an AU region is present (u.!9
0,i

'0). At
transition (u.!9

0,i
"0) an elephant mode is always selected. Hat modes exist further above

threshold and are more readily obtained in systems where the basic advection velocity is
weak. Absolute instability is therefore a necessary and suzcient condition for the existence
of self-sustained nonlinear structures. This is in contrast with the results of Section 4: Local
absolute instability is only a necessary condition for the existence of ampli"ed linear global
modes.

6. FINITE-AMPLITUDE VORTEX STREET AS AN ELEPHANT MODE

The generalization of the above nonlinear theory to real #ows governed by the
Navier}Stokes equations has been conducted by Pier (1999) and Pier & Huerre
(2001).

In order to obtain unambiguous results that can be compared with the theory, the basic
#ow has to strictly comply with the condition of weak streamwise nonuniformity. Blu!
body wakes display a recirculation bubble near the obstacle which violates this assumption.
The &&synthetic wakes'' governed by the Prandtl boundary-layer equation (5) all avoid this
di$culty. In the example represented in Figure 2(a) for Re"100, the pressure gradient has
been selected to be mildly adverse in order to produce a central AU region (displayed in
gray), which is an essential feature of real wakes.

Direct numerical simulations of the temporal evolution of this basic #ow [see Pier &
Huerre (2001) for details] leads to a "nite-amplitude vortex shedding reH gime [Figure 2(b)]
tuned at a well-de"ned global frequency u

g
"0)186$0)002. This vortex street is made

up of wave-trains which slowly deform while travelling downstream: such structures
are locally periodic and their (x, t)-dependence solely occurs via a phase function with only
slow streamwise variations. Hence the multiple-scale formalism (Bender & Orszag 1978)
applies and the global structure may be analysed in terms of local linear and nonlinear
waves.

In the upstream domain (x(25), the basic #ow is seen to remain unperturbed: small-
amplitude wave-trains prevail in this linear region. Further downstream, nonlinear travel-
ling waves develop and completely mask the underlying basic wake #ow. In order to
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establish that the nonlinear globally synchronized state [Figure 2(b)] follows the elephant
resonance criterion (11), its numerically determined features are now compared with
predictions based on the local linear and nonlinear instability analyses of the basic #ow
[Figure 2(a)].

The computation of the local linear dispersion relation (7) via the Orr}Sommerfeld
equation reveals an AU domain extending over the streamwise interval 24(x(55 (gray
regions in Figure 2). The real absolute frequency prevailing at its upstream boundary
xca"24 reads uca

0
"0)190. The nonlinear resonance criterion (11) therefore accurately

predicts the vortex shedding frequency, unlike the linear criterion (8) which yields
ul

s
"0)143#0)008i.
The local nonlinear dispersion relation (9) is illustrated in Figure 2(c) by isofrequency

contours in the linearly unstable domain of the (X, k)-plane. These contours precisely de"ne
the nonlinear spatial branches knl (X, u) obtained by solving the nonlinear dispersion
relation (9) at a given frequency. A global mode synchronized at the frequency uca

0
is

expected to follow the spatial branch knl(X,uca
0
) represented by a thick dashed curve. The

local wave number of the numerically computed spatially developing vortex street
[Figure 2(b)] is represented by a thick solid curve in the same sketch and it is seen to closely
follow the path predicted by the elephant global mode structure.

The xnite-amplitude vortex street is thus described by a nonlinear elephant global mode. This
theory not only accurately predicts the vortex shedding frequency but also the spatial structure
of the downstream developing vortex street.

The mean-yow correction, which is absent in CGL models, is speci"c to real shear #ows.
Indeed, nonlinear quadratic interactions in the NS equations generate a time-independent
mean-#ow component as well as higher harmonics. In the fully developed vortex shedding
reH gime, the total mean #ow then results from the superposition of the basic #ow
[Figure 2(a)] and the mean-#ow correction [Figure 2(d)]. According to Figure 2(d), the
mean-#ow correction tends to "ll up the velocity de"cit in the wake. It is instructive to
compare the results of direct numerical simulations with those emerging from a temporal
evolution problem pertaining to a parallel wake frozen at a prescribed X station and
perturbed with a spatially periodic wave of wavenumber knl (X, uca

0
). Via this procedure,

a "nite-amplitude wave-train is obtained for large time, the frequency of which is precisely
uca

0
. Local mean-#ow corrections are thereby computed for each station X, which may be

pieced together to generate a spatially evolving mean correction "eld as displayed in
Figure 2(e). The agreement between direct numerical simulation [Figure 2(d)] and local
predictions [Figure 2(e)] is less satisfactory than for the unsteady part of the #ow "eld
[Figure 2(c)]. Whereas in the limit of vanishing inhomogeneity, the local analysis predicts
a mean-#ow correction of almost constant cross-stream width, the width of the mean #ow
in the direct numerical simulation is seen to increase with downstream distance. The
mean-#ow correction "eld is generated in the central shear region by nonlinear interactions
and slowly di!uses on a viscous scale into the outer cross-stream direction. This di!usion
process takes place in time [Figure 2(e)] or along the stream [Figure 2(d)], and there is no
obvious relationship between these two situations.

7. CONCLUSIONS

We are now in a position to answer the questions listed in the introductory section.

1. In a strictly linear approximation global instability in general requires an AU region of
"nite extent, whereas nonlinear global instability takes place as soon as local absolute
instability arises at some point in the yow. When nonlinearities are present, the linear
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resonance criterion (8) becomes irrelevant. It is the existence of a transition point from
convective to absolute instability which is crucial in the establishment of a self-sustained
nonlinear state.
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Figure 2. Intrinsic synchronization of spatially developing wake #ow at Re"100. Shaded regions indicate
extent of AU domain. (a) Streamwise velocity isolines of unperturbed basic wake #ow. (b) Snapshot of total
streamwise velocity isolines in periodic vortex shedding reH gime. (a, b) Dashed lines represent the levels 0)95, 0)90,
0)85 above the outlet free-stream velocity; solid lines pertain to the levels 0)80, 2, 0)10. (c) Isofrequency contours of
the nonlinear dispersion relation Xnl(k,X) in the linearly unstable domain of the (X, k)-plane. Thin solid contours
are separated by dX"0)1, thin dashed contours by dX"0)02. Predicted nonlinear spatial branch knl (X, uca

0
) of

global frequency uca
0
"0)19 is represented by thick dashed curve. Observed local wave number in (b) follows path

indicated by thick solid line. (d) Mean streamwise velocity correction of vortex street sketched in (b). (e) Mean
streamwise velocity correction of local nonlinear wave-trains of wavenumber knl(X,uca

0
). (d, e) Thick line separates

regions of positive (0)05, 0)10, 2 solid lines) and negative (!0)05,!0)10, 2dashed line) levels.

Note that the real cylinder wake becomes absolutely unstable at Re&25, whereas onset
of vortex shedding occurs only for Re&46. This discrepancy is presumably due to
a violation of the assumption of slow spatial development in the neighborhood of the
obstacle.

2. The complex frequency of a linear global mode [Figure 1(a)] is obtained at a saddle
point Xl

s
of u

0
(X) analytically continued in the complex X-plane see (8). Due to this

continuation procedure, no frequency generating location may be identi"ed in physical
space; note however, that the region of maximum absolute growth rate plays an essential
part. In contrast, the global frequency of nonlinear global modes [Figure 1(b, c)] is selected
at a speci"c location: either the saddle point Xnl

s
of the nonlinear dispersion relation (10) or

the upstream boundary Xca of the AU region (11). These nonlinear resonance criteria are
purely local in the sense that only the properties of the system at these stations are involved.
In the case of wake #ows, the vortex street is triggered by a front structure at Xca which acts
as a source and imposes its frequency to the entire #ow.

3. The selection mechanisms pertaining to hat and elephant nonlinear global modes are
markedly distinct. The hat frequency selection criterion (10) involves a saddle point of the
nonlinear dispersion relation (9) in the bulk of the "nite-amplitude region [Figure 1(b)].
Elephant modes [Figure 1(c)] are selected by a front located at the upstream boundary of
the AU domain; "nite amplitude wave-trains develop downstream of this location. Since the
elephant frequency selection criterion (11) only involves the linear dispersion relation, this
variety of nonlinear global mode is surprisingly governed by a local linear criterion.

Finite-amplitude vortex shedding in wakes generates a mean-#ow correction comparable
in magnitude to the basic #ow. Nonlinearities thus completely modify the underlying basic
#ow which becomes unobservable unless one arti"cially kills the perturbations by imposing
for example a symmetry condition.

The comparison between the results of direct numerical simulations and locally com-
puted nonlinear wave-trains has demonstrated the validity of a linear and nonlinear
analyses based on a scale separation assumption. The theory has led to the identi"cation of
two varieties of global modes: elephants and hats. The vortex street has been shown to be of
elephant type with a front located at the convective-absolute instability transition point
imposing its frequency to the entire #ow. There remains to determine a real #ow that
sustains a global mode of hat type. Rayleigh}BeH nard convection in the presence of
a horizontally varying temperature di!erence or Taylor}Couette #ow between rotating
coaxial cylinders with a varying gap may be good candidates for such a situation since there
is no basic advection.

REFERENCES

BENDER, C. M. & ORSZAG, S. A. 1978 Advanced Mathematical Methods for Scientists and Engineers.
New York: McGraw-Hill.

NONLINEAR SYNCHRONIZATION IN OPEN FLOWS 479



BERS, A. 1983 Space-time evolution of plasma instabilities* absolute and convective. In Handbook of
Plasma Physics (eds M. N. Rosenbluth & R. Z. Sagdeev), pp. 451}517, Amsterdam: North}
Holland.

BRIGGS, R. J. 1964 Electron-Stream Interaction with Plasmas. Cambridge, MA: MIT Press.
CHOMAZ, J.-M., HUERRE, P. & REDEKOPP, L. G. 1991 A frequency selection criterion in spatially

developing #ows. Studies in Applied Mathematics 84, 119}144.
COUAIRON, A. & CHOMAZ, J.-M. 1997 Absolute and convective instabilities, front velocities and global

modes in nonlinear systems. Physica D 108, 236}276.
COUAIRON, A. & CHOMAZ, J.-M. 1999a Primary and secondary nonlinear global instability. Physica D

132, 428}456.
COUAIRON, A. & CHOMAZ, J.-M. 1999b Fully nonlinear global modes in slowly varying #ows. Physics of

Fluids 11, 3688}3703.
CRIGHTON, D. & GASTER, M. 1976 Stability of slowly diverging jet #ow. Journal of Fluid Mechanics 77,

397}413.
DEE, G. & LANGER, J. S. 1983 Propagating pattern selection. Physical Review Letters 50, 383}386.
DELBENDE, I. & CHOMAZ, J.-M. 1998 Nonlinear convective/absolute instabilities in parallel

two-dimensional wakes. Physics of Fluids 10, 2724}2736.
GOUJON-DURAND, S., JENFFER, P. & WESFREID, J. E. 1994 Downstream evolution of the BeH nard}von

KaH rmaH n instability. Physical Review E 50, 308}313.
HAMMOND, D. & REDEKOPP, L. 1997 Global dynamics of symmetric and asymmetric wakes. Journal of

Fluid Mechanics 331, 231}260.
HUERRE, P. 2000 Open shear #ow instabilities. Perspectives in Fluid Dynamics (eds

G. K. Batchelor, H. K. Mo!att & M. G. Worster), Cambridge: Cambridge University Press.
HUERRE, P. & MONKEWITZ, P. A. 1990 Local and global instabilities in spatially developing #ows.

Annual Review of Fluid Mechanics 22, 473}537.
HUERRE, P. & ROSSI, M. 1998 Hydrodynamic instabilities in open #ows. In Hydrodynamics and
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In this paper it is shown that the two-dimensional time-periodic vortex shedding
régime observed in the cylinder wake at moderate Reynolds numbers may be inter-
preted as a nonlinear global structure and its naturally selected frequency obtained
in the framework of hydrodynamic stability theory. The frequency selection criterion
is based on the local absolute frequency curve derived from the unperturbed basic
flow fields under the assumption of slow streamwise variations. Although the latter
assumption is only approximately fulfilled in the vicinity of the obstacle, the theoreti-
cally predicted frequency is in good agreement with direct numerical simulations for
Reynolds numbers Re > 100.

1. Introduction
Strouhal (1878) appears to be the first to have studied the periodic features pro-

duced by the movement of a cylindrical body in air. Ever since, experimental frequency
measurements have been refined and the relationship between Strouhal vortex shed-
ding frequency and Reynolds number is now well established, e.g. Provansal, Mathis
& Boyer (1987), Williamson (1988), Norberg (1994), Leweke & Provansal (1995); for
a review see Williamson (1996). On the theoretical side, understanding of the spa-
tiotemporal dynamics of oscillatory flows has proceeded by successively considering
linear model equations (Chomaz, Huerre & Redekopp 1991; Le, Dizès et al. 1996),
the linearized version of the Navier–Stokes equations (Monkewitz, Huerre & Chomaz
1993), and nonlinear model equations on semi-infinite (Couairon & Chomaz 1996,
1997a, b, 1999a, b) and infinite (Pier & Huerre 1996; Pier et al. 1998; Pier, Huerre
& Chomaz 2001) domains. In the framework of the fully nonlinear Navier–Stokes
equations, the frequency selection criterion has been obtained (Pier & Huerre 2001a)
for a particular ‘synthetic’ wake: a wake with no solid obstacle and no reverse flow
region. The objective of the present analysis is to demonstrate that the same criterion
holds for natural wake flows around solid obstacles.

In the context of spatially developing flows giving rise to self-sustained oscillations,
an essential feature is the complex local absolute frequency ω0(X) (Briggs 1964; Bers
1983; Huerre & Monkewitz 1990) which depends on the streamwise X-coordinate. In
absolutely unstable (AU) regions, characterized by ω0,i(X) ≡ Imω0(X) > 0, pertur-
bations are not swept away by advection and grow in situ thus leading to non-trivial
dynamics without external input. In the past, growing evidence has been gathered to
support the existence of a relationship between the global wake frequency and the
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ω0(X) curve derived from measured or model wake profiles, e.g. Betchov & Crim-
inale (1966), Koch (1985), Triantafyllou, Triantafyllou & Chryssostomidis (1986),
Monkewitz & Nguyen (1987), Monkewitz (1988), Hannemann & Oertel (1989), Kar-
niadakis & Triantafyllou (1989); for a review see Huerre & Monkewitz (1990) and
Huerre & Rossi (1998). Different resonance principles have been conjectured: Koch
(1985) proposed a feedback mechanism associated with the real absolute frequency
ωac

0 ≡ ω0(X
ac) prevailing at the downstream boundary Xac of the AU region. Monke-

witz & Nguyen (1987) considered an initial resonance principle where the real global
frequency ωca

0 ≡ ω0(X
ca) is provided by the upstream transition station Xca from

convective to absolute instability.
According to the first theoretically consistent criterion established in a strictly linear

setting by Chomaz et al. (1991), Monkewitz et al. (1993) and Le Dizès et al. (1996),
the complex global frequency ω`

s is given by a saddle-point condition

ω`
s = ω0(X

`
s ) with

dω0

dX
(X`

s ) = 0, (1.1)

based on the analytic continuation of ω0(X) in the complex X-plane. This linear
criterion was shown by Hammond & Redekopp (1997) to yield a strikingly accurate
frequency prediction for the fully developed vortex street in the wake of a blunt-
edged plate. Note, however, that ω0(X) in that study is based on the time-averaged
mean flow instead of the unperturbed basic flow, thus implicitly taking into account
nonlinear effects. The performance of criterion (1.1) based on mean flows will be
discussed in the final section.

In the framework of fully nonlinear amplitude evolution equations and by inves-
tigating semi-infinite domains, Couairon & Chomaz (1997a, b, 1999a, b) have derived
scaling laws that are in excellent agreement with experimental and numerical results
pertaining to the spatial structure of bluff-body wakes close to threshold. In infinite
systems, self-sustained time-periodic finite-amplitude structures have been found as
soft (‘hat’) modes (Pier & Huerre 1996) or steep (‘elephant’†) modes (Pier et al. 1998),
and the respective frequency selection criteria have been established. The analysis of
the relevant transition scenarios (Pier et al. 2001) has shown that the unperturbed
basic state always first bifurcates to an elephant structure. Moreover, hat modes may
only exist in situations of weak mean flow advection, so that they are ruled out in wake
flows. Nonlinear elephant modes are characterized by a stationary front located at
the upstream transition station Xca from local convective to absolute instability. This
front acts as a source generating a downstream-propagating nonlinear wavetrain and
effectively tuning the entire system to its frequency. The stationary front obeys the Dee
& Langer (1983) marginal stability criterion, hence the frequency of elephant modes
equals the real absolute frequency prevailing at the front location and is given by

ωca
0 = ω0(X

ca) with ω0,i(X
ca) = 0 and

dω0,i

dX
(Xca) > 0. (1.2)

Downstream of the front, a fully nonlinear wavetrain prevails that is governed by
the local nonlinear dispersion relation and follows the nonlinear wavenumber branch
of frequency ωca

0 . It should be noted that this criterion governing a fully nonlinear
global structure only involves the purely linear local absolute frequency, and that it
fully confirms the conjecture of Monkewitz & Nguyen (1987).

All theoretical analyses rely on slow streamwise variations to establish the relation-
ship between global behaviour and local characteristics. In this context, the linear (1.1)

† The choice of the terms ‘hat’ and ‘elephant’ is motivated by Pier & Huerre (2001b).
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and nonlinear (1.2) criteria yield a leading-order approximation of the respective
global frequency, and corrections of higher order in the inhomogeneity parameter are
obtained by further asymptotic analyses (Monkewitz et al. 1993; Pier et al. 2001). In
order to solve the global mode problem in the context of the fully nonlinear Navier–
Stokes equations, a ‘synthetic’ wake (Pier & Huerre 2001a) was designed that fulfils
the quasi-parallel flow assumption. In this configuration, local linear and nonlinear
dispersion relations derived from the basic flow velocity profiles predict the existence
of a nonlinear elephant mode, the global frequency and spatial structure of which are
in excellent agreement with the synchronized finite-amplitude vortex street obtained
by direct numerical simulations.

Whereas the synthetic wake was tailored to obey the assumption of slow streamwise
variations required by theory, bluff body wakes are strongly non-parallel near the
obstacle surface. Nevertheless, the present study has been undertaken, bearing in
mind that perturbation analyses often yield reasonable predictions for finite values of
the ‘small’ parameter. The results then validate a posteriori the method and assess the
utility of asymptotic analyses of quasi-parallel flows in situations of practical interest.

2. Governing equations and solution method
The following study is carried out for two-dimensional incompressible flows

governed by the Navier–Stokes equations. The Reynolds number is defined as
Re = UD/ν, where U represents the free-stream velocity, D the obstacle diameter and
ν the kinematic viscosity. Using non-dimensional variables based on D and U, the
governing momentum and continuity equations are then given by

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −∂p

∂x
+

1

Re
∆u+ fu, (2.1a)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −∂p

∂y
+

1

Re
∆v + fv, (2.1b)

∂u

∂x
+
∂v

∂y
= 0, (2.1c)

where x and y denote streamwise and cross-stream coordinates, u and v the corre-
sponding components of the velocity and p the pressure field.

For fast numerical integration, the above equations are discretized on a Cartesian
grid, and the presence of the obstacle is enforced by a penalization method similar
to that used by Angot, Bruneau & Fabrie (1999): inside the domain covered by the
cylinder (x2 + y2 6 1/4), a ‘body force’ is applied with components

fu = −u/τ and fv = −v/τ, (2.2)

where τ is a relaxation parameter. A value of τ = 0.01 was found sufficient to drive the
components of the total velocity field to negligible values, and results are not affected
when further decreasing τ. Thus, the entire domain is filled with fluid and there is no
need for body-fitted coordinates or for boundary conditions on the obstacle surface.

Spatial discretization combines finite differences with nx = nu+no+nd points in the
x-direction and ny Chebyshev collocation points in the y-direction. The streamwise
mesh is constructed with no equispaced grid points separated by δx in the obstacle
region and nu (nd) elements in the upstream (downstream) regions uniformly stretched
according to a stretching factor of κu (κd). The Chebyshev collocation points −1 6
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Figure 1. Streamwise velocity field of the basic flow around the cylinder at Re = 100. Isolines
pertain to the levels −0.1, 0.0, . . . , 1.1 (0, 1 thick lines). A reverse flow region (u < 0, shown in grey)
prevails between the obstacle and the stagnation point at xst.

ξi = − cos[iπ/(ny + 1)] 6 +1 for i = 0, . . . , ny + 1 are mapped onto the entire cross-

stream axis−∞ 6 yi 6 +∞ through the algebraic transformation y
√

2/`y = ξ/(1−ξ2),
where the parameter `y governs the distribution of collocation points on the y-axis.
Assuming that u−U, v and p vanish at y = ±∞, the computation may be restricted
to the interior collocation points associated with 1 6 i 6 ny . At the inlet the free-
stream velocity is imposed, and at the outlet non-reflecting boundary conditions (Jin
& Braza 1993) are implemented. The grid used in the present computations is defined
by ny = 55, `y = 1 and nu = 60, no = 140, nd = 300, δx = 0.01, κu = 1.10, κd = 1.02;
the total streamwise extent of the domain is then −35 < x < 195.

Time-integration of system (2.1) is performed via a fractional-step method of
second-order accuracy in time. At the intermediate time-step, the two components
of the velocity field are obtained by solving Helmholtz-type problems. A Poisson
problem then yields a correction to the pressure required to enforce divergence-free
velocity fields. A Crank–Nicholson scheme is used for the viscous terms; the advection
terms are obtained at the intermediate time-step by extrapolation based on the two
previous time-steps.

Using a Cartesian grid, the second-order y-derivative operator may be diagonalized
so that the two-dimensional Helmholtz (Poisson) problems transform into a series of
decoupled one-dimensional problems† that are efficiently solved by making use of a
generalized Thomas algorithm. Thus the required computational time only increases
linearly with the total number of grid points. Most of the results have been obtained
on a laptop computer; a typical run takes on the order of one hour.

3. Basic flow and local absolute frequency
This part of the study investigates the unperturbed basic wake flow and the

corresponding local absolute frequency curve, upon which the frequency selection
criteria are based. By definition, the basic flow is a steady solution of the Navier–
Stokes equations (2.1). This flow is unstable for Reynolds numbers beyond critical
and then impossible to observe experimentally. Following Fornberg (1985), however,
the steady solution is obtained when imposing a stabilizing symmetry condition on
the y = 0 axis and considering only the domain y > 0. Figure 1 shows the basic
streamwise velocity field around the circular cylinder at Re = 100. The near wake
displays a reverse flow region (u < 0, shown in grey) extending from the obstacle

† The author is indebted to Uwe Ehrenstein for bringing this method to his attention.
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Figure 2. Imaginary (a, c) and real (b, d ) parts of local absolute frequency for basic wake flows
obtained with Re = 20, 30, . . . , 200 (thick curves pertain to Re = 50, 100, 150, 200).

down to the stagnation point xst. The variation with Reynolds number of the reverse
flow extent is discussed below (see figure 3).

In a previous investigation (Pier & Huerre 2001a) resorting to the academic con-
figuration of a ‘synthetic’ wake with no solid boundaries, no reverse flow and no
stagnation point, the existence of a small inhomogeneity parameter ε � 1 made
possible a rigorous asymptotic analysis based on the separation of fast x and slow
X ≡ εx streamwise scales. In an attempt to prove the applicability of these results
in situations of practical interest where ε = O(1), we boldly ignore that the present
flow is non-parallel in the near-wake region and do not use the slow X-coordinate
in the rest of the paper. Local characteristics are then derived at a given stream-
wise station by freezing the x-coordinate and studying the equivalent parallel shear
flow of velocity profile U0(y) = u(x, y). Linear instability waves are governed by
the Orr–Sommerfeld equation (Drazin & Reid 1981) which yields the local linear
dispersion relation ω = Ω`(k, x) between the complex frequency ω and complex
wavenumber k at the streamwise station x under consideration. These linear eigen-
value problems in the cross-stream coordinate are solved via a Chebyshev spectral
method based on the previously introduced collocation points. The complex local
absolute frequency ω0(x) is then derived in classical fashion by applying a zero
group velocity condition on the local linear dispersion relation (Briggs 1964; Bers
1983). Figure 2 illustrates the streamwise evolution of the absolute growth rate ω0,i

and real absolute frequency ω0,r for different values of the Reynolds number in the
range 20 6 Re 6 200. Local absolute instability (ω0,i > 0) prevails downstream of
the obstacle when Re > Rea ' 25, in agreement with the findings of Monkewitz
(1988). The magnified graphs (figure 2c, d ) show that the near wake is insensitive
to changes in Re when Re > 100. It should also be noted that the local absolute
growth rate rapidly decays with decreasing x in the boundary layers along the cylinder
(−0.5 < x < 0.5) and reaches very large negative values for x < −0.5 (not shown on
graph).

The evolution with Reynolds number of the AU and reverse flow regions is shown
in figure 3. Absolute instability prevails in the interval xca < x < xac (both shades
of grey), the extent of which is seen to increase approximately linearly with Re.
Note that the maximum absolute growth rate remains almost constant for Re > 100
(see figure 2a). A comparison of the stagnation point location xst (thick solid curve
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Figure 3. Reynolds number dependence of local absolute instability and reverse flow region for
the basic flow (AU region extends over both shaded areas xca < x < xac and the stagnation point
location xst follows the thick solid curve) and the mean flow (AU region covers light grey area
x̄ca < x < x̄ac and stagnation point x̄st follows the thick dashed curve).

in figure 3) and the marginally absolutely unstable station xac shows that the AU
domain closely follows the reverse flow region, slightly extending beyond it. The
remaining elements of figure 3 pertain to the time-averaged mean flows and are
discussed below.

4. Periodic vortex shedding
Above a critical value of Reynolds number, finite-amplitude periodic vortex streets

develop in the wake of the cylinder when the entire cross-stream domain −∞ 6 y 6
+∞ is considered. Direct numerical simulations of system (2.1) are performed using
the method outlined in § 2. Simulations are started with the basic flow fields and the
instability is triggered by a small-amplitude initial impulse. After a transient growth,
nonlinearities rapidly lead to saturation of a fully developed downstream-propagating
periodic vortex street. Figure 4 shows a snapshot of the velocity fields at Re = 100 in
the central region of the computational domain. Time series are recorded at different
locations and corresponding frequency spectra computed (figure 5) to ascertain the
synchronized behaviour of the flow. Inspection of these spectra demonstrates that the
entire vortex street is tuned to a global fundamental frequency and its harmonics.
Figure 6 shows that the numerically obtained frequencies (open squares) are in good
agreement with the experimental relationship (solid curve) between Strouhal number
St = ω/2π and Reynolds number (Williamson 1988). Moreover, the critical Reynolds
number Rec for onset of periodic vortex shedding has been localized in the range
49.0 < Rec < 49.5 which nearly corresponds to the experimental threshold of 47
measured by Provansal et al. (1987). Bearing in mind that the cylindrical obstacle is
discretized on a Cartesian grid, these agreements are deemed sufficient validation of
the code for the present purpose; more accurate numerical results have been obtained
e.g. by Barkley & Henderson (1996).

The nonlinear vortex street is associated with Reynolds stresses leading to a finite
mean flow correction. The main effect of this mean flow distortion is a shortening
of the recirculation bubble, as indicated by the stagnation point location x̄st of
the time-averaged flows (thick dashed curve in figure 3). It should be noted that
the average flow is a result of the nonlinear vortex street and does not obey the
Navier–Stokes equations. For comparison, however, the local linear stability analysis
of the previous section may be repeated for the time-averaged flows. This reveals that
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Figure 4. Snapshot of (a) streamwise and (b) cross-stream velocity fields in the periodic nonlinear
vortex shedding régime at Re = 100. (a) Contour levels u = −0.2,−0.1, . . . , 1.2 (0, 1 thick lines).
(b) Contour levels v = −0.6,−0.5, . . . , 0.6 (0 thick line).
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Figure 5. Harmonic spectra of velocity time series in the vortex shedding régime at Re = 100.
(a) v-component at x = 2.2, y = 0.7. (b) u-component at x = 0.2, y = 2.1.

the reduction of the reverse flow region is associated with a similar reduction of the
absolutely unstable domain (x̄ca < x < x̄ac, lightly shaded region in figure 3). There is,
however, no feedback of the nonlinear downstream vortices in the upstream region; in
particular the neighbourhood of the upstream boundary xca = x̄ca of the AU region
is not affected by mean flow corrections.

5. Discussion of frequency selection criterion
The objective of this last section is to show that the vortex shedding régime may

be interpreted in terms of a nonlinear elephant mode, i.e. that its global frequency
is dictated by criterion (1.2). The frequency of nonlinear elephant global modes is
imposed by a sharp front located at the transition station xca from local convective to
absolute instability. The global frequency of the system then equals the real absolute
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Figure 6. Reynolds number dependence of cylinder wake characteristic frequencies. Vortex shedding
frequencies of the present simulations (open squares) closely follow the experimental Strouhal
number curve from Williamson (1988) (solid line). Theoretical elephant frequencies ωca

0 (filled
squares) approximately predict the actual vortex shedding frequencies for Re > 100. The other
characteristic frequencies ωac

0 (grey circles), ωmax
0,r (open circles) and ω`

s,r (filled circles) are unable to
account for the fully developed vortex street beyond onset at Re ' 49. Note the good performance
of ω̄`

s,r based on the mean flow (diamonds).

frequency ωca
0 prevailing at xca. For the wake flows under consideration, transition

from convective to absolute instability occurs in the boundary layer along the cylinder
near its trailing edge, as demonstrated by figure 2(c). Monitoring the corresponding
frequency ωca

0 as the Reynolds number is varied (filled squares in figure 6) shows that
this frequency plateaus at ωca

0 ' 1.2 for Re > 100. Comparison of these theoretical
predictions with the results obtained by the present simulations (open squares) or
by experiment (solid line) shows that the discrepancy is less than 10% over the
entire range 100 < Re < 200. Thus the theory is fairly successful in predicting the
actual vortex shedding frequency, considering that criterion (1.2) is a leading-order
approximation derived under the condition of slow streamwise evolution of the entire
flow. The agreement improves at higher Reynolds numbers since then the assumption
of weakly diverging flows is more closely fulfilled. Note also that perfect agreement
occurs at Re = 180, beyond which the two-dimensional vortex street undergoes a
transition to three-dimensionality (Barkley & Henderson 1996; Williamson 1996).
For Re < 100, finite non-parallel effects result in a poorer frequency prediction.
This strong non-parallelism may also account for the discrepancy between onset of
absolute instability at Re = Rea ' 25 and onset of global instability at Re = Rec ' 47.
Indeed, in the range Rea < Re < Rec the extent of the AU region is much less
than the typical vortex street wavelength and thus unable to sustain a stationary
front.

The mechanism leading to the synchronized vortex street at moderate Reynolds
numbers may be interpreted in the following way. The initial impulse triggers a
wavepacket of growing amplitude and its envelope advances against the basic flow
in the absolutely unstable region. Perturbations thus penetrate into the boundary
layer near the cylinder trailing edge. Further upstream, at the station xca of neutral
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absolute instability, a balance between upstream perturbation growth and downstream
advection is reached, and perturbations pile up at that location. Nonlinearities lead to
saturation of the fluctuating amplitude, a front is formed at xca and a fully nonlinear
wavetrain obtained in the region x > xca. Its frequency is dictated by the front and
is ωca

0 . The domain x < xca is covered by the front tail and the fluctuation amplitude
exponentially decays towards the inlet. At the marginal xca station, weakly nonlinear
fluctuations prevail (as illustrated in figure 5(b) for Re = 100 when xca = 0.2). It
should be emphasized that perturbations evolve in the infinite −∞ < x < +∞ system
and no boundary condition is imposed at the obstacle trailing edge x = 0.5. This is
in contrast with the investigations of semi-infinite domains with upstream boundary
condition by Couairon & Chomaz (1997a, b, 1999a, b). In the latter configuration,
analysis of one-dimensional model equations close to global instability yields scaling
laws that account for experimental observations remarkably well. The present study
does not rely on the assumption of near criticality, but rather on reasonably parallel
flows as obtained for Re > 100.

To fully appreciate the quality of criterion (1.2) in predicting the vortex shedding
frequency, it should be compared with the other basic flow characteristic frequencies
(round symbols on figure 6). The filled grey circles represent the real absolute fre-
quency ωac

0 prevailing at the downstream boundary xac of the AU region. Although
the location xac continuously moves downstream with increasing Reynolds number
(see figure 3a), the frequency ωac

0 is seen to remain approximately constant at 0.8.
Another characteristic frequency is derived from the location xmax where the absolute
frequency ωmax

0 ≡ ω0(x
max) with maximum absolute growth rate occurs. Its real part

ωmax
0,r is plotted by open circles in figure 6. The filled circles in figure 6 represent

ω`
s,r ≡ Reω`

s of criterion (1.1) governing spatially extended and globally synchronized
structures when the governing equations are linearized with respect to the basic flow.
The frequencies ω`

s , obtained by analytic continuation of the ω0(x) curves in the com-
plex x-plane, are found to approximately follow ωmax

0 since the complex saddle point
x`s is located near the position xmax of maximum absolute growth rate. Both ωmax

0,r and

ω`
s,r display even lower values than ωac

0 for Re > 100 and none of these frequencies
can account for the actual global frequency. This is not a surprise since they are not
derived from a nonlinear theory. In contrast, as already established by Hammond &
Redekopp (1997) in a similar configuration, the linear criterion (1.1) applied on the
mean flows obtained by averaging in time the fully nonlinear régime yields frequencies
ω̄`
s,r (diamonds in figure 6) which very closely follow the actually observed frequencies.

Unfortunately, since these frequencies are based on the fully developed vortex street,
this excellent agreement does not help identifying the mechanism that is responsible
for the vortex shedding.

To conclude, it has been shown that the vortex shedding frequency governing
bluff body wakes can be understood and predicted by local instability analyses of
the basic flow considered to be weakly diverging. Despite non-parallel effects in the
vicinity of the obstacle, reasonable agreement is obtained for Re > 100. It should
also be emphasized that the aim of the present method is to reveal the underlying
frequency selection mechanism and not to accurately estimate the global frequency:
the frequency predictions require almost the same numerical effort as the complete
simulations!

Present and past fruitful collaborations with Nigel Peake and Patrick Huerre,
suggestions and advice from Uwe Ehrenstein, John Hinch, Paul Metcalfe and Laurette
Tuckerman are gratefully acknowledged.
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Spatially varying systems with a central absolutely unstable region are known to give
rise to self-sustained  nite-amplitude globally synchronized structures. The present
investigation shows how such an intrinsic behaviour may be controlled by small-
amplitude forcing applied upstream of the fully developed oscillations. This technique
allows the tuning of the entire system to any frequency in a wide range, expending
only an exponentially small power.

Keywords: absolute instability; self-sustained oscillations; control

1. Introduction

Self-sustained  nite-amplitude oscillations are produced in a great variety of situa-
tions, ranging from ®uid ®ows (Huerre 2000), chemical reactions (Kapral & Showal-
ter 1995) and biological processes (Winfree 1987) to solar activity cycles (Meunier
et al . 1997). Such an intrinsic behaviour is often unwanted, e.g. it induces structural
damage in ®ows around obstacles or a¬ects performance of turbocompressors. Under-
standing the mechanism responsible for these oscillations may then suggest methods
of suppressing or controlling them. In many situations, e.g. three-dimensional bound-
ary layers (Reed & Saric 1989), the naturally occurring nonlinear waves are prone
to secondary instabilities, which in turn lead to a turbulent regime. Hence, a con-
trolled modi cation of the primary nonlinear state is desirable if one wants to delay
(or possibly to enhance) the onset of turbulence. Although very e¯ cient, optimal or
robust control theory (Bewley & Liu 1998) is di¯ cult to implement, since it relies
on heavy numerical computations and on a precise knowledge of the system state.
Our objective is to devise a control strategy applicable to a broad class of systems
that takes advantage of the global instability mechanism and requires only extremely
weak localized action.

In the context of spatially varying systems, the existence of intrinsic oscillations
(Huerre & Monkewitz 1990; Pier et al . 2001) is closely related to the transition
from convective to absolute instability, as determined by the complex local absolute
frequency !0(X) (Briggs 1964; Bers 1983). In stable or convectively unstable (CU)
regions, characterized by !0;i(X) ² Im !0(X) < 0, perturbations either decay or are
swept away by advection. Convectively unstable systems thus display no intrinsic

y Present address: Laboratoire de m¶ecanique des °uides et d’acoustique, ¶Ecole centrale, 36 avenue
Guy-de-Collongue, 69130 ¶Ecully, France.
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behaviour and essentially behave as ampli ers of external noise: without continu-
ous external input, the medium returns to its unperturbed state. By contrast, in
absolutely unstable (AU) regions where !0;i(X) > 0, perturbations grow in situ and
hence may lead to non trivial dynamics without external forcing. It has been shown
that the onset of global nonlinear oscillations in in nite systems occurs as soon as
local absolute instability is reached somewhere in the medium (Pier et al . 2001).
Other varieties of nonlinear global modes have been obtained in semi-in nite sys-
tems (Couairon & Chomaz 1996, 1997a; b, 1999), which are not discussed here.

The sensitivity of CU open ®ows to external perturbations has been well estab-
lished, e.g. for free shear layers (Ho & Huerre 1984), the Taylor{Couette ®ow with
through ®ow (Babcock et al . 1991) or the wake behind a cylinder (Le Gal & Cro-
quette 2000). In the AU regime, similar systems generally display robust natural
oscillations that are believed to be insensitive to low noise levels (Huerre 2000).
However, a variety of unstable systems, e.g. side-branching dendrites (Bouissou et
al . 1990), are known to exhibit a strong receptivity to periodic rather than random
perturbations. Similarly, by revisiting spatially developing media displaying a central
AU domain embedded in two semi-in nite at most CU regions, the present inves-
tigation shows that small-amplitude harmonic forcing can completely modify the
natural nonlinear behaviour. It should be emphasized that the aim is not to suppress
the ®uctuations but to tune them to an externally imposed frequency and thereby
also to modify the local wavelengths and amplitudes.

2. Problem formulation

The present study is based on a general one-dimensional model equation that
accounts for the dynamics of a variety of physical systems and is tractable by ana-
lytical methods. The model (2.1) has on many occasions proven to be a convenient
test ground to recognize and study generic features that have later been identi ed
in a variety of situations. The same strategy is adopted here. We assume that the
system under consideration is described by a complex scalar  eld Á(x; t) in an in nite
one-dimensional spatially inhomogeneous domain and is governed by

@Á

@t
= ¡ i(!0(X) + 1

2
!kk(X)k0(X)2)Á + !kk(X)k0(X)

@Á

@x

+ 1
2
i!kk(X)

@2Á

@x2
¡ i ® (X)jÁj2Á + S(x; t); (2.1)

where the complex functions !0(X), k0(X), !kk(X) and ® (X) account for the local
properties of the medium and only depend on a slow space variable X = ° x. The
weak inhomogeneity parameter ° ½ 1 is de ned as the ratio of the typical instability
length-scale to the non-uniformity length-scale of the medium. The source function
S(x; t) represents an externally applied forcing, to be used below.

In the subsequent discussion, constant use is made of the local linear and nonlinear
properties of system (2.1), which are presented now. Local characteristics are derived
from (2.1) by freezing X and studying the corresponding spatially homogeneous
medium. Linear properties pertain to the dynamics of small-amplitude normal modes
of the form ei(kx¡!t), where the complex frequency ! and complex wavenumber k
satisfy the linear dispersion relation

! = « l(k; X) ² !0(X) + 1
2
!kk(X)(k ¡ k0(X))2: (2.2)
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The particular form in which the coe¯ cients of (2.1) have been cast brings to the
fore the local complex absolute frequency !0(X) associated with the local complex
absolute wavenumber k0(X) determined by a zero group velocity condition as (Briggs
1964; Bers 1983)

!0(X) = « l(k0(X); X) with
@« l

@k
(k0(X); X) = 0:

In a typical situation of interest, the local absolute growth rate !0;i(X) displays a
single maximum !m ax

0;i and the medium is stable for large jX j. The system under
consideration then exhibits an AU domain whenever !m ax

0;i > 0.
The model equation (2.1) also admits  nite-amplitude travelling waves Rei(kx¡!t),

where the real amplitude R, real frequency ! and real wavenumber k satisfy the
nonlinear dispersion relations

! = « n l(k; X) ² Im[ ® (X)? « l(k; X)]

¡ ® i(X)
; (2.3)

R2 = R(k; X)2 ² « l
i(k; X)

¡ ® i(X)
; (2.4)

with superscript ? denoting complex conjugate. Note that the condition of stabilizing
nonlinearities requires that ® i(X) < 0. At a given value of X , nonlinear wavetrains
thus exist (R2 > 0) for the range of real wavenumbers k associated with a positive
temporal growth rate « l

i(k; X) > 0, and the nonlinear amplitude R vanishes for
marginal wavenumbers associated with « l

i(k; X) = 0.

3. Signalling problem

Of particular importance to the present work is the spatial response to localized
time-harmonic forcing switched on at t = 0. This problem is governed by equation
(2.1) with the source term

S(x; t) = Af ¯ (x ¡ xf )H(t)e¡i!f t; (3.1)

where Af , Xf ² ° xf and !f represent the forcing amplitude, location and (real)
frequency, respectively, ¯ denotes the Dirac delta functiony and H the Heaviside
unit step function.

Consider the spatial response of system (2.1) in a situation where no AU region
is present, i.e. !m ax

0;i < 0. Then no self-sustained oscillations are produced and the
resulting  eld Áf(x; t) is purely due to the external forcing ( gure 1). Under the
slowly varying medium hypothesis ( ° ½ 1), the long-time response of constant fre-
quency !f is obtained in terms of Werner{Kramers{Brillouin (WKB) asymptotic
approximations (Bender & Orszag 1978) of the form

Áf = A(X; !f) exp

µ
i

°

Z X

Xf

k(u; !f) du ¡ i!f t

¶
: (3.2)

y The representation ±(x) = (1=(
p

¼¾)) exp(¡x2=¾2) with ¾ = 1=4 is used in the numerical imple-
mentation below.
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Figure 1. Envelope jÁf j and real part Re Áf of spatial response of governing equation to
time-harmonic forcing of frequency !f = 1 and amplitude Af = 10¡ 10 applied at Xf = ¡2.
Numerical simulation performed with !0 = 0:4 ¡ 0:2(1 + X 2)i, k0 = 1 ¡ 1:5i, !kk = 1 ¡ 0:5i,
® = 0:2 ¡ i and ° = 1=25. Decaying upstream response follows kl ¡ (X ; !f ) branch. Downstream
response exponentially grows according to k l+ (X ; !f ) to reach ¯nite amplitude at X n l = ¡0:6,
where the nonlinear k n l + (X ; !f ) branch takes over. Further downstream, beyond the neutral
station X n (!f ) = 2:6, the decaying kl+ (X ; !f ) prevails.

In this expression, the local wavenumber branch k(X; !f) accounts for the fast spatial
variations, whereas the amplitude function A(X ; !f ) only depends on slow space and
is obtained in classical WKB fashion as a series expansion

A(X; !f) ¹ A0(X ; !f) + ° A1(X ; !f ) + ° 2A2(X ; !f ) + ¢ ¢ ¢ : (3.3)

For reasons that become clear below, we only consider exponentially small forcing
amplitudes Af = e¬ =° with ¬ < 0. In the vicinity of the forcing location Xf , the
spatial response is then governed by linear dynamics, and the resulting complex
local wavenumber branch is obtained by solving (2.2) for ! = !f as

kl§(X ; !f) = k0(X) §

s

2
!f ¡ !0(X)

!kk(X)
: (3.4)

Causality considerations (Briggs 1964; Bers 1983) allow the unambiguous de nition
of the square-root branches in (3.4) such that the kl+ (kl¡) spatial branch pertains
to the downstream X > Xf (upstream X < Xf) side of the forcing location. Upon
substituting (3.4) with (3.2) into the governing equation (2.1), a solvability condition
governing the leading-order amplitude is derived as

dA0

dX
= ¡ 1

2

dkl§=dX

kl§(X; !f) ¡ k0(X)
A0(X ; !f): (3.5)

Proc. R. Soc. Lond. A (2003)
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Invoking continuity of the response at X = Xf , the exact long-time linear response
is then obtained to leading order as

A0(X; !f) = AfCf exp

µZ X

Xf

¡ 1

2

dkl§=du

kl§(u; !f) ¡ k0(u)
du

¶
; (3.6)

with

Af = exp
¬

°
and Cf =

2

!kk(Xf)[kl+ (Xf ; !f) ¡ kl¡(Xf ; !f)]
: (3.7)

The modulus jÁf j of the forced response (3.2) in the linear regions is then derived to
leading order as

log jÁf j ¹ 1

°

µ
¬ ¡

Z X

Xf

kl§
i (u; !f) du

¶
: (3.8)

In stable or at most CU regions, the upstream spatial response decays for all fre-
quencies, kl¡

i (X; !) < 0. The linear approximation then applies to the entire region
¡ 1 < X < Xf upstream of the forcing location. For forcing applied at a CU loca-
tion, there exists a range of frequencies associated with downstream growth, i.e. such
that kl+

i (Xf ; !f ) < 0. The downstream spatial response then exponentially grows to
reach  nite amplitude levels. Nonlinear saturation prevents further growth and leads
to a nonlinear wavetrain at the forcing frequency. The nonlinear saturation station
X n l where the modulus jÁf j takes O(1) values depends on the forcing amplitude and
is determined by (3.8) as Z Xnl

Xf

kl+
i (u; !f ) du = ¬ : (3.9)

Thus, the downstream linear kl+ (X ; !f) spatial branch prevails in the interval
Xf < X < X n l, which is of  nite extent in terms of the slow variable X only for
an exponentially weak forcing amplitude Af = e¡j¬ j=° with j ¬ j = O( ° 0).

Downstream of X n l, the spatial response is made up of a  nite-amplitude saturated
wavetrain of frequency !f governed by the local nonlinear dispersion relations (2.3),
(2.4). The local wavenumber in (3.2) then follows the real spatial branch k n l+ (X; !f)
obtained by solving (2.3) for the prescribed forcing frequency ! = !f . In the nonlinear
regime, the modulus of the leading-order amplitude (3.3) is determined by (2.4) as

jA0(X; !f)j = R(k n l+ (X; !f); X); (3.10)

whereas its phase is governed by a solvability condition at higher order. A detailed
discussion of the relationship between nonlinear spatial response and causality as
well as a full derivation of nonlinear WKB approximations can be found in Pier et
al . (2001).

The nonlinear wavetrain of local wavenumber k n l+ (X; !f) prevails in the inter-
val X n l < X < X n (!f ) beyond which the spatial response exponentially decays. The
transition station X n (!f) from a nonlinear to a linear regime is characterized by the
neutral stability condition « l

i(k
n l+ (X n ; !f); X n ) = 0. The amplitude of the nonlin-

ear travelling wave vanishes there, and the complex branch kl+ (X ; !f) continuously
takes over in the downstream linear region X > X n (!f). It should be noted that for
a given forcing frequency the onset station of nonlinearities X n l also depends on the
forcing amplitude whereas the neutral station X n does not.

Proc. R. Soc. Lond. A (2003)
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Figure 2. Envelope jÁe j and real part Re Áe of the self-sustained structure illustrated by the
numerical simulation of unforced governing equation with !0 = 0:4+ 0:3(1 ¡X 2)i, k0 = 1 ¡1:5i,
!kk = 1 ¡ 0:5i, ® = 0:2 ¡ i and ° = 1=25. Central AU domain X ca = ¡1 < X < X ac = 1
is shaded. The front of frequency !ca

0 = 0:4 at X ca generates the upstream linear k l ¡ (X ; !ca
0 )

branch and the downstream nonlinear k n l + (X ; !ca
0 ) branch. Further downstream, beyond the

neutral station X n (!ca
0 ) = 2:8, the exponentially decaying kl+ (X ; !ca

0 ) prevails.

4. Self-sustained oscillations

Before applying the above results to control media displaying a central AU region,
their self-sustained behaviour is summarized. Consider a situation where !m ax

0;i > 0,
associated with an AU interval Xca < X < Xac. Then a fully nonlinear temporally
periodic state is reached without external input (Pier et al . 2001). At !m ax

0;i = 0, onset
of a self-sustained state occurs via a saddle-node bifurcation; for moderate values of
!m ax

0;i > 0 an `elephant’ or `steep’ nonlinear structure (Pier & Huerre 2001) is selected
( gure 2), characterized by a sharp (Dee & Langer 1983) front at the upstream
boundary Xca of the AU domain. This front of real frequency !ca

0 ² !0(Xca) acts
as a wavemaker, hence tuning the entire system to a single frequency. The entire
 eld Áe(x; t) may then be interpreted as the spatial response to this front. Indeed, in
the upstream linear region X < Xca, the complex  eld Áe(x; t) follows the complex
spatial kl¡(X ; !ca

0 ) branch and its modulus exponentially decays according to

log jÁej ¹ ¡ 1

°

Z X

Xca

kl¡
i (u; !ca

0 ) du: (4.1)

The region Xca < X < X n (!ca
0 ) is made up of  nite-amplitude waves following the

nonlinear k n l+ (X ; !ca
0 ) branch. Beyond the neutrally stable station X n (!ca

0 ), the
decaying linear kl+ (X ; !ca

0 ) branch prevails. Further above onset of a nonlinear self-
sustained state, i.e. for larger values of !m ax

0;i , `steep’ modes may give way to `soft’
modes (Pier et al . 2001; Pier & Huerre 2001); their control is not discussed here.

We emphasize the important fact that the fully nonlinear self-sustained structure
is determined by a purely linear criterion, based only on the local absolute frequency
curve !0(X). The front is of `pulled’ (Ebert & van Saarloos 2000) type and its

Proc. R. Soc. Lond. A (2003)
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Figure 3. Map of regions tuned to forcing frequency !f (shaded) or to intrinsic frequency !ca
0 as a

function of the forcing amplitude Af = e ¬ = ° while forcing frequency !f and location Xf are kept
constant. Below the control threshold ¬ < ¬ c , the forcing frequency !f prevails in the region
Xf < X < X b , whereas the self-sustained structure of frequency !ca

0 survives in X > X b . For
¬ > ¬ c , the forced response supersedes the intrinsic oscillations in the entire system. At each
¬ , the dominant component of the total ¯eld Á follows the spatial linear or nonlinear branches
indicated in the corresponding regions.

dynamics is determined by the decaying tail: the front envelope is stationary in time
if the front location is precisely at the CU{AU transition station Xca. Note also
that the region X > Xac downstream of the AU domain is slaved to the wavemaker
prevailing at Xca and does not play an active part in the dynamics. The result
that self-sustained nonlinear oscillations are triggered by a stationary front at Xca

suggests that this intrinsic behaviour may be modi ed by perturbing the front.

5. Control

Consider now applying to the intrinsic nonlinear structure a forcing of frequency !f

and small amplitude Af = e¬ =° localized at Xf in the CU region, Xf < Xca. For small
forcing amplitudes, both the spatial response of frequency !f and the self-sustained
mode of frequency !ca

0 are governed by linear dynamics in the neighbourhood of Xf .
The resulting  eld in the linear region is then obtained as a superposition Á = Áf + Áe

of the forced response of frequency !f and the natural oscillations of frequency !ca
0 .

At a given location, the dominant component in the total  eld depends on the relative
modulus of Áf (3.8) and Áe (4.1).

In the interval Xf < X < Xca, the local spatial growth rates of Áf and Áe are
respectively given by ¡ kl+

i (X; !f) and ¡ kl¡
i (X; !ca

0 ). From (3.4) and causality it is
seen that always kl+

i (X ; !) > kl¡
i (X; !); hence the result

kl+
i (X; !f) > kl¡

i (X ; !ca
0 ) (5.1)

holds for forcing frequencies !f su¯ ciently close to the natural frequency !ca
0 . A

comprehensive survey of all possible con gurations of equation (2.1) has not been
attempted, but inequality (5.1) was found to hold for all forcing frequencies associ-
ated with downstream growth. The result (5.1) means that from the forcing location
Xf towards the front location Xca the modulus of the natural oscillations jÁej grows

Proc. R. Soc. Lond. A (2003)
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Figure 4. Control of self-sustained structure by localized harmonic forcing. Spatio-temporal
greylevel representation of Re Á(x; t). Parameter settings are as in ¯gure 2, and for t < 0 the
system is in a state of natural oscillations tuned to !ca

0 = 0:4 with a front at Xca = ¡1. Forcing
of frequency !f = 1 is applied at Xf = ¡2 and switched on at t = 0 with di® erent ampli-
tudes Af . (a) With Af = 10¡ 12 , external forcing is unable to perturb nonlinear self-sustained
structure. (b) With Af = 10¡ 11 , spatial response reaches ¯nite amplitude precisely at the front
location X n l = X ca and continuous competition between both frequencies takes place. (c) With
Af = 10¡ 10 , spatial response achieves nonlinear regime at X n l = ¡1:1 upstream of X ca and
rapidly replaces the natural oscillations.

faster than the forced response jÁf j. The regions dominated by either the forcing fre-
quency !f or the natural frequency !ca

0 may then be monitored for di¬erent values
of the forcing amplitude e¬ =° while keeping the forcing location and frequency at
prescribed values ( gure 3).
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For extremely weak forcing ¬ < ¬ 0 with

¬ 0 ²
Z Xca

Xf

kl¡
i (u; !ca

0 ) du < 0; (5.2)

the forced response is dominated by the intrinsic oscillations at the very forcing
location. Due to the di¬erent spatial growth rates (5.1), the self-sustained mode of
frequency !ca

0 then prevails over the forced response in the entire system.
For higher forcing amplitudes ¬ > ¬ 0, the response Áf dominates Áe at the forcing

location Xf . However, since jÁej grows faster than jÁf j with increasing X , the forc-
ing frequency !f only prevails in the interval Xf < X < X b extending towards the
location X b , where both components display a similar modulus and beyond which
Áe prevails. The boundary X b between the regions tuned to the forcing frequency !f

or to the natural frequency !ca
0 is thus determined as

Z Xb

Xf

kl+
i (u; !f ) du ¡

Z Xca

Xb

kl¡
i (u; !ca

0 ) du = ¬ : (5.3)

With increasing forcing level, the region dominated by !f grows in size and the
boundary X b eventually reaches the front location Xca. This occurs at the critical
forcing amplitude, ¬ c, given by

¬ c ²
Z Xca

Xf

kl+
i (u; !f) du: (5.4)

For forcing levels in the range ¬ 0 < ¬ < ¬ c, the response of frequency !f does not
achieve O(1) amplitudes at the front location Xca and is thus unable to perturb the
nonlinear self-sustained waves of frequency !ca

0 prevailing for X > Xca ( gure 4a).
For ¬ = ¬ c, however, the forced response reaches  nite amplitude precisely at Xca

and competes with the stationary front of the intrinsic nonlinear structure. Numerical
simulations performed in this situation ( gure 4b) reveal that the forced response is
then able to continually perturb the natural oscillations and the system does not
converge to an equilibrium state tuned at a single frequency.

For slightly stronger forcing, ¬ > ¬ c, the response at frequency !f reaches non-
linear saturation upstream of the front, i.e. X n l < Xca. In this regime ( gure 4c),
the intrinsic oscillations at !ca

0 are completely suppressed and replaced by the forced
response in the entire domain. For still higher forcing amplitudes, the system remains
tuned at !f , and its spatial structure does not evolve except that the nonlinear sat-
uration station X n l moves upstream towards Xf (cf.  gure 3).

This behaviour may be interpreted as the result of two competing sources of di¬er-
ent frequencies at di¬erent locations: the self-sustained !ca

0 -front at Xca responsible
for the natural nonlinear structure and the external !f -forcing at Xf . In the absence
of external forcing, the front at Xca acts as a cornerstone upon which the global
structure is based; this front dictates its frequency to the entire system and gener-
ates the downstream developing nonlinear wavetrain covering the AU region. When
forcing is applied at Xf , the intrinsic wavemaker at Xca survives only if the upstream
decaying front tail experiences an unperturbed medium. As soon as the front is over-
whelmed by a  nite-amplitude wave, the source of the `steep’ mode is suppressed and
so is the entire self-sustained structure. The underlying AU region then plays no role

Proc. R. Soc. Lond. A (2003)
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in the dynamics, since it is e¬ectively masked by an externally imposed nonlinear
wavetrain. Thus, the oscillator-type behaviour of AU domains appears to be robust
with respect to external forcing only if the strength of the forcing does not exceed
an exponentially small level.

E¬ective control of the central AU domain requires that the forcing loca-
tion and frequency are chosen so as to produce a downstream growing response,
i.e. kl+

i (Xf ; !f) < 0. This condition of downstream growth is ful lled for a range of
frequencies !f when forcing is applied at a position Xf in the CU domain. Moreover,
tuning to a single frequency can only be achieved when this forcing frequency pro-
duces nonlinear waves that are stable with respect to secondary perturbations. The
precise range of possible control frequencies depends on the particular parameter
settings of (2.1). In typical con gurations, control of the system at twice or half the
natural frequency is readily obtained.

In summary, an externally imposed nonlinear wave at the transition station from
local convective to absolute instability entirely suppresses the intrinsic behaviour.
Self-sustained oscillations may thus be controlled and tuned to a prescribed fre-
quency, chosen such as to avoid damaging resonances or to improve performance of
the system under consideration. Due to exponential growth of the forced response in
the CU region, only an exponentially small forcing amplitude, and hence controller
power, is required to achieve this result.

Enlightening and fruitful collaboration with Nigel Peake is gratefully acknowledged.
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In the three-dimensional boundary layer produced by a rotating disk, the experi-
mentally well-documented sharp transition from laminar to turbulent flow is shown
to coincide with secondary absolute instability of the naturally selected primary
nonlinear crossflow vortices. Fully saturated primary finite-amplitude waves and the
associated nonlinear dispersion relation are first numerically computed using a local
parallel flow approximation. Exploiting the slow radial development of the basic
flow, the naturally selected primary self-sustained flow structure is then derived by
asymptotic analysis. In this state, outward-spiralling nonlinear vortices are initiated
at the critical radius where primary absolute instability first occurs. A subsequent
secondary stability analysis reveals that as soon as the primary nonlinear waves come
into existence they are absolutely unstable with respect to secondary perturbations.
Secondary disturbances growing in time at fixed radial locations continuously perturb
the primary vortices, thus triggering the direct route to turbulence prevailing in this
configuration.

1. Introduction
The flow due to an infinite disk rotating in otherwise still fluid has served as the

archetypal configuration for the study of three-dimensional boundary layers ever since
von Kármán (1921) obtained the basic flow as an exact similarity solution of the
Navier–Stokes equations. Interest in this flow has been renewed by Lingwood’s (1995)
discovery that it exhibits a transition from local linear convective to absolute instability
at a radius Rca which closely corresponds to the location of experimentally observed
turbulence onset (Theodorsen & Regier 1944; Gregory, Stuart & Walker 1955;
Chin & Litt 1972; Fedorov, et al. 1976; Kobayashi, Kohama & Takamadate 1980;
Malik, Wilkinson & Orszag 1981; Lingwood 1996). The present investigation, inspired
by Lingwood’s (1995) result, addresses the fully nonlinear régime. The objective is
to analyse the naturally selected finite-amplitude state and its secondary stability
properties in order to elucidate the process responsible for the sudden transition to
turbulence.

The Kármán boundary layer is a rather crude and academic representation of a
centrifugal pump, a turbomachinery rotor or even of a computer hard disk. However,

† Present address: Laboratoire de mécanique des fluides et d’acoustique, École centrale, 36 avenue

Guy-de-Collongue, 69130 Écully, France.
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despite its simplicity, it displays most of the features observed in situations of higher
complexity or with more elaborate geometries, e.g. with the fluid at infinity in
rigid-body rotation at the same or a different rate (Batchelor 1951; Zandbergen
& Dijkstra 1987), the flow between a stationary and a rotating disk enclosed by
a cylinder (Jarre, Le Gal & Chauve 1996a; Gauthier, Gondret & Rabaud 1999;
Schouveiler, Le Gal & Chauve 2001), and the flow in a rotor–stator annular cavity
with radial throughflow (Serre, Crespo del Arco & Bontoux 2001a; Serre et al. 2001b).
The rotating-disk problem is also closely related to the flow over a backward swept
wing (Gregory et al. 1955; Cebeci & Stewartson 1980; Bippes, Müller & Wagner 1991;
Cebeci et al. 1991; Lin & Reed 1993; Malik, Li & Chang 1996, Koch 1996), and
it is often claimed that their behaviour is governed by analogous principles. All
these types of boundary layers display similar three-dimensional velocity profiles, are
subject to inviscid crossflow instabilities and undergo transition to turbulent flow,
cf. Reed & Saric (1989). Despite intensive work and recent advances, cf. Schmid &
Henningson (2000) and Saric, Reed & White (2003), no full understanding of the
turbulent breakdown process has yet been achieved. Identification of the mechanism(s)
responsible for transition would improve the prediction methods and lead to new and
efficient control strategies, of considerable practical importance e.g. to the aeronautics
industry.

However the analogy between a rotating disk and a swept wing is not complete.
First, the rotating disk displays self-similar velocity profiles, so that only the study of
a single flow instance is required, while the swept-wing boundary layer depends on
several control parameters such as sweep angle and chordwise pressure gradient. But
the essential difference resides in the azimuthal periodicity of the disk, while the wing
lacks any periodic coordinate. Thus perturbations may be naturally recycled in the
disk flow, and this property greatly affects its long-time behaviour.

Consider the response to a brief and localized perturbation applied in a region where
the boundary layer is unstable, e.g. blowing through a small hole in the disk/wing
surface. With time, a wavepacket develops that propagates along the surface while
it grows in amplitude and size. The interplay of propagation and growth dictates
the long-time behaviour. If the wavepacket is blown away by the basic flow faster
than it expands, the flow is said to be convectively unstable and, without continuous
external input, eventually returns to its unperturbed state. If, by contrast, growth
of the wavepacket dominates over advection, the medium is said to be absolutely
unstable and perturbations grow in situ without further external forcing (Briggs 1964;
Bers 1983; Huerre & Monkewitz 1990).

In the three-dimensional boundary layer produced by a swept wing, wavepackets
may be advected along chordwise and spanwise directions: a genuine absolute
instability thus requires the disturbances to maintain themselves in both directions.
Investigations of the long-time behaviour of the impulse response in the swept-wing
problem (Lingwood 1997b; Ryzhov & Terent’ev 1998; Taylor & Peake 1998) have
revealed the possibility of a chordwise absolute instability, but no instance of spanwise
absolute instability has so far been found, i.e. perturbations grow in time at a fixed
chordwise location while they continue to be advected in the spanwise direction so
as to eventually be shed from the wing tip. These results suggest that the persistent
fluctuations over aircraft wings are triggered by continuous external disturbances
such as roughness elements on the surface or atmospheric turbulence.

The rotating-disk boundary layer contrasts with the above scenario. Due to the
exact periodicity in the azimuthal coordinate, a mere radial absolute instability (as
theoretically established by Lingwood 1995) is a sufficient condition for disturbance
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growth at a fixed location. Indeed, a wavepacket triggered by an initial impulse and
amplifying at a constant radial position may, in the early stage of its development,
be carried around in the azimuthal direction but, in the long term, it will grow and
eventually cover the full circumferential extent of the disk. While many experimental
studies (Gregory et al. 1955; Kohama 1984; Wilkinson & Malik 1985) have focused
on perturbations that are fixed with respect to the disk, and thus certainly generated
by roughness elements, the study of the impulse response by Lingwood (1996) has
experimentally validated the above scenario of self-sustained disturbances triggered
by an initial perturbation and surviving without further external input.

The close relationship between global self-sustained oscillations and local absolute
instability has been clarified over the past decade by successively considering one-
dimensional model equations and the two-dimensional Navier–Stokes equations,
first in a linear approximation and then in a fully nonlinear framework: linear
model equations (Chomaz, Huerre & Redekopp 1991; Le Dizès et al. 1996), linear
Navier–Stokes equations (Monkewitz, Huerre & Chomaz 1993), nonlinear model
equations (Couairon & Chomaz 1996, 1997a,b, 1999a,b; Pier & Huerre 1996; Pier
et al. 1998; Pier, Huerre & Chomaz 2001), nonlinear Navier–Stokes equations (Pier
& Huerre 2001a; Pier 2002b), for a review see Huerre (2000). In the strictly linear
framework, these investigations have shown that absolute instability is only a necessary
condition for global instability and, in general, an absolutely unstable region of finite
extent is a prerequisite. By contrast, the fully nonlinear governing equations admit
self-sustained finite-amplitude solutions as soon as a point of local absolute instability
appears and in some extreme cases even without absolute instability at all (Couairon
& Chomaz 1997a). In the context of the rotating-disk flow, recent numerical (Davies
& Carpenter 2003) and theoretical (Peake & Garrett 2003) investigations have shown
that this configuration does not exhibit global instability in the linear approximation,
even though absolute instability prevails in the semi-infinite region beyond a critical
radius. These results suggest that only a nonlinear approach can possibly account for
the self-sustained behaviour of the rotating-disk flow.

In situations where finite-amplitude waves develop, either as a naturally selected
global mode or by continuous external forcing, the question arises of whether
this primary nonlinear state is stable with respect to secondary disturbances. The
techniques to carry out local secondary stability analyses are now well-established
(Herbert 1988): the most common is to derive a Floquet system of linear differential
equations with periodic coefficients after linearization of the governing equations
about the primary nonlinear waves. Such an analysis requires first computation of
the saturated primary periodic solution, e.g. in terms of a Fourier series, and then use
of this as the new basic flow, which usually results in a large Floquet eigensystem. In
view of this numerical task, when applied to three-dimensional boundary layers, most
early secondary stability analyses (Reed 1987; Fischer & Dallmann 1991; Balachandar,
Streett & Malik 1992) used the ‘shape assumption’ by which the nonlinear equilibrium
solution is replaced by the linear eigenfunction scaled to a finite amplitude. It is
only the recently available computing power that has made possible fully consistent
secondary stability analyses (Malik, Li & Chang 1994; Högberg & Henningson 1998;
Malik et al. 1999; Janke & Balakumar 2000; Koch et al. 2000; Koch 2002).

Whether or not the primary saturated wavetrain survives in the long-term is
determined by the convective or absolute nature of the secondary instability: only
absolutely unstable secondary perturbations are able to resist basic flow advection,
to grow at fixed spatial locations and to permanently destroy the underlying primary
nonlinear wave. The mathematical foundation of secondary absolute instability
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analysis has been firmly laid by Brevdo & Bridges (1996), but so far only a few
periodic flows have been found to be absolutely unstable (Brancher & Chomaz 1997;
Chomaz, Couairon & Julien 1999).

Huerre (1988) appears to be the first to have shown that secondary absolute
instability may occur prior to onset of primary absolute instability. This is particularly
relevant in the context of self-sustained oscillations, as demonstrated by Couairon &
Chomaz (1999b) in a study of the Ginzburg–Landau equation: a primary nonlinear
global mode exists whenever primary absolute instability occurs; this global mode is
dynamically unstable whenever secondary absolute instability prevails for the selected
primary nonlinear wavetrain. In familiar scenarios, primary and secondary absolute
instability thresholds are crossed successively when a control parameter is increased.
A stable global mode is then observed over a finite parameter range. Recent findings
by Le Gal et al. (2003) seem to indicate that this scenario applies to the Batchelor
flow between a rotating and a stationary disk. However, the order of thresholds may
be reversed, and then the primary nonlinear global mode is unstable as soon as it
comes into existence. In this latter situation, which is shown in the present paper to
apply to the Kármán boundary layer over a single rotating disk, the global instability
at the primary threshold leads in a single step to a disordered state.

As discussed above, the boundary layer over a swept wing does not display
primary absolute instability and thus does not give rise to self-sustained fluctuations.
Nonetheless, transition in that flow could be due to secondary absolute instability
of the primary waves produced by roughness elements. In recent studies, Koch
et al. (2000) and Koch (2002) have computed saturated zero-frequency crossflow
vortices and investigated their secondary stability properties ‘in order to examine
whether a change from convective to absolute instability is possible in crossflow
vortices’. However, despite the remarkable techniques deployed by these authors,
no secondary absolute instability has been found and the mechanism of laminar–
turbulent breakdown remains to be elucidated in that configuration.

In the rotating-disk flow, azimuthal periodicity appears to facilitate the occurrence
of absolute instability thus motivating the present study, a brief account of which has
been previously given in Pier (2002a). The investigation was carried out in the same
spirit as the work by Koch et al. (2000) and Koch (2002), and the outline is as follows.
The self-similar laminar basic flow is presented in § 2 and the governing equations of
the problem are given in § 3. For the sake of completeness the primary local linear
stability characteristics are briefly reviewed in § 4 although these results are already
well-established (Cebeci & Stewartson 1980; Malik et al. 1981; Malik 1986; Bassom
& Gajjar 1988; Balakumar & Malik et al. 1990; Bassom & Hall 1991; Cebeci et al.
1991; Faller 1991; Lin & Reed 1993; Malik et al. 1994; Lingwood 1995). The core
of the study is then aimed at characterizing and understanding the fully nonlinear
régime. Local properties of fully nonlinear waves are computed in § 5 as solutions of
a local nonlinear dispersion relation. Following the results of Pier et al. (2001), the
naturally selected spatially extended global solution is derived in § 6 by asymptotic
matching of these linear and nonlinear wavetrains. Finally, the stability of this self-
sustained structure with respect to secondary perturbations is investigated in § 7 and
the existence of a secondary absolute instability is established.

2. Laminar basic flow
The rotating-disk configuration calls for a formulation using cylindrical coordinates.

Throughout this investigation an inertial frame of reference is used with r , θ and z
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Figure 1. Basic flow over a rotating disk. (a) Radial rU (z) and azimuthal rV (z) velocity
profiles linearly increase with radial distance while the axial flow W (z) towards the disk
surface does not depend on radius. (b, c) Similarity profiles of radial U , azimuthal V and axial
W velocity components and pressure P .

denoting radial, azimuthal and axial coordinates respectively. The fluid in the domain
z > 0 is brought into motion by the disk rotating at constant angular frequency about
the axis r = 0 normal to the disk surface (figure 1a). The fluid near the disk acquires,
by viscous stresses, an azimuthal velocity rV (z) which linearly increases with radial
distance. This circular motion results in centrifugal forces pulling the fluid outwards.
The radial outflow rU (z) induces, by continuity, a weak axial flow component W (z)
towards the disk. This axial flow reaches a constant value far from the disk surface
and counteracts diffusion of vorticity away from the disk, thus maintaining a constant
boundary layer thickness in the entire system (Batchelor 1967).

The infinite-disk problem lacks a characteristic length scale and thus allows the
use of non-dimensional variables based on disk rotation rate, kinematic viscosity
and fluid density, so that the flow does not depend on any control parameter. The
time-independent axisymmetric basic flow is then given by von Kármán’s (1921) exact
similarity solution to the Navier–Stokes equations in cylindrical coordinates as

U(r, z) ≡




rU (z)
rV (z)
W (z)


 and P (z), (2.1)
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where rU , rV and W are the non-dimensional radial, azimuthal and axial velocity
components respectively and P is the pressure. Figure 1(b, c) displays the self-similar
components U (z), V (z) and W (z) that are governed by the set of ordinary differential
equations

U ′′ = U 2 − V 2 + U ′W, (2.2a)

V ′′ = 2UV + V ′W, (2.2b)

W ′ = −2U, (2.2c)

with the boundary conditions

U (0) = 0, V (0) = 1, W (0) = 0 and U (∞) = 0, V (∞) = 0. (2.3)

With a reference pressure at z = +∞, the associated local pressure is obtained as

P (z) = W ′(z) + (W (∞)2 − W (z)2)/2. (2.4)

3. Mathematical formulation
After separating the total instantaneous flow fields into basic and perturbation

quantities according to

U(r, z) + u(r, θ, z, t),

P (z) + p(r, θ, z, t),

}
(3.1)

the momentum and continuity equations for the perturbation may be written as

∂u
∂t

+ (u · ∇)u + Lu = −∇p + �u, (3.2a)

∇ · u = 0, (3.2b)

with the boundary conditions

u = 0, ∂zp = ∂zzw at z = 0,

u = 0, p = 0 at z = +∞,

and the notation

u ≡




u

v

w


 , ∇p ≡




∂rp

(∂θp)/r

∂zp


 ,

(u · ∇)u ≡
(

u
∂

∂r
+

1

r
v

∂

∂θ
+ w

∂

∂z

)
u +

1

r




−v2

uv

0


 ,

Lu ≡
(

rU
∂

∂r
+ V

∂

∂θ
+ W

∂

∂z

)
u +




rU ′w
rV ′w
W ′w


 +




Uu − 2V v

Uv + 2V u

0


 ,

�u ≡
(

∂2

∂r2
+

1

r2

∂2

∂θ2
+

∂2

∂z2

)
u +

1

r

∂u
∂r

+
1

r2




−u − 2∂θv

−v + 2∂θu

0


 ,

∇ · u ≡ ∂u

∂r
+

1

r
u +

1

r

∂v

∂θ
+

∂w

∂z
.
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The boundary layer thickness is constant in the entire system, of order unity
in non-dimensional coordinates, while the non-axial velocity components linearly
increase with radius. Hence when investigating features far from the disk axis and
near a given radial location R � 1, the assumption of slow radial development is
appropriate. Local properties for r � R are then derived by freezing the variable r

which appears in the coefficients of the governing equations above and studying the
corresponding three-dimensional flow

U(z; R) ≡




RU (z)
RV (z)
W (z)


 . (3.3)

This is the parallel-flow assumption: equations (3.2) with the variable r replaced by
the prescribed value of R are homogenous in both θ and r and will be referred to
as the local governing equations. Local linear and nonlinear characteristics are derived
from these equations; the link between local properties and global behaviour will
be re-established in § 6. Under the parallel-flow assumption, the value of R appears
as a control parameter rather than a variable in the equations. It determines the
magnitude of the basic flow velocity components (3.3) and thus plays the role of an
effective local Reynolds number.

4. Primary linear instability properties
Under the parallel-flow assumption both r and θ are homogenous directions;

infinitesimally small velocity and pressure disturbances prevailing at a given location R

may thus be written in normal-mode form as

u(r, θ, z, t) = ul(z; α, β; R) exp i(αr + βθ − ωt),

p(r, θ, z, t) = pl(z; α, β; R) exp i(αr + βθ − ωt),

}
(4.1)

where α is a complex radial wavenumber, β an integer azimuthal mode number,
ω a complex angular frequency and ul , pl the associated complex velocity and
pressure components. After substitution of (4.1) into the linearized version of the
local governing equations (3.2), dropping the (u · ∇)u term and replacing r by R in
the coefficients, an eigenvalue problem in the axial direction yields the local linear
dispersion relation

ω = Ωl(α, β; R) (4.2)

together with the eigenfunctions ul(z; α, β; R) and pl(z; α, β; R).

4.1. Numerical solution procedure

The differential eigenproblem in the axial coordinate z is solved via a Chebyshev
collocation method (Canuto, Hussaini & Quarteroni 1988). The collocation points
−1 � ξi ≡ − cos(iπ/Nz) � 1 for 0 � i � Nz are mapped onto the semi-infinite domain
0 � z � +∞ through the transformations

z = a	

1 + ξ ′

1 − ξ ′ and ξ ′ = b	 ξ + (1 − b	)(ξ
3 + c	(1 − ξ 2)). (4.3)

The parameters a	 > 0, 0 < b	 � 1 and 0 � c	 � 1 determine the distribution
of the collocation points on the z-axis: with c	 = 0, half of the points are located
in the interval 0 � z � a	, while the remaining points are stretched towards z = +∞
with an algebraically decreasing density; the parameters b	 and c	 allow refined
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Figure 2. Local primary linear dispersion relation. Isocontours of the temporal growth rate
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control of the distribution, smaller values of b	 resulting in a better resolution of the
region corresponding to ξ = 0. A similar mapping has been used by Balachandar
et al. (1992).

The numerical discretization yields a large number of spurious eigenvalues and
eigenfunctions. The physically relevant solutions are identified by inspection of the
eigenfunctions, which are required not to vary with increasing resolution. Extensive
resolution tests have revealed that remapping the collocation points via (4.3) with
a	 = 2, b	 = 0.6 and c	 = 0.5 is the most appropriate choice for the various numerical
procedures implemented in the present investigation. Unless otherwise stated, these
parameters are used throughout the rest of the paper. In general Nz = 40 collocation
points are found to very accurately resolve the eigenfunctions. Due to the spectral
accuracy of this method, a lower resolution of Nz = 30 still yields quite reliable
results and has been used in situations where Nz = 40 would require prohibitively
long computational time. Various resolution tests are reported in the Appendix.

4.2. Linear dispersion relation

Temporal growth rates of the local linear dispersion relation are given in figure 2.
Two types of modes are identified: the region of main interest is centred around finite
values of β and corresponds to an inviscid instability, also known as branch 1, caused
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by inflection points in the basic velocity profiles. The maximum growth rate increases
with Reynolds number R and the first inviscid instability occurs for R � 284 at
α � 0.37 and β = 27. The unstable modes prevailing at small values of β , also known
as branch 2, are due to viscosity and persist at low R. These latter modes are not
relevant to the present investigation and will not be discussed further.

4.3. Local absolute frequency

In the context of self-sustained fluctuations, a crucial feature is the complex absolute
frequency ω0 defined as the frequency observed at a fixed spatial location in the long-
time linear response to an initial localized impulse. For a radially localized impulse
with a given azimuthal mode number β , the local absolute frequency ω0 and associated
absolute wavenumber α0 are derived from the linear dispersion relation (4.2) by
applying the Briggs (1964) and Bers (1983) pinch-point criterion which is associated
with a vanishing radial group velocity condition:

ω0(β; R) = Ωl(α0, β; R) with
∂Ωl

∂α
(α0, β; R) = 0. (4.4)

Isolines of absolute frequency ω0,r and growth rate ω0,i in the (R, β)-plane are given
in figure 3. As already discovered by Lingwood (1995) (see also Lingwood 1997a,
p. 424 for the corrected values) transition from local convective to absolute instability
first occurs at Rca � 507.4 for β = 68 (marked by solid dots) with a marginal real
absolute frequency of ωca

0 � 50.5 and αca
0 � 0.227 − 0.122i (see also § A.1).

Computation of the neutral curve ω0,i = 0 (thick line in figure 3b) shows that each
mode number β � 51 is associated with an absolutely unstable region. The radial
extent of the absolutely unstable interval remains finite for all β; absolute instability
has been shown by Peake & Garrett (2003) to prevail for 3.8 < R/β < 38.6 in the
limit β → ∞.

5. Primary saturated crossflow vortices
Whenever infinitesimally small perturbations are amplified according to the above

linear stability results, they eventually reach finite-amplitude levels and are then
governed by the complete nonlinear equations. Several experimental studies, e.g. by
Kohama (1984), Jarre, Le Gal & Chauve (1996b), reveal a pattern of outward-
spiralling crossflow vortices before transition to a turbulent régime occurs. These
finite-amplitude spiral vortices are periodic in space and time and can be sought as
nonlinearly saturated wavetrains evolving in the three-dimensional boundary layer.

Local nonlinearly saturated waves arise naturally from a purely temporal analysis.
The initial-value problem of interest is the temporal development of a radially and
azimuthally periodic small-amplitude perturbation of the form (4.1), characterized by
real values α, evolving in the three-dimensional flow (3.3) pertaining to a prescribed
radial station R. The initial evolution is dictated by the linear temporal growth rate
Ωl

i (α, β; R). Whenever Ωl
i (α, β; R) > 0, exponential temporal growth takes place until

nonlinear effects come into play. The quadratic nonlinear terms of the Navier–Stokes
equations then promote higher spatial harmonics of the form exp in(αr+βθ) as well as
a mean flow correction. These nonlinearities are stabilizing and lead to saturation at
finite amplitude. In the absence of secondary instabilities, a fully nonlinear travelling
wave is then reached in the long-time limit with spatial periodicity imposed by the
prescribed values of α and β . The final perturbation velocity and pressure fields
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Figure 3. Primary local absolute frequency. Isolines of (a) ω0,r and (b) ω0,i in (R, β)-plane.
The solid dot marks the onset of absolute instability at Rca � 507 and β = 68 with ωca

0 � 50.5.

associated with the travelling saturated crossflow vortices are thus of the form

u(r, θ, z, t) = unl(z, αr + βθ − ωt; α, β; R),

p(r, θ, z, t) = pnl(z, αr + βθ − ωt; α, β; R),

}
(5.1)

where the functions unl and pnl are 2π-periodic in their second variable φ ≡ αr +βθ −
ωt . The real frequency ω of the saturated waves is determined by the local nonlinear
dispersion relation

ω = Ωnl(α, β; R), (5.2)
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while the wave amplitude is conveniently measured by the mean fluctuating energy
defined below in (5.5). In the present section the existence of these finite-amplitude
travelling waves is studied. Their stability with respect to secondary perturbations is
investigated in § 7.

Note that instead of using radial wavenumber α and azimuthal mode number β ,
it is sometimes appropriate to specify the crossflow vortices by the wave angle ε and
wave vector modulus a. These equivalent representations are related by

tan ε = β/Rα, α = a cos ε,

a2 = α2 + (β/R)2, β/R = a sin ε.

}
(5.3)

5.1. Numerical solution procedures

The temporal evolution of a spatially periodic perturbation of real radial
wavenumber α and azimuthal mode number β is treated by resorting to the spatial
Fourier series

u(r, θ, z, t) =
∑

n




un(z, t)
vn(z, t)
wn(z, t)


 exp in(αr + βθ),

p(r, θ, z, t) =
∑

n

pn(z, t) exp in(αr + βθ).





(5.4)

Substitution of expansions (5.4) into the local governing equations (3.2) yields an
infinite set of coupled differential equations of first order in time. These are truncated
at a finite number of harmonics |n| � Nh and the Chebyshev collocation method (4.3)
is again used in the axial direction.

Time-integration of the resulting system is performed via a fractional-step method of
second-order accuracy in time. At the intermediate time step, the three components
of the velocity field are obtained by solving Helmholtz-type problems. A Poisson
problem then yields a correction to the pressure required to enforce divergence-free
velocity fields. A Crank–Nicholson scheme is used for the viscous terms, the advection
terms are obtained at the intermediate time step by extrapolation based on the two
previous time steps.

When initializing the temporal integration with the linear eigenmode at small
amplitude in a configuration where Ωl

i (α, β; R) > 0, the system evolves from an initial
exponential growth phase, via a transient régime, to reach a time-periodic state
corresponding to fully saturated crossflow vortices travelling without deformation.
Measuring the frequency of this wave then yields the nonlinear dispersion
relation (5.2), while the fluctuating energy is derived from the Fourier components as

E(α, β; R) =

∫ ∞

0

dz
∑

n>0

(|un(z)|2 + |vn(z)|2 + |wn(z)|2). (5.5)

This time-marching technique fails to converge towards a periodic solution when
the primary finite-amplitude vortices are affected by secondary instabilities. In order to
capture all primary nonlinear states, whether or not they are unstable with respect to
secondary instabilities, a Newton–Raphson search procedure has been implemented
that directly solves for the saturated time-periodic waves. In this formulation, the
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periodic solution is expanded as

unl(z, αr + βθ − ωt) =
∑

n




un(z)
vn(z)
wn(z)


 exp in(αr + βθ − ωt),

pnl(z, αr + βθ − ωt) =
∑

n

pn(z) exp in(αr + βθ − ωt),





(5.6)

and substituted into the local governing equations. Truncating at a finite number
of harmonics and implementing the collocation method in the z-direction then
results in a large system of nonlinear algebraic equations relating all components
of the wave fields and the real parameters α, β , ω and R. To fix the phase of
the solution, the normalization condition Im p1(0) = 0 is used. A good initial guess
for Newton–Raphson iteration is available from the above time-marching procedure
using parameter settings that are stable with respect to secondary perturbations. In
practice, the lengthy time-marching technique is only used once; the complete set
of nonlinear waves is thereafter obtained by the much faster iteration procedure,
continuously varying the parameters.

In general, β and R are kept at fixed values, and the nonlinear dispersion
relation (5.2) is then obtained by following temporal branches, i.e. continuously
varying α and solving for the wave fields and frequency ω. A further difficulty arises
due to the existence of critical values of α where the Jacobian used in the Newton–
Raphson iteration procedure becomes singular. These singularities are associated with
turning points and the fact that (5.2) is not single-valued in a small region of the
parameter space. In order to follow solution branches past these turning points, the
usual continuation in α must be replaced by an arclength continuation (Keller 1977).
For the present purpose it is convenient to consider both α and ω as unknowns and
to complement the governing system by a parameterizing equation

Π(α, ω; s) = 0, (5.7)

where s denotes an arclength coordinate in the (α, ω)-plane. Following of the entire
solution branch is then achieved using a simplified version of the pseudo-arclength
parameterization of Keller (1977),

Π ≡ (1 − µ)[α(s) − α(s0)]
dα

ds
(s0) + µ[ω(s) − ω(s0)]

dω

ds
(s0) − (s − s0), (5.8)

where s0 denotes the arclength coordinate at the previously computed point and the
constant 0 � µ � 1 controls the relative importance given to variations in α or ω.
Note that the limiting values µ = 0 and µ = 1 yield the nonlinear temporal and
spatial branches, respectively parameterized by α and ω.

5.2. Nonlinear wave near onset of primary absolute instability

As shown below in § 6, the transition location Rca = 507.4 from convective to absolute
instability is of particular importance for the self-sustained behaviour of the rotating-
disk flow. Figure 4 illustrates the structure of the nonlinear saturated waves prevailing
near onset of absolute instability, at R = 510 and β = 68. The waves shown are 2π-
periodic in the phase variable φ ≡ αr + βθ − ωt and propagate according to a
frequency of ω = 50.5 and a radial wavenumber of α = 0.35 (see also § A.2).
A systematic study of the nonlinear dispersion relation (5.2) is postponed to the next
subsection.
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Figure 4. Structure of nonlinear saturated wave at R = 510, β = 68, α = 0.35 and ω = 50.5.
(a) Azimuthal and (b) radial velocity components. (i) Isolines of perturbation velocity fields
over two wavelengths (azimuthal levels −40, . . . , −10 dashed, 0 thick, 10, . . . , 60 thin; radial
levels −10, −5 dashed, 0 thick, 5, . . . , 25 thin). (ii) Isolines of total velocity fields (azimuthal
levels 50, 100, . . . , 500; radial levels 10, 20, . . . , 110). (iii) Comparison of basic (thin lines) and
total (thick lines) velocity profiles.

Figure 4(i)(a, b) displays snapshots of the perturbation azimuthal v- and radial
u-velocity contours over two wavelengths in the (z, φ)-plane. The corresponding
total components RV (z) + v(z, φ) and RU (z) + u(z, φ) are shown in figure 4(ii)(a, b).
Figure 4(iii)(a, b) compares the total velocity profiles at four different phases φ = 0,
π/2, π and 3π/2 (thick lines) with the basic flow (thin lines). Also shown are cuts
of the total velocity fields at z = 1.6 (grey regions). These profiles display several
inflection points in both velocity components, most clearly at φ = 3π/2. It is thus
very likely that these saturated crossflow vortices will be unstable with respect to
secondary perturbations, as shown in § 7.

5.3. Nonlinear dispersion relation and fluctuating energy

The fluctuating energy and nonlinear frequency of waves corresponding to the critical
azimuthal wavenumber β =68 are given in figure 5. The energy E, as defined by (5.5),
of the nonlinear solution branches is shown in (a) together with isolines of the
positive linear growth rates Ωl

i . As can be seen, the nonlinear amplitude vanishes on
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the neutral curve where Ωl
i = 0 while nonlinear waves with largest amplitude occur

near the lower end of the α-wavenumber range and do not coincide with the highest
linear growth rates. The frequency curves corresponding to the nonlinear dispersion
relation (5.2) are given in figure 5(b). It is towards the lower marginal curve, where
the energy sharply drops, that turning points in the dispersion relation occur. These
turning points are related to the proximity in parameter space of viscous instability
modes; however, since they are not essential in the present investigation no further
details will be given here. A similar feature has been found by Koch et al. (2000) in
the swept-plate boundary layer (see their figure 6).

Saturated waves have been systematically computed for radial locations up to R =
600. The structure of the nonlinear dispersion relation Ωnl(α, β; R) is illustrated in
figure 6 by cuts of the three-dimensional parameter space along planes of constant
azimuthal mode number.
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6. Self-sustained spatially extended structure
Having obtained the local linear and nonlinear waves in the boundary layer at

each radial location in the previous sections, a global solution developing over an
extended radial interval may be sought in the form of wavetrains that are slowly
modulated in the radial direction. This approach is set on firm theoretical ground
using WKBJ asymptotic techniques (Bender & Orszag 1978). Such a line of thought
has previously been fully implemented for one-dimensional model equations and the
two-dimensional Navier–Stokes equations. The generalization of this formalism to
the present three-dimensional case is obtained with no more than algebraic difficulty.
Only an outline of the method will be given here.

In the rotating-disk flow, the region of particular interest is the neighbourhood of
Rca � 507.4 where onset of absolute instability first occurs. This characteristic radius
is large compared to the boundary layer thickness, hence fulfilling the assumption of
weak radial development, or equivalently of large Reynolds number since the radius
acts as an effective local Reynolds number. It is thus legitimate to use

ε ≡ 1

Rca
� 1 (6.1)

as small parameter in the asymptotic formulation and to introduce the slow radial
coordinate

R̄ = εr. (6.2)

In this multiple-scales approach, the fast r-scale accounts for the oscillatory behaviour
of the spatially extended wavetrain, while its envelope and local structure are slowly
modulated on the R̄-scale so as to adjust to the variations of the underlying basic
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flow. This suggests the following change of variables:

u(r, θ, z, t) = u(z, φ; R̄),

p(r, θ, z, t) = p(z, φ; R̄),

}
(6.3)

with 2π-periodicity in the fast phase function φ(r, θ, t) whereas the R̄-dependence
accounts for the slow radial evolution. Local radial wavenumber, azimuthal mode
number and frequency are respectively defined as

α =
∂φ

∂r
, β =

∂φ

∂θ
, ω = −∂φ

∂t
. (6.4)

For a global solution displaying no singularities, both the frequency and azimuthal
mode number remain constant in the entire system. Indeed, any spatial variation of
either of these two quantities necessarily introduces dislocations. A smooth global
solution (6.3) is thus made up of waves that all have same global frequency ωg and
azimuthal mode number βg . The fast phase is then of the form

φ =

(
1

Rca

∫ R̄

α(ρ̄) dρ̄

)
+ βgθ − ωgt, (6.5)

where α(R̄) is an as yet undetermined slowly varying local radial wavenumber. Next
the wave fields and the derivative operators are expanded in powers of ε as

u(z, φ; R̄) = u0 + εu1 + ε2u2 + . . . ,

p(z, φ; R̄) = p0 + εp1 + ε2p2 + . . . ,

}
(6.6)

and
∂

∂r
= α(R̄)

∂

∂φ
+ ε

∂

∂R̄
,

∂

∂θ
= βg

∂

∂φ
,

∂

∂t
= −ωg

∂

∂φ
, (6.7)

and substituted into the governing equations (3.2). At leading order in the expansion
parameter ε, the derivative ∂/∂R̄ may be neglected and the slow coordinate R̄ acts
solely as an external control parameter. For each value of R̄, the global solution (6.3)
then obeys, to leading order, the local governing equations and follows, among all
possible waves, the one that matches the overall frequency ωg and mode number βg .
Note that in the previous sections, local properties have been derived with the local
Reynolds number R as control parameter. When carrying out the present asymptotic
analysis, however, it is more appropriate to rescale this parameter as R̄ = εR and to
consider that the local properties depend on R̄ instead.

Two different situations arise depending on the magnitude of the global
solution (6.3): in small-amplitude regions the global structure is described by the
linearized equations while the fully nonlinear equations prevail in regions of finite
amplitude.

Small-amplitude regions are governed by the local linear equations and the
corresponding dispersion relation (4.2). The radial wavenumber α(R̄) in the rapidly
varying phase (6.5) is then complex, accounting for both the wavelength and decay
rate in the radial direction, and obtained by solving the linear dispersion relation (4.2)
with prescribed βg and ωg . When solving (4.2) for the wavenumber α, two complex
spatial branches αl±(R̄; ωg, βg) are obtained. The separation of the spatial branches
into + and − branches is determined, according to classical arguments (Briggs 1964;
Bers 1983), by whether they correspond to a downstream or upstream spatial response
to localized harmonic forcing. As discussed below, in the present configuration the
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relevant spatial branch in the central linear region is always the αl− branch. The
global solution (6.3), (6.5) then locally follows the wave indexed by αl−(R̄), βg and R̄

within the family (4.1) of linear eigenfunctions.
In contrast, the finite-amplitude régime is governed by the local nonlinear equations

and the corresponding dispersion relation (5.2). Solving (5.2) with prescribed βg and ωg

then yields the corresponding real wavenumber branch αnl(R̄). These nonlinear spatial
branches correspond to the isofrequency lines represented in figure 6. This figure also
shows that a single nonlinear spatial branch is generally obtained; it is only for lower
frequencies than those of interest here that two αnl-branches coexist. In nonlinear
regions, the global solution then locally follows the wavetrains associated with αnl(R̄),
βg and R̄ within the familiy (5.1) of saturated crossflow vortices.

It remains to determine which global frequency ωg and mode number βg are
naturally selected in the rotating-disk flow.

As demonstrated in earlier investigations (Pier et al. (2001), spatially developing
systems display a nonlinear self-sustained state whenever a region of absolute
instability is present. These finite-amplitude solutions (also called ‘elephant’ global
modes (Pier & Huerre 2001b)) are characterized by a stationary front located at
the upstream transition from local convective to absolute instability. The selection
mechanism is the following: in the absolutely unstable region amplified perturbations
develop and their envelope advances upstream against the basic flow. At the location
of neutral absolute instability a balance between upstream perturbation growth
and downstream advection is reached and perturbations pile up at that location.
Nonlinearities lead to saturation of the fluctuating amplitude and a stationary front
is formed. This front generates a downstream-propagating fully nonlinear wavetrain
and an upstream exponentially decaying tail. It thus connects linear and nonlinear
regions, acts as a source and effectively tunes the entire system to its frequency. The
stationary front obeys the Dee & Langer (1983) marginal stability criterion, hence
the global frequency of these modes equals the real absolute frequency prevailing at
the front location.

In the present configuration, the transition radius from convective to absolute
instability depends on the azimuthal mode number β (see the neutral curve in
figure 3b). Each β � 51 is associated with an absolutely unstable region and thus
gives rise, in principle, to a self-sustained global structure displaying a front at the
corresponding marginal radius. However, it is for β = 68 that absolute instability first
occurs, at Rca � 507.4, and hence that perturbations are able to propagate inwards
closest to the disk centre. Global modes with β 	= 68 would reach finite amplitude
levels further outwards and are thus dominated by the solution with β = 68.

Assuming for now that there are no secondary instabilities, the expected self-
sustained behaviour is thus a time-harmonic solution with frequency ωg = ωca

0 � 50.5
and azimuthal mode number βg = 68. Onset of nonlinearity coincides with onset of
absolute instability and is triggered by a front at Rca . The spatial structure is the
following (figure 7): nonlinear outward-spiralling vortices of frequency ωg and mode
number βg are initiated at Rca and prevail in the outer region. They are governed
by the local nonlinear dispersion relation (5.2) and follow the associated real spatial
wavenumber branch αnl (figure 7b). The inner region r < Rca is covered by the front
tail. Since this tail is caused by the front at Rca , it decays exponentially towards
the disk centre according to the complex radial wavenumber αl− derived from the
local linear dispersion relation (4.2). Note that the front at Rca is associated with a
jump in wavenumber from the complex αl− to the real αnl . However, the fundamental
assumption of slowly varying radial change is not violated: this jump merely reflects
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Figure 7. Spatial structure of self-sustained nonlinear global solution of frequency ωca
0 � 50.5

and azimuthal modenumber β = 68. (a) Sketch of outward-spiralling nonlinear vortices
triggered at Rca � 507.4; exponentially decaying tail covers the inner region. (b) Corresponding
numerically computed spatial branches obtained by solving the linear (two complex branches
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global solution follows the path indicated by the thick line: the linear αl− branch prevails in
the central region; the front at Rca is associated with a jump in wavenumber; the nonlinear
αnl branch prevails in the outer region.

the existence of an inner layer (of size O(ε2/3) see Pier et al. 2001) in the complete
asymptotic analysis.

The WKBJ procedure outlined above guarantees the existence of a global time-
harmonic solution but does not tell us whether or not it is stable with respect
to secondary perturbations. The experimental observation of a rapid transition to
turbulence near Rca suggests that it is not. The aim of the remainder of this paper is
to understand this transition and therefore analyses in detail the secondary stability
of the saturated waves that make up the global solution near Rca .

7. Secondary stability analysis
When investigating the stability of primary saturated vortices of wavenumbers α

and β and frequency ω at a radial station R with respect to secondary perturbations,
the total flow fields are decomposed as

U(z; R) + unl(z, αr + βθ − ωt; α, β; R) + û(r, θ, z, t),

P (z) + pnl(z, αr + βθ − ωt; α, β; R) + p̂(r, θ, z, t),

}
(7.1)

where U + unl , P + pnl represent the new basic flow solution which is perturbed by
û, p̂.

Linear secondary stability of the primary periodic crossflow vortices is governed
by Floquet theory (Herbert 1988) and infinitesimally small secondary velocity and
pressure disturbances can be written in normal-mode form as

û(r, θ, z, t) = ûl(z, αr + βθ − ωt; α̂, β̂; α, β; R) exp i(α̂r + β̂θ − ω̂t),

p̂(r, θ, z, t) = p̂l(z, αr + βθ − ωt; α̂, β̂; α, β; R) exp i(α̂r + β̂θ − ω̂t),

}
(7.2)
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where α̂ is the secondary complex radial wavenumber, β̂ is the secondary integer
azimuthal mode number and ω̂ is the corresponding complex frequency; the
eigenfunctions ûl and p̂l have the same periodicity as the primary wave, i.e. are 2π-
periodic in the real phase variable φ ≡ αr +βθ − ωt . Two-dimensional eigenproblems
in the variables z and φ are then obtained after substitution of (7.1) with (7.2) into
the local governing equations and linearization about the new basic flow. For each
primary nonlinear wave characterized by the real parameters α, β and R and for
each choice of α̂ and β̂ , the solution of the corresponding eigenproblem yields the
secondary complex frequency

ω̂ = Ω̂l(α̂, β̂; α, β; R) (7.3)

together with the associated eigenfunctions ûl and p̂l . Note that the eigenproblem
admits many modes, but in general only the most unstable are physically relevant.

7.1. Numerical solution procedure

The linear local governing equations for the small-amplitude secondary perturbations
(7.2) are formally similar to the linearized version of (3.2)

∂ û
∂t

+ L̂û = −∇p̂ + �û, (7.4a)

∇ · û = 0, (7.4b)

except that advection occurs by the primary vortices (5.1) as well as by the laminar
base flow (3.3) so that now

L̂û ≡
(

(RU + unl)
∂

∂r
+

(
V +

1

R
vnl

)
∂

∂θ
+ (W + wnl)

∂

∂z

)
û

+




rU ′ŵ
rV ′ŵ
W ′ŵ


 +

(
û

∂

∂r
+

1

R
v̂

∂

∂θ
+ ŵ

∂

∂z

)
unl

+




Uû − 2V v̂

Uv̂ + 2V û

0


 +

1

R




−2vnlv̂

unl v̂ + vnlû

0


 .

Upon substituting the previously obtained Fourier expansion (5.6) for the primary
solution and expanding the secondary eigenfunctions (7.2) in a similar fashion as

ûl(z, αr + βθ − ωt) =
∑

n




ûn(z)
v̂n(z)
ŵn(z)


 exp in(αr + βθ − ωt),

p̂l(z, αr + βθ − ωt) =
∑

n

p̂n(z) exp in(αr + βθ − ωt),





(7.5)

the local governing equations (7.4) transform into an eigenproblem where the infinite
set of eigenfunctions ûn, v̂n and ŵn are linearly coupled via the harmonics un, vn

and wn of the primary wave (5.6). After truncating primary and secondary Fourier
expansions at |n| � Nh and |n| � N̂h respectively and using the Chebyshev collocation
method in the z-direction, a large algebraic eigensystem is obtained, the solution of
which yields the secondary dispersion relation (7.3) and the associated eigenfunctions.
As for the primary linear stability analysis, the physically relevant modes are identified
by monitoring the structure of the eigenfunctions while varying the resolution.
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Figure 8. Secondary temporal growth rate Ω̂l
i of saturated crossflow vortices prevailing for

R = 510, β = 68, α = 0.35 and ω = 50.5 (levels 1, 2, 3, 4 solid; 0.5, 1.5, 2.5, 3.5, 4.5 dashed).
Isoline pattern is invariant under translation of the primary wavevector, indicated by the thick
arrow.

7.2. Secondary temporal analysis

In a temporal analysis, the radial wavenumber α̂ of the secondary perturbation is
prescribed and real, while the frequency ω̂ as obtained from dispersion relation (7.3)
is complex.

Figure 8 shows the secondary temporal growth rate Ω̂l
i in the real (α̂, β̂)-plane for

the saturated crossflow vortices prevailing near onset of primary absolute instability
and analysed in § 5.2. Such results are usually presented by resorting to wave-oriented
coordinates, i.e. expressing α̂ and β̂ in terms of the wave angle ε (5.3) of the primary
nonlinear vortices as

α̂ = â cos ε − b̂ sin ε,

β̂/R = â sin ε + b̂ cos ε,

}
(7.6)

and prescribing â and b̂ instead of α̂ and β̂ . With a =
√

α2 + (β/R)2 denoting
the primary wavevector modulus, the ratio â/a is the detuning of the primary
wavenumber, and b̂ is the secondary wavenumber in the direction of the primary
vortex axis. By periodicity of the primary waves it is sufficient to consider the range
−a/2 � â � a/2. Here the parameters of the primary wave are R = 510, β = 68,
α = 0.35 and ω = 50.5 which correspond to ε = 0.368 and a = 0.371, and figure 8
shows the highest temporal growth rate of all unstable modes.

From these results it is found that the crossflow vortices under consideration are
unstable to secondary perturbations for any â at small and order-unity values of b̂. It
is only at much higher values of b̂ that secondary perturbations are found to decay,
since the maximum growth rate decreases with b̂.
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7.3. Secondary absolute instability and transition

Whether or not the primary finite-amplitude waves are permanently affected by
secondary disturbances depends on the absolute or convective nature of the secondary
instability. Indeed, for convectively unstable secondary instabilities, an external
impulse may only trigger a transient perturbation that is eventually carried away
radially outwards. Without external noise and for a perfectly smooth rotating disk,
transition can only occur because of secondary absolute instability of the naturally
selected primary crossflow vortices.

In contrast to the previous purely temporal analysis, the use of vortex-oriented
coordinates is not appropriate for a full spatio-temporal analysis where the radial
wavenumber α̂ needs to be considered complex while the mode number β̂ remains
integer.

Following Brevdo & Bridges (1996), the secondary absolute frequency ω̂0 and
absolute radial wavenumber α̂0 for periodic wave solutions are obtained by a
‘pinching condition’ in the complex α̂-plane which is formally analogous to that
of Briggs (1964) and Bers (1983) established for spatially homogenous systems. This
criterion is equivalent to a condition of vanishing radial group velocity,

ω̂0(β̂; α, β; R) = Ω̂l(α̂0, β̂; α, β; R) where
∂Ω̂l

∂α̂
(α̂0, β̂; α, β; R) = 0, (7.7)

with the additional requirement that the two spatial α̂-branches colliding at the
branch-point singularity α̂0 originate from distinct half α̂-planes for sufficiently large
and positive values of ω̂i .

Pinch points are readily identified by the ‘cusp map’ method (Kupfer, Bers &
Ram 1987), i.e. by monitoring how the dispersion relation (7.3) maps the complex α̂-
plane onto the complex ω̂-plane. This process is illustrated in figure 9 for the primary
nonlinear wave obtained with R = 510, α = 0.35, β = 68 and ω = 50.5; the secondary
azimuthal mode number is fixed at β̂ = 20. To start with, dispersion relation (7.3)
is computed on a coarse rectangular grid in the complex wavenumber plane (part
of which is shown by solid dots in figure 9a) to yield an outline of the mapping in
the frequency plane (figure 9b) and the approximate location of a potential pinch
point. Zooming in and recomputing the dispersion relation for a refined rectangular
grid in the wavenumber plane reveals the characteristic cusp in the frequency plane
(magnified portion of figure 9b). The corresponding values of the absolute frequency
and wavenumber

ω̂0 = 8.52 + 1.16i and α̂0 = −0.0012 − 0.0369i (7.8)

are then found by solving ∂Ω̂l/∂α̂ = 0 (see also § A.3). In order to ascertain that
this singularity of Ω̂l corresponds to a genuine pinch point, the two spatial branches
α̂+(ω̂) and α̂−(ω̂) are computed for ω̂ = ω̂0,r + ω̂i with ω̂i ↓ ω̂0,i (thick curve in
figure 9b). The curves labelled α̂+ and α̂− in figure 9(a) demonstrate that indeed they
originate from opposite half-planes.

After a first pinch point has been found, a continuation technique associated with
an iterative procedure searching for zeros of ∂Ω̂l/∂α̂ yields the absolute frequency ω̂0

and associated wavenumber α̂0 for nearby values of β̂ or of R, α and β . This iterative
search requires only the computation of the mapping α̂ �→ ω̂, which is numerically
much faster (but still slow!) since the governing equations are of first order in time.
Occasional spot checks using the (computationally more intensive) mapping ω̂ �→ α̂
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Figure 9. Mapping of the complex α̂-plane (a) onto the complex ω̂-plane (b) under the
secondary dispersion relation Ω̂l and identification of pinch point (×). Same primary wave as
in figure 4, fixed secondary azimuthal wavenumber β̂ = 20. Magnified portion of (b) shows
cusp structure at ω̂0. Vertical frequency path (thick line in b) is associated with two spatial
branches α̂+ and α̂− indicated by thick lines in (a). The two branches collide at absolute
wavenumber α̂0 and originate from opposite half-planes for large values of ω̂i .

are performed to ensure that the values of α̂0 and ω̂0 thus obtained are still associated
with genuine pinch points.

The above analysis and result (7.8) are based on the nonlinear waves that are
part of the self-sustained global solution and prevail for R = 510. As depicted in
figure 9, the location of ω̂0 in the upper complex frequency plane then reveals that the
saturated crossflow vortices that are naturally selected near Rca are absolutely unstable
with respect to secondary perturbations. This strong secondary absolute instability
explains why the naturally selected spiral vortices (sketched in figure 7) are not
observed experimentally: as soon as the primary nonlinear vortices are generated
near Rca , secondary perturbations develop in situ and are amplified by a factor of
exp(2πω̂0,i) � 1500 per disk rotation, and transition to turbulence immediately occurs.

The structure of the secondary eigenfunction associated with the pinch point of
figure 9 is illustrated in figure 10 by its azimuthal velocity field v̂l(z, φ). Isocontours of
(a) the velocity modulus |v̂l | and (b) its real part v̂l

r are shown over two wavelengths,
superimposed on vnl-levels of the primary nonlinear wave, from figure 4(ii)(a). The
largest amplitude of the eigenfunction is seen to occur for φ � 3π/2 and precisely
correlates with the region where the primary wave displays strongly sheared velocity
profiles, cf. figure 4(iii).
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Figure 11. Secondary absolute growth rate ω̂0,i(β̂) pertaining to primary crossflow vortices
near onset of nonlinearity α = 0.35, β = 68, ω = 50.5 and R = 510.

Figure 11 displays the variation of secondary absolute growth rate ω̂0,i with mode
number β̂ , computed for the same primary saturated vortices, and shows that
secondary absolute instability prevails for a wide range of azimuthal mode numbers.
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8. Conclusion
This study has demonstrated that the behaviour of the three-dimensional boundary

layer produced by a rotating disk can be analysed in terms of an ‘elephant’
global mode: the self-sustained finite-amplitude fluctuations are produced at the
inner boundary Rca of the absolutely unstable domain. This boundary for onset
of absolute instability acts as a source and generates outward-spiralling saturated
primary crossflow vortices. Due to the slow radial development of the boundary
layer, these wavetrains are governed locally by the associated nonlinear dispersion
relation derived numerically from the local boundary layer velocity profiles considered
as parallel. A secondary stability analysis has revealed that the primary saturated
waves initiated at Rca are already absolutely unstable with respect to secondary
perturbations. The naturally selected structure is thus dynamically unstable and gives
way to a disordred state. (Note that, strictly speaking, these results only pave the
way towards transition: in order to fully document the route to turbulence one would
need to establish that secondary instabilities themselves do not saturate.) In con-
sequence, the rotating-disk flow follows the scenario first outlined by Huerre (1988),
using model equations rather than based on the Navier–Stokes equations, that
secondary absolute instability may occur prior to primary absolute instability.

It should be emphasized that, in the present configuration, transition to a turbulent
flow is triggered by secondary absolute instability while the transition location itself
is controlled by primary absolute instability. Indeed, primary nonlinear waves are a
prerequisite for the development of secondary instability leading to transition. Since
the secondary disturbances feed on the primary vortices, the turbulent régime cannot
propagate inwards of Rca and the central region remains unperturbed. As a result,
the transition location from basic to turbulent flow precisely coincides with the onset
of primary absolute instability. Thus the primary instability remains essential, even
though the primary spiral waves are obliterated.

In the present findings, transition occurs via a primary state of azimuthal mode
number β = 68, while the spiral structures that have been observed experimentally
generally display fewer spiral arms, in the range 25–50. There is no inconsistency,
however, since experimental measurements of β have only been done for crossflow
vortices that are steady with respect to the disk: these steady structures are presumably
produced by roughness elements on the disk surface, depend on the experimental
conditions and differ in frequency and wavenumber from the naturally selected ones.
Also, using a smooth disk, Lingwood (1996) has not observed any periodic vortices,
only a sharp transition from the unperturbed boundary layer to turbulence. Hence
it seems that the observation of primary vortices requires external forcing whereas
transition is an intrinsic feature of the boundary layer. A further confirmation of this
assertion is the wide scatter in the number of observed spiral arms, whereas transition
always occurs at a well-defined location.

The present results emphasize the essential difference between rotating-disk and
swept-wing boundary layers. The rotating-disk problem is primarily one-dimensional:
its dynamics is organized in the radial direction while the azimuthal and wall-
normal coordinates appear as eigendirections. In contrast, the swept-wing problem
is genuinely two-dimensional which makes its investigation much harder both
analytically and numerically. Azimuthal periodicity of the disk enables the intrinsic
route to turbulence via primary and secondary absolute instabilities. The swept-wing
flow undergoes primary and secondary convective instabilities which ‘initiate but do
not instantly cause breakdown to turbulence’ (Koch 2002).
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Nz = 30 Rca ωca
0 αca

0 Nz = 40 Rca ωca
0 αca

0

a	 = 1 502.645 50.3471 0.21686 − 0.11819i a	 = 1 508.475 50.5285 0.21719 − 0.12281i

2 507.537 50.5043 0.21757 − 0.12208i 2 507.504 50.4952 0.21679 − 0.12188i

3 507.284 50.4885 0.21676 − 0.12166i 3 507.369 50.4926 0.21694 − 0.12177i

4 507.561 50.4974 0.21694 − 0.12184i 4 507.402 50.4933 0.21691 − 0.12180i

5 507.216 50.4876 0.21712 − 0.12190i 5 507.403 50.4934 0.21692 − 0.12180i

6 506.895 50.4822 0.21655 − 0.12202i 6 507.386 50.4929 0.21692 − 0.12180i

Nz = 50 Rca ωca
0 αca

0 Nz = 60 Rca ωca
0 αca

0

a	 = 1 507.088 50.4836 0.21688 − 0.12148i a	 = 1 507.500 50.4961 0.21690 − 0.12191i

2 507.368 50.4925 0.21693 − 0.12177i 2 507.403 50.4934 0.21692 − 0.12181i

3 507.401 50.4934 0.21692 − 0.12180i 3 507.398 50.4932 0.21692 − 0.12180i

4 507.396 50.4932 0.21692 − 0.12180i 4 507.397 50.4932 0.21692 − 0.12180i

5 507.397 50.4932 0.21692 − 0.12180i 5 507.397 50.4932 0.21692 − 0.12180i

6 507.397 50.4932 0.21692 − 0.12180i 6 507.397 50.4932 0.21692 − 0.12180i

Table 1. Onset location Rca of primary absolute instability at β = 68 and corresponding
absolute frequency ωca

0 and wavenumber αca
0 . Values computed with Nz = 30, 40, 50 and 60

collocation points using transformation (4.3) with a	 as given, b	 = 0.6 and c	 = 0.5.

Nz = 30 α E1 E2 E3 E4 E5 Nz = 40 α E1 E2 E3 E4 E5

Nh = 1 0.33660 625.49 Nh = 1 0.33660 625.60

2 0.34450 628.03 41.09 2 0.34450 628.09 41.12

3 0.34607 622.24 37.63 3.88 3 0.34607 622.07 37.55 3.87

4 0.34620 621.11 37.20 3.48 0.39 4 0.34616 621.10 37.13 3.45 0.38

5 0.34620 620.97 37.13 3.45 0.35 0.04 5 0.34616 621.03 37.09 3.43 0.35 0.04

Nz = 50 α E1 E2 E3 E4 E5 Nz = 60 α E1 E2 E3 E4 E5

Nh = 1 0.33660 625.66 Nh = 1 0.33660 625.70

2 0.34450 628.14 41.13 2 0.34450 628.16 41.14

3 0.34607 622.11 37.56 3.87 3 0.34607 622.14 37.56 3.87

4 0.34616 621.15 37.14 3.46 0.38 4 0.34616 621.17 37.14 3.46 0.38

5 0.34616 621.08 37.10 3.43 0.35 0.04 5 0.34616 621.11 37.10 3.44 0.35 0.04

Table 2. Nonlinear wave at R = 510 and β = 68 with prescribed frequency ω = 50.5. Values
of radial wavenumber α and harmonic energy content computed with Nz = 30, 40, 50, 60 and
Nh = 1, . . . , 5.

Suggestions and advice from Nigel Peake and Werner Koch are gratefully acknowl-
edged. Special thanks go to Julian Scott for a careful reading of the manuscript and
to Paul Metcalfe for so efficiently setting up the Linux boxes which made possible the
numerical computations of the present paper.

Appendix. Resolution tests
A.1. Onset of primary absolute instability

Transition from primary linear convective to absolute instability first occurs for
β = 68. Table 1 shows how the marginal location Rca , the real marginal absolute
frequency ωca

0 and the corresponding absolute wavenumber αca
0 depend on the number

and distribution of axial collocation points.
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Nz = 30 N̂h = 1 2 3 4 5

Nh = 1 8.8017+ 1.2062i 8.7483+ 1.1959i 8.7549+ 1.2132i 8.7556+ 1.2127i 8.7556+ 1.2127i

2 8.6422+ 1.0452i 8.5613+ 1.1728i 8.5409+ 1.2081i 8.5435+ 1.2110i 8.5437+ 1.2109i

3 8.5978+ 1.0262i 8.5197+ 1.1485i 8.5282+ 1.1858i 8.5266+ 1.1904i 8.5269+ 1.1907i

4 8.5931+ 1.0260i 8.5162+ 1.1470i 8.5254+ 1.1827i 8.5286+ 1.1882i 8.5285+ 1.1885i

5 8.5929+ 1.0263i 8.5163+ 1.1471i 8.5256+ 1.1827i 8.5289+ 1.1881i 8.5292+ 1.1886i

Nz = 40 N̂h=1 2 3 4 5

Nh = 1 8.7915+ 1.1754i 8.7389+ 1.1699i 8.7457+ 1.1866i 8.7463+ 1.1862i 8.7463+ 1.1862i

2 8.6296+ 1.0153i 8.5492+ 1.1446i 8.5297+ 1.1792i 8.5324+ 1.1819i 8.5325+ 1.1818i

3 8.5859+ 0.9973i 8.5085+ 1.1208i 8.5182+ 1.1564i 8.5170+ 1.1609i 8.5173+ 1.1610i

4 8.5825+ 0.9975i 8.5062+ 1.1197i 8.5162+ 1.1539i 8.5200+ 1.1592i 8.5199+ 1.1595i

5 8.5825+ 0.9978i 8.5063+ 1.1198i 8.5165+ 1.1539i 8.5202+ 1.1592i 8.5207+ 1.1597i

Table 3. Secondary absolute frequency ω̂0(β̂ = 20) pertaining to primary crossflow vortices
near onset of nonlinearity ω = 50.5, β = 68 and R = 510.

A.2. Nonlinear wave near onset of primary absolute instability

Nonlinear waves prevailing at R = 510 with β = 68 and a prescribed frequency of
ω = 50.5 have been computed for a range of resolutions. Table 2 shows how the
corresponding radial wavenumber α and the distribution of the energy content by
harmonics depends on the number of collocation points and of harmonics used in
the computation.

A.3. Secondary absolute frequencies

Table 3 shows how the secondary absolute frequency ω̂0 for β̂ = 20 depends on the
number of primary Nh and secondary N̂h Fourier modes taken into account. The
primary nonlinear wave at R = 510, β = 68 and ω = 50.5 is computed with Nz = 30
or 40 collocation points remapped according to (4.3) using a	 = 2, b	 = 0.6 and
c	 = 0.5.
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Zandbergen, P. J. & Dijkstra, D. 1987 Von Kármán swirling flows. Annu. Rev. Fluid Mech. 19,
465–491.





[A10℄

Primary rossow vorties, seondary absolute instabilities and their ontrol

in the rotating-disk boundary layer

B. Pier

Journal of Engineering Mathematis 57, 237{251 (2007)

doi:10.1007/s10665-006-9095-5

https://hal.siene/hal-00197478





J Eng Math (2007) 57:237–251
DOI 10.1007/s10665-006-9095-5

ORIGINAL PAPER

Primary crossflow vortices, secondary absolute instabilities
and their control in the rotating-disk boundary layer

Benoît Pier

Received: 9 May 2006 / Accepted: 14 September 2006 / Published online: 11 January 2007
© Springer Science+Business Media B.V. 2006

Abstract The three-dimensional boundary layer produced by a disk rotating in otherwise still fluid is ana-
lytically investigated and its stability properties are systematically established. Using a local parallel flow
approximation, finite-amplitude primary travelling vortices governed by a nonlinear dispersion relation are
obtained. A secondary stability analysis yields the secondary linear dispersion relation and the secondary
absolute growth rate, which determines the long-term stability of the primary nonlinear vortex-trains. By
using these local characteristics, spatially developing global patterns of crossflow vortices are derived by
employing asymptotic techniques. This approach accounts for both the self-sustained behaviour, exhibiting
a sharp transition from laminar to turbulent flow, and the spatial response to external harmonic forcing, for
which onset of nonlinearity and transition both depend on the forcing parameters. Based on these results,
an open-loop control method is described in detail. Its aim is not to suppress the primary fluctuations but
rather to enhance them and to tune them to externally imposed frequency and modenumber, and thereby
to delay onset of secondary absolute instability and transition. It is shown that transition can be delayed
by more than 100 boundary-layer units.

Keywords Absolute instabilities · Boundary layers · Control · Rotating disk

1 Introduction

The von Kármán [1] boundary layer on an infinite disk rotating in otherwise still fluid is certainly a rather
crude and academic representation of centrifugal pumps, fans, turbomachinery elements, or backwards-
swept aircraft wings. However, despite its simplicity, it displays most of the features observed in situations
of higher complexity or with more elaborate geometries. All these types of boundary layers display similar
three-dimensional velocity profiles, are subject to inviscid crossflow instabilities and rapidly undergo tran-
sition to turbulent flow [2–4]. Thus, ever since the pioneering work of Kármán [1] and Gregory et al. [5],
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the rotating disk flow has served as the archetypal three-dimensional boundary layer, and its study has lead
to many results of considerable practical importance, e.g., to the aeronautics industry.

In the rotating-disk flow, the magnitude of the local boundary-layer velocity profiles increases linearly
with radial distance. As a result, the nature of the local stability features successively displays the three
well-known régimes from the disk axis outwards: stability, convective instability, absolute instability (for
theoretical definitions see [6,7]). Lingwood’s theoretical local linear stability analyses [8] have revealed
that absolute instability first occurs at a critical radius closely corresponding to the experimentally observed
transition from laminar to turbulent flow. Her findings suggested that the onset of absolute instability is
the driving mechanism responsible for the self-sustained time-dependent flow. Indeed, in stable or con-
vectively unstable systems, perturbations either decay or are carried away by basic advection so that, at
given position, the flow returns to its unpertubed state in the long term. It is only when the instability is
absolute that an initial disturbance may grow in time at fixed spatial position and thus lead to a permanently
perturbed flow. While this scenario for the behaviour of the rotating-disk flow seems to be confirmed by
most experimental studies (including Lingwood’s [9]), it does not, however, take into account two major
effects: spatial inhomogeneity and nonlinearity.

Global stability analyses of spatially inhomogenous systems governed by strictly linear dynamics are by
now fairly complete. For the linear complex Ginzburg–Landau equation with spatially varying coefficients,
Chomaz et al. [10] demonstrated that the complex frequency of a linear global mode is determined by a
saddle point condition applied to the local linear dispersion relation. According to Monkewitz et al. [11],
the same criterion also holds for the Navier–Stokes equations linearized about an arbitrary slowly varying
basic flow. In this linear setting, local absolute instability is a necessary but not sufficient condition for
global instability: in general, the existence of unstable global modes requires a finite range of local absolute
instability. The question whether or not the local absolute instability in the rotating-disk boundary layer
is strong enough to lead to unstable linear global modes has recently been addressed via direct numerical
simulations [12] (see also [13] in this volume). These simulations have shown that the local absolute insta-
bility of this flow does not produce a linear amplified global mode and is only associated with a transient
temporal growth; a result, also in agreement with analytical developments ([14] and N. Peake, Private
communication). These findings seem to be further supported by recent experimental work [15], carefully
designed to remain within the linear régime.

Thus, it appears that the self-sustained transition experimentally observed in the rotating-disk flow can-
not be explained within linear hydrodynamic-stability theory applied to spatially developing flows: a fully
nonlinear approach is thus required. The study of finite-amplitude states covering spatially inhomogenous
systems [16–22] has shown that there exists a variety of nonlinear global modes. The main result [21] of
interest here is that now local absolute instability is a necessary and sufficient condition: nonlinear global
modes exist, however small the absolutely unstable domain. In this context, nonlinear global modes may
exist in globally linearly stable media and their onset occurs via a saddle-node bifurcation [21].

Thus, Lingwood’s scenario can be restored by taking into account both spatial inhomogeneity and non-
linearity: the rotating-disk boundary layer is locally absolutely unstable [8], globally linearly stable [12]
and globally nonlinearly unstable [28].

The discrepancy between the global linear and nonlinear dynamics is, among others, due to the impor-
tant radial outflow and the large convectively unstable region upstream of the absolutely unstable region.
Thus, even small external perturbations may undergo a strong transient amplification and trigger nonlinear
dynamics. When external perturbations are switched off, such an externally forced perturbed state would
decay in the long term according to linear theory, but can survive forever due to nonlinear interactions
if finite amplitudes are reached. Most experimental studies [5,24–26] have focused on perturbations that
are fixed with respect to the disk, generated by roughness elements and permanently applied. Two already
mentioned studies [9,15] specifically address the impulse response and the related issue of self-sustained
disturbances. In these two experiments, a short air pulse is applied, either through a hole in the disk surface
once every disk rotation [9] or from above the boundary layer at independent timings [15]. So far the
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competition between self-sustained and externally forced dynamics has not been investigated in terms of
complete hydrodynamic linear and nonlinear stability analyses.

The present investigation outlines a new control method where a carefully designed periodic forcing
is continuously applied in the convectively unstable region so as to modify the self-sustained nonlinear
dynamics and to delay onset of transition.

This contribution first reviews and extends recent results from [23,27–29], and then applies them to
control the flow and delay transition beyond a radius at which the unforced flow would have become
transitional. By systematically computing primary (Sect. 3) and secondary (Sect. 4) stability characteristics,
and using asymptotic developments (Sect. 5), the naturally selected flow dynamics is explained (Sect. 6)
and the spatial response to localized harmonic forcing established (Sect. 7). Based on these results, a new
open-loop control method to delay transition is described (Sect. 8).

2 Basic flow structure

The infinite-disk problem lacks a characteristic length scale and thus allows the use of nondimensional
variables based on disk rotation rate, fluid viscosity and density, so that the flow does not depend on any
control parameter. Throughout this paper an inertial frame of reference is used with r, θ and z denoting
radial, azimuthal and axial coordinates, respectively. The time-independent axisymmetric basic flow is then
given by von Kármán’s [1] exact similarity solution to the Navier–Stokes equations as

U(r, z) ≡
⎛
⎝

rU(z)
rV(z)
W(z)

⎞
⎠ and P(z), (1)

where rU, rV and W are the non-dimensional radial, azimuthal and axial velocity components, and P is
the pressure.

The boundary-layer thickness is constant, of order unity in non-dimensional coordinates. As a result,
when features far from the disk axis and near a given radial location R � 1 are investigated, the assump-
tion of slow radial development is appropriate and local properties at given r = R are derived by freezing
the radial dependence of the basic flow (1) and studying the corresponding homogenous three-dimensional
flow U(z; R) ≡ (RU(z), RV(z), W(z)). The value of R then appears as a control parameter rather than a
coordinate and plays the rôle of an effective local Reynolds number.

3 Local linear and nonlinear travelling vortices

In subsequent developments, the total instantaneous flow field prevailing at a given location R is separated
into basic and perturbation quantities according to
{

U(z; R)+ u(r, θ , z, t),
P(z)+ p(r, θ , z, t).

(2)

Local linear instability properties are then derived by assuming infinitesimally small velocity and pressure
disturbances, written in normal-mode form as
{

u(r, θ , z, t) = ul(z;α,β; R) exp i(αr + βθ − ωt),
p(r, θ , z, t) = pl(z;α,β; R) exp i(αr + βθ − ωt),

(3)

where α is a complex radial wavenumber, β an integer azimuthal modenumber, ω a complex angular
frequency and ul, pl the associated complex velocity and pressure components. Substitution of (3) in the
linearized version of the local governing equations yields an eigenvalue problem in the z-direction. From
it, the local linear dispersion relation
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(a2) (b2)

(b3)(a3)

(b1)(a1)

Fig. 1 Local linear and nonlinear dispersion relations in (α,β)-plane for (a) R = 450 and (b) R = 550. (a1, b1) Isocontours of
linear real frequency �l

r. (a2, b2) Isocontours of linear temporal growth rate �l
i. (a3, b3) Isocontours of nonlinear frequency

�nl, in subregion of (α,β)-plane where saturated wave solutions exist

ω = �l(α,β; R), (4)

together with the eigenfunctions ul(z;α,β; R) and pl(z;α,β; R) are routinely derived. Complex values of
�l computed in the (α,β)-plane for R = 450 and R = 550 are shown in Fig. 1(a1,a2,b1,b2).

In the context of open flows [6,7], a crucial feature is the complex absolute frequency ω0 and the
associated absolute wavenumber α0, defined by a vanishing group velocity condition [30,31] as

ω0(β; R) = �l (α0,β; R) with
∂�l

∂α
(α0,β; R) = 0. (5)

The linear instability properties of the rotating-disk boundary layer are well known [8,32]. Local growth
rates increase with radial distance away from the disk axis: the central region R < Rsc � 285 is linearly
stable, convective instability prevails for Rsc < R < Rca � 507, and absolute instability in the outer region
R > Rca. Transition from the convectively unstable (cu) to the absolutely unstable (au) domains occurs at
Rca for an azimuthal modenumber of βca and with a marginal real absolute frequency of ωca

0 , where

ωca
0 � 50.5, βca = 68, Rca � 507. (6)

In regions of linear instability, the three-dimensional boundary layer admits nonlinearly saturated trav-
elling crossflow vortices, governed by the complete nonlinear equations. The finite-amplitude perturbation
velocity and pressure fields of these nonlinear wave solutions are of the form
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{
u(r, θ , z, t) = unl(z,αr + βθ − ωt;α,β; R),
p(r, θ , z, t) = pnl(z,αr + βθ − ωt;α,β; R),

(7)

where the functions unl and pnl are 2π -periodic in their second variable φ ≡ αr + βθ − ωt with α and
ω now real quantities. After expanding unl and pnl as Fourier series in φ and substituting them in the
local nonlinear governing equations, these finite-amplitude spiral waves are numerically obtained by a
Newton–Raphson search procedure [23]. The real frequency ω of the saturated waves is then determined
by the local nonlinear dispersion relation

ω = �nl(α,β; R). (8)

Values of �nl, computed in the domain of the (α,β)-plane where non-linear travelling vortices exist and
delimited by �l

i = 0, are shown in Fig. 1 (a3) and (b3) for R = 450 and R = 550, respectively.

4 Secondary stability analyses

In order to investigate the stability of the above primary finite-amplitude crossflow vortices (7) with respect
to secondary perturbations, a secondary stability analysis needs to be carried out. For nonlinear travelling
waves of wavenumber α, modenumber β and frequency ω at a radial station R, the total flow fields are
then decomposed as
{

U(z; R) + unl(z,αr + βθ − ωt;α,β; R) + û(r, θ , z, t),
P(z) + pnl(z,αr + βθ − ωt;α,β; R) + p̂(r, θ , z, t),

(9)

where U+unl, P+pnl represent the new basic flow solution which is perturbed by û, p̂. Assuming infinites-
imally small secondary velocity and pressure disturbances and using Floquet theory [33], the perturbation
quantities are written in normal-mode form as
{

û(r, θ , z, t) = ûl(z,αr + βθ − ωt; α̂, β̂;α,β; R) exp i(α̂r + β̂θ − ω̂t),
p̂(r, θ , z, t) = p̂l(z,αr + βθ − ωt; α̂, β̂;α,β; R) exp i(α̂r + β̂θ − ω̂t),

(10)

where α̂ is the secondary complex radial wavenumber, β̂ is the secondary integer azimuthal modenumber
and ω̂ is the associated complex secondary frequency. The eigenfunctions ûl and p̂l have the same period-
icity as the primary wave, i.e., are 2π -periodic in the real phase variable φ ≡ αr +βθ −ωt, so that a Fourier
series in φ is again appropriate. Two-dimensional eigenproblems in the variables z and φ are then obtained
after substitution of (9) with (10) into the local governing equations and linearization about the new basic
flow (see [23] for numerical details). For each primary nonlinear wave characterized by the real parameters
α, β and R and for each combination of α̂ and β̂, the solution of the corresponding eigenproblem yields
the secondary linear dispersion relation

ω̂ = �̂l(α̂, β̂;α,β; R) (11)

together with the associated eigenfunctions ûl and p̂l.
Whether or not the primary finite-amplitude waves are permanently affected by a secondary disturbance

depends on the absolute or convective nature of the secondary instability. Indeed, in the case of secondary
convective instability an external impulse only triggers a transient perturbation that is eventually carried
away radially outwards, while, for secondary absolute instability, perturbations are exponentially amplified
at fixed radial position.

Following Brevdo and Bridges [34], the secondary absolute frequency ω̂0 and absolute radial wavenum-
ber α̂0 for periodic wave solutions are obtained by a saddle point condition in the complex α̂-plane

ω̂0(β̂;α,β; R) = �̂l(α̂0, β̂;α,β; R) where
∂�̂l

∂α̂
(α̂0, β̂;α,β; R) = 0, (12)
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(a)

(b)

Fig. 2 Isolines (thin solid curves) of nonnegative maximum secondary absolute growth rate ω̂max
0,i (α,β; R) for (a) R = 500 and

(b) R = 550. Nonlinear vortex trains exist to the left of the marginal curve �l
i(α,β; R) = 0 (thick solid line) with frequencies

corresponding to the dashed isolines. Symbols refer to crossflow vortices at (ω,β) = (ωca
0 ,βca) (thick dot), (ω,β) = (65, 90),

(45, 50) (diamonds), and (ω,β) = (65, 80), (50, 50), (50, 40), (45, 35), (35, 20) (triangles)

which is formally analogous to the criterion of Briggs [30] and Bers [31] established for spatially homoge-
nous systems.

The stability of a system of periodic nonlinear crossflow vortices corresponding to given values α, β and
R depends on the maximum secondary absolute growth rate

ω̂max
0,i (α,β; R) ≡ max

β̂

Im ω̂0(β̂;α,β; R). (13)

Thus, it is the sign of this quantity which determines whether the primary spiral vortices are stable
(ω̂max

0,i < 0) or not (ω̂max
0,i > 0) in the long term with respect to secondary perturbations.

Figure 2 shows isocontours (thin solid curves) of ω̂max
0,i ≥ 0 computed in the (α,β)-plane for R = 500

and R = 550. Nonlinear crossflow vortices exist in the region delimited by the (thick solid) marginal curve
�l

i(α,β; R) = 0, and their nonlinear frequencies ω = �nl(α,β; R) are indicated by dashed isolines. The
symbols in these plots correspond to crossflow vortices at particular values of β and ω and will be used in
Sect. 8.
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5 Spatially developing pattern of crossflow vortices

The analyses described in the previous sections entirely characterize the local properties of the rotating-
disk boundary layer: primary linear stability, primary nonlinear saturated waves, secondary stability of
these finite-amplitude periodic vortices. Based on these results, we are now in a position to derive a global
structure of spiral vortices developing over an extended radial domain and to express them in the form
of wavetrains that are slowly modulated in the radial direction. This approach is set on a firm theoretical
basis by using wkbj asymptotic techniques [35, Chap. 10].

In the rotating-disk flow, the region of particular interest is the neighbourhood of Rca � 507 where onset
of primary absolute instability first occurs. This characteristic radius is large compared to the boundary
layer thickness, hence fulfilling the assumption of slow radial development. It is thus legitimate to use

ε ≡ 1
Rca � 1 (14)

as a small parameter in the asymptotic formulation and to introduce the slow radial coordinate

R̄ = εr. (15)

In this multiple-scales approach, the fast r-scale accounts for the oscillatory behaviour of the spatially
extended wavetrain, while its amplitude and local structure are slowly modulated on the R̄-scale so as to
adjust to the radial evolution of the underlying basic flow. In classical wkbj fashion, the flow fields are
expanded in powers of ε and written as
{

u(r, θ , z, t) = u(z,φ; R̄) = u0 + εu1 + ε2u2 + · · · ,
p(r, θ , z, t) = p(z,φ; R̄) = p0 + εp1 + ε2p2 + · · · ,

(16)

with 2π -periodicity in the fast phase function φ(r, θ , t) whereas the R̄-dependence accounts for the slow
radial development. For regular spatially developing global solutions, the local frequency ω = −∂tφ and
local azimuthal modenumber β = ∂θφ necessarily remain constant in the entire system, while the local
radial wavenumber α(R̄) = ∂rφ varies slowly with radial distance, leading to a fast phase function of the
form

φ =
(

1
ε

∫ R̄
α(ρ̄)dρ̄

)
+ βθ − ωt. (17)

After substitution of the global solution (16) with (17) into the Navier–Stokes equations, the local
governing equations are recovered at leading order in the expansion parameter ε. At the local level,
R̄ solely acts as an external control parameter, and for each value of R̄ the leading-order solution, among
all possible waves, is the one that matches the overall frequency ω and modenumber β, as derived from the
relevant dispersion relation. Note that in the previous sections, local properties were derived with the local
Reynolds number R as control parameter. When carrying out the present asymptotic analysis, however, it
is more appropriate to rescale this parameter as R̄ = εR and to consider the local properties as functions
of the slow R̄ instead.

Two different situations arise depending on the magnitude of the perturbation fields: in small-amplitude
regions the wave pattern is described by the linearized equations while the fully nonlinear equations are
needed in regions of finite amplitude vortex-trains.

Small-amplitude regions are governed by the linear dispersion relation (4). The radial wavenumber
α(R̄) in the rapidly varying phase (17) is then complex, accounting for both wavelength and growth
rate in the radial direction. When solving (4) for the wavenumber α with prescribed β and ω, two com-
plex spatial branches αl±(R̄;ω,β) are obtained. The separation of these into + and − branches is dic-
tated according to classical causality arguments [30,31] and determined whether they correspond to a
downstream or upstream spatial response to localized harmonic forcing. The leading-order wkbj solution
(16, 17) corresponding to a branch αl(R̄;ω,β) takes the form
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u ∼ A0(R̄)ul
(

z;αl(R̄;ω,β),β; R̄
)

exp i

(
1
ε

∫ R̄
αl(ρ̄;ω,β)dρ̄ + βθ − ωt

)
, (18)

where ul is one of the family (3) of linear eigenfunctions and A0(R̄) is a slowly varying amplitude determined
by a solvability condition at order ε.

In contrast, the finite-amplitude régime is governed by the local nonlinear equations and the associated
dispersion relation (8). Solving (8) with prescribed β and ω yields the corresponding real wavenumber
branch αnl(R̄;ω,β). In nonlinear regions, the global solution associated with αnl(R̄;ω,β) within the family
(7) of saturated crossflow vortices has the form

u ∼ unl

(
z,

1
ε

∫ R̄
αnl(ρ̄;ω,β)dρ̄ + βθ − ωt +�0(R̄);αnl(R̄;ω,β),β; R̄

)
, (19)

where the slowly varying phase function �0(R̄) obeys a solvability condition obtained at order ε.
The stability of the spatially developing finite-amplitude vortices (19) with respect to secondary pertur-

bations is determined by the secondary local dispersion relation (11) and in particular by the maximum
secondary absolute growth rate (13) along the relevant nonlinear wavenumber branch

ω̂max
0,i (R̄;ω,β) ≡ ω̂max

0,i

(
αnl(R̄;ω,β),β; R̄

)
. (20)

In regions where ω̂max
0,i (R̄;ω,β) > 0, secondary perturbations develop on top of the nonlinear wkbj solution

(19), grow at fixed radial positions and trigger transition. In contrast, while ω̂max
0,i (R̄;ω,β) < 0, secondary

perturbations are at most convectively unstable and do not permanently affect the underlying primary
wavetrain of frequency ω and modenumber β.

6 Self-sustained behaviour

As demonstrated in earlier investigations [21], spatially developing systems display a nonlinear self-
sustained state whenever a region of absolute instability is present. This intrinsic state is the only non-trivial
behaviour that would be observed in the absence of any external perturbations: a perfectly smooth disk
and no residual perturbations in the surrounding fluid.

The naturally selected finite-amplitude solutions (so-called ‘elephant’ global modes [36]) are character-
ized by a stationary front located at the transition radius from local convective to absolute instability. The
selection mechanism is the following: in the au region, amplified perturbations develop and their envelope
advances inwards against the radial flow. At the station of neutral absolute instability a balance between
upstream perturbation growth and downstream advection is reached and perturbations pile up at that
location. Nonlinearities lead to saturation of the perturation amplitude and a stationary front is formed.
This front generates a downstream propagating fully nonlinear wavetrain and an upstream exponentially
decaying tail. It thus connects linear and nonlinear regions, acts as a source and effectively tunes the entire
system to its own frequency. The stationary front obeys a marginal stability criterion [37], hence the global
frequency of these modes equals the real absolute frequency prevailing at the front location.

In the rotating-disk flow, the absolute growth rate ω0,i(β; R) depends on both azimuthal modenumber
and radial position, and it is for βca = 68 that absolute instability first occurs: at Rca � 507 with a marginal
frequency ωca

0 � 50.5 (6). Hence the expected self-sustained behaviour (see sketch in Fig. 3a) is charac-
terized by a front at Rca of frequency ωca

0 and azimuthal modenumber βca [23]. The naturally selected
flow fields can then be interpreted as the spatial response to this source, which generates the inwards
exponentially decaying linear wavetrain and the outwards spiralling finite-amplitude crossflow vortices. In
terms of wkbj expansions, the inner region R < Rca is described by linear waves of the form (18), decaying
towards the disk centre and following the complex αl−(R;ωca

0 ,βca) radial wavenumber branch. In the outer
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(a) (b)

Fig. 3 (a) Self-sustained flow structure. Finite-amplitude spiral vortices are triggered at Rca, by onset of primary absolute
instability, and immediately give way to turbulence, caused by secondary absolute instability. (b) Externally forced flow struc-
ture. Localised harmonic forcing applied at Rf produces a radially amplified response. Finite-amplitude crossflow vortices
develop beyond saturation radius Rnl and break down by secondary absolute instability beyond R̂ca

(a)

(b)

Fig. 4 (a) Maximum secondary absolute growth rate ω̂max
0,i (R;ωf ,βf) and (b) nonlinear spatial branches αnl(R;ωf ,βf) for

different values of ωf and βf . The zero-crossings of ω̂max
0,i in (a) define the corresponding R̂ca(ωf ,βf) and are marked by dots.

The αnl branches in (b) terminate at low R when the marginal Rm(ωf ,βf) is reached. Solid lines in (a) and (b) correspond to
forcing parameters which delay onset of secondary absolute instability to beyond Rca
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region R > Rca, a nonlinear wavetrain of the form (19) prevails and follows the nonlinear wavenumber
branch αnl(R;ωca

0 ,βca). Computation of ω̂max
0,i (R;ωca

0 ,βca), the maximum secondary absolute growth rate
(20) along this naturally selected nonlinear wavenumber branch (see also Fig. 4), reveals that the primary
saturated waves initiated by the front at Rca are already absolutely unstable with respect to secondary
perturbations [23].

In view of these results, the intrinsic behaviour of the rotating-disk boundary layer (Fig. 3a) may be
explained in the following way. The self-sustained finite-amplitude fluctuations are produced at the inner
boundary Rca of the absolutely unstable domain. This frontier for onset of primary absolute instability acts
as a source and generates outwards spiralling saturated crossflow vortices, governed locally by the associ-
ated nonlinear dispersion relation. Due to secondary absolute instability, this naturally selected primary
structure is dynamically unstable and immediately gives way to a disordred state.

7 Externally forced behaviour

The rotating-disk boundary layer is convectively unstable over the radial interval Rsc � 284 < R < Rca �
507 and can thus also act as an amplifier of external perturbations, such as roughness elements on the disk
surface or fluctuations in the external flow. In order to characterize the response of the boundary layer
to external perturbations, this section addresses the signalling problem: the spatial response to radially
localized harmonic forcing applied in the at most cu domain (see sketch in Fig. 3b).

Consider a radially localized forcing at Rf with frequency ωf, azimuthal modenumber βf and small
amplitude Af. In the vicinity of the forcing location, the magnitude of the response is of the same order as
the forcing amplitude and thus governed by linear dynamics, provided that Af � 1. Near Rf the spatial
response then follows a linear wkbj expansion of the form (18) where the complex local radial wavenumber
branches αl±(R;ωf,βf) are obtained by solving (4) with ω = ωf and β = βf: the αl+-branch pertains to the
outwards R > Rf side of the forcing and the αl−-branch to the inwards R < Rf side.

In stable or cu regions, the upstream spatial response decays for all frequencies and modenumbers, thus
αl−

i (R;ωf,βf) < 0 for all R < Rf. The linear wkbj approximation (18) which is exponentially decaying
towards the disk axis with local wavenumber αl−(R;ωf,βf) then applies to the entire region upstream of
the forcing location.

For forcing applied at Rf in the cu domain, there exists however a range of frequencies and modenum-
bers yielding downstream growth, i.e., with αl+

i (Rf;ωf,βf) < 0. At leading order, the order of magnitude,
ψext, of the externally forced linear spatial response (18) for R > Rf is

ψext ∼ Af exp
∫ R

Rf

−αl+
i (ρ;ωf,βf)dρ (21)

and hence grows exponentially radially outwards. The nonlinear saturation station Rnl where the spatial
response takes O(1) values is determined by the condition
∫ Rnl

Rf

−αl+
i (ρ;ωf,βf)dρ = − log Af. (22)

At Rnl, nonlinear saturation prevents further growth and leads to a nonlinear wavetrain, again with fre-
quency and modenumber determined by the forcing. Beyond Rnl, the spatial response thus consists of a
finite-amplitude saturated wavetrain of the form (19), uniquely determined by the forcing parameters ωf
and βf, and whose local radial wavenumber follows the nonlinear branch αnl(R;ωf,βf).

The long-term stability of these primary nonlinear spiral vortices is dictated by ω̂max
0,i (R;ωf,βf), the maxi-

mum secondary absolute growth rate (20) following along the nonlinear wavenumber branch αnl(R;ωf,βf)

(see Fig. 4). Denote by R̂ca(ωf,βf) the radius corresponding to transition from secondary convective to
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absolute instability, i.e., defined by

ω̂max
0,i (R;ωf,βf) = 0 for R = R̂ca(ωf,βf). (23)

For R< R̂ca(ωf,βf), a secondary perturbation is at most convectively unstable (ω̂max
0,i (R;ωf,βf)< 0) and thus

does not succeed in permanently affecting the primary crossflow vortices. For R > R̂ca(ωf,βf), however,
the au finite-amplitude crossflow vortices (ω̂max

0,i (R;ωf,βf) > 0) give way to a disordered state.

It should be noted that, for givenωf and βf, the saturation location Rnl depends on both forcing amplitude
Af and radius Rf, whereas the nonlinear wavetrain (19) prevailing beyond Rnl does not. Thus, the radius
R̂ca(ωf,βf) for onset of secondary absolute instability is uniquely determined by the forcing parameters
ωf and βf, while that, Rnl, for primary nonlinearity further depends on the parameters Af and Rf.

The character of the forced spatial response depends on the relative positions of R̂ca and Rnl. In situa-
tions where Rnl < R̂ca (sketched in Fig. 3b), the linear spatial response (18) grows from Rf to Rnl, followed
by nonlinear periodic crossflow vortices (19) in the domain Rnl<R< R̂ca. Secondary absolute instability
occurs at R̂ca, leading to a disordered state in R > R̂ca. An increase/decrease of the forcing amplitude Af
results in earlier/later onset of nonlinearity (Rnl) but does not modify the secondary stability properties
nor transition at R̂ca(ωf,βf).

With very low forcing amplitudes, onset of nonlinearity may be delayed beyond R̂ca, i.e., Rnl > R̂ca.
Near Rnl, nonlinear saturation then leads to a wavetrain which is already au with respect to secondary per-
turbations (ω̂max

0,i (R
nl;ωf,βf) > 0). Thus the nonlinear periodic régime (19) is bypassed and a disordered

state covers the entire region beyond Rnl. Since the transition radius then directly depends on Rnl, an
increase/decrease of the forcing amplitude Af then brings about earlier/later transition. Due to the expo-
nential growth of the response, a situation where Rnl > R̂ca generally occurs, however, only for extremely
small forcing amplitudes.

8 Open-loop control

The above results show that the rotating-disk boundary layer displays all the features required for success-
ful implementation of the open-loop control method previously developed for a one-dimensional model
problem [28]. In this strategy, localized periodic forcing is applied in the cu region so as to replace the
naturally selected nonlinear global structure by the spatial response to external forcing. The aim is not to
suppress the primary vortices but to tune them to an externally imposed frequency and modenumber and
thereby delay onset of secondary absolute instability and transition.

Assuming that the boundary layer displays the self-sustained behaviour described in Sect. 6, the au
domain R > Rca � 507 is covered by finite-amplitude fluctuations initiated at Rca, while a linear wkbj
approximation (18) of frequencyωca

0 and modenumber βca describes the inner range R < Rca. The resulting
linear wavetrain decays exponentially towards the disk centre and, to leading order, the order of magnitude,
ψint, of its amplitude varies with radial distance R as

logψint ∼
∫ Rca

R
αl−

i (ρ;ωca
0 ,βca)dρ. (24)

Suppose that a radially localised external forcing of frequency ωf and modenumber βf is applied to the
above flow structure at Rf in the cu region, i.e., Rsc < Rf < Rca. For small forcing amplitude Af, the order
of magnitude (21) of the linear spatial response for R > Rf is given by

logψext ∼ af −
∫ R

Rf

αl+
i (ρ;ωf,βf)dρ, (25)

where af = log Af. In the neighbourhood of Rf, both the spatial response and the self-sustained global
mode are governed by linear dynamics and the resulting flow is a superposition of both fields. This linear
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régime prevails through the region extending from Rf outwards until either ψext or ψint reaches finite
levels. Nonlinearity of the self-sustained field appears at Rca, whereas the forced response achieves O(1)
amplitude at the saturation radius Rnl, defined by (22) and which depends on the forcing parameters. The
nature of the nonlinear dynamics taking over from the linear régime thus crucially depends on the relative
positions of Rca and Rnl.

For given ωf, βf and Rf, there exists a critical forcing amplitude Ac ≡ eac , defined by

ac =
∫ Rca

Rf

αl+
i (ρ;ωf,βf)dρ, (26)

for which the nonlinear saturation radius Rnl of the externally forced response coincides with the onset
radius Rca of intrinsic nonlinearities. For stronger forcing levels Af > Ac (resp. weaker levels Af < Ac),
the saturation radius moves upstream Rnl < Rca (resp. downstream Rnl > Rca).

The open-loop control strategy [28] to be applied here for the rotating-disk boundary layer is based on
the following results. For weak forcing levels Af < Ac, the spatial response does not achieve O(1) ampli-
tudes at radius Rca and is thus unable to perturb the nonlinear self-sustained state selected by the front at
Rca and triggering finite-amplitude fluctuations for R > Rca. However, for higher forcing levels Af > Ac,
the spatial response reaches nonlinear saturation upstream of the front, i.e., Rnl < Rca, and the naturally
selected behaviour is then suppressed and replaced by the forced spatial response throughout the flow.

This behaviour may be interpreted as the result of two competing sources of different periodicities at
different locations: the self-sustained (ωca

0 ,βca)-front at Rca (responsible for the intrinsic nonlinear struc-
ture) and the external (ωf ,βf)-forcing at Rf. In the absence of external forcing, the front at Rca acts as a
keystone upon which the global structure is based. When forcing is applied at Rf, the intrinsic wavemaker
at Rca survives only if its upstream decaying tail experiences an unperturbed medium. As soon as the front
is overwhelmed by incoming finite-amplitude perturbations, the source of the global mode is suppressed
and hence so is the entire self-sustained structure. The underlying (primary) au region then plays no rôle
in the dynamics, since it is effectively masked by an externally imposed nonlinear wavetrain.

Without external input, the boundary layer displays transition to turbulence near Rca � 507 (Fig. 3a).
With open-loop control by external forcing of periodicity ωf and βf, transition occurs instead near
R̂ca(ωf,βf), where the externally forced nonlinear crossflow vortices become au with respect to secondary
perturbations (Fig. 3b). The goal of delaying transition can then be achieved if the two conditions

Rnl < Rca and R̂ca > Rca (27)

are both fulfilled. Identification of efficient control parameters thus requires a systematic investigation of
primary and secondary instability characteristics.

The condition Rnl < Rca is necessary for control of the primary wavetrain to be effective: the forced
spatial response needs to reach nonlinear levels and to saturate upstream of Rca in order to supersede the
self-selected dynamics. The second condition, R̂ca > Rca, then guarantees that onset of secondary absolute
instability, and thus of transition, is postponed to beyond Rca. Thus the forcing parameters ωf and βf must
be chosen so that, near Rca, the resulting nonlinear crossflow vortices have negative secondary absolute
growth rate.

Suitable control parameters may be derived from Fig. 2(a) which shows the (α,β)-plane for R = 500,
slightly upstream of Rca. Saturated travelling waves exist to the left of the marginal boundary �l

i(α,β) = 0
(thick solid curve) and their nonlinear frequencies �nl(α,β) are indicated by dashed curves. Among these
nonlinear waves, those associated with secondary absolute instability (ω̂max

0,i ≥ 0, indicated by thin solid
isocontours) must be avoided. As a result, the two control conditions (27) may be met for frequen-
cies ωf and modenumbers βf associated with nonlinear vortices located between the curves �l

i = 0 and
ω̂max

0,i = 0. In Fig. 2(a), selected forcing parameters are indicated by symbols: transition can be delayed for
(ωf,βf) = (65, 80), (50, 50), (50, 40), (45, 35) or (35, 20) (triangles), but not for (ωf,βf) = (65, 90), (45, 50)
(diamonds), nor of course for the self-sustained (ωca

0 ,βca) (thick dot).
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With external forcing, the new transition radius R̂ca(ωf,βf) is determined by the zero crossing of the
maximum secondary absolute growth rate ω̂max

0,i (R;ωf,βf). Figure 4(a) shows the radial evolution of ω̂max
0,i

for different values of ωf and βf; the associated nonlinear wavenumber branches αnl(R;ωf,βf) are given in
Fig. 4(b). The values of ω̂max

0,i for R = 500 and R = 550, corresponding to the forcing parameters used in
Fig. 4, are shown by symbols in Fig. 2(a) and (b) respectively.

It is seen that the naturally selected vortices, for ωca
0 and βca (corresponding to the solid dot in Fig. 2),

are among the most unstable primary nonlinear waves. The associated ω̂max
0,i and αnl curves are given in Fig.

4 for 400<R< 600, but note that the values for R < Rca are irrelevant to the self-sustained global mode,
since it has finite amplitude only for R > Rca.

When the intrinsic dynamics at (ωca
0 ,βca) is replaced by nonlinear waves with (ωf,βf) = (65, 90) or

(45, 50) (diamonds in Fig. 2), secondary instability is reduced and the ω̂max
0,i curves in Fig. 4(a) are lowered.

For these forcing parameters, however, the radius Rca remains within the secondarily au region ω̂max
0,i > 0.

In consequence, rather than reducing the size of the turbulent domain, external harmonic forcing actually
promotes earlier transition because the secondary perturbations propagate inwards below Rca down to the
corresponding marginal radius R̂ca(ωf,βf) < Rca (indicated by small dots in Fig. 4a).

External forcing of nonlinear waves between the marginal�l
i = 0 and ω̂max

0,i = 0 curves in Fig. 2(a) suffi-

ciently weakens secondary instability that the critical radius R̂ca for onset of secondary absolute growth
is located beyond Rca, fulfilling the second condition (27). Values corresponding to (ωf,βf) = (65, 80),
(50, 50), (50, 40), (45, 35) and (35, 20) are indicated by triangles in Fig. 2, and the corresponding ω̂max

0,i and

αnl branches are represented by solid lines in Fig. 4. With ωf = 50 and βf = 40 (lowest curve in Fig. 4a),
onset of secondary absolute instability is postponed to beyond R̂ca > 600. Hence it is possible to delay the
turbulent régime by approximately 100 boundary layer units from Rca to R̂ca.

Due to the condition Rnl < Rca, it seems unlikely that forcing parameters exist that would delay transi-
tion much further. Indeed, the nonlinear solution branches are governed by the local nonlinear dispersion
relation (8) and terminate at low R when the marginal radius associated with ωf and βf, denoted as
Rm(ωf,βf) and indicated by dots in Fig. 4(b), is reached. Thus for given ωf and βf, saturation of the spatial
response may only occur for Rnl > Rm(ωf,βf), and the range of possible control parameters is therefore
limited by the condition

Rm(ωf,βf) < Rca. (28)

As can be seen from Fig. 4, settings of ωf and βf that yield high values of R̂ca(ωf,βf) also push Rm(ωf,βf)

outwards.
The spatial response at ωf and βf is radially exponentially amplified over the interval Rm(ωf,βf) <

R < Rca, and the largest amplification is obtained when forcing is applied at Rf = Rm(ωf,βf). Due to the
exponential growth of the forced response, only small forcing amplitudes (26) are generally necessary to
reach a nonlinear state at Rnl<Rca. However, when Rm is too close to Rca, the radial amplification of the
spatial response is only moderate and more substantial forcing amplitudes are required.

As a result, the values of ωf = 50 and βf = 40 are deemed to be very close to the optimal forcing
parameters for delaying transition by the present open-loop control method.

9 Discussion

For the three-dimensional boundary layer produced by a rotating disk, the scenario leading from the
unperturbed boundary layer to the turbulent state takes place in two steps and involves both primary
and secondary instabilities: primary nonlinear waves are the prerequisite for a possible development of
secondary absolute instability leading to transition. Since the secondary disturbances feed on the primary
vortices, the turbulent régime prevailing at large radial distances may propagate inwards until either the
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nonlinear waves cease to exist (R = Rnl) or until their secondary absolute growth rate changes sign
(R = R̂ca).

The intrinsic dynamics, observed without external perturbations, display a sudden transition from basic
to turbulent states, where primary and secondary instabilities simultaneously take place. At the radius
Rca � 507 of transition from primary linear convective to absolute instability, a stationary front of fre-
quency ωca

0 � 50.5 and azimuthal modenumber βca = 68 generates outward spiralling nonlinear crossflow
vortices. These finite-amplitude waves are already au with respect to secondary perturbations. Hence a
disordered state covers the whole region R > Rca, while the unperturbed boundary layer prevails for
R < Rca. In this situation, the transition location is dictated by onset of primary nonlinear waves, which in
turn corresponds to onset of primary absolute instability (Rnl = Rca).

When harmonic forcing is applied at Rf in the cu region with frequency ωf and modenumber βf in the
unstable range, the linear response exponentially grows with radial distance and reaches finite-amplitude at
radius Rnl > Rf. The associated nonlinear vortices display secondary absolute instability for R > R̂ca. When
forcing parameters are chosen so that Rnl < R̂ca, the spatial response displays three successive régimes
downstream of Rf: linear growth over Rf < R < Rnl, nonlinear crossflow vortices over Rnl < R < R̂ca and
a turbulent state for R > R̂ca. In this situation, transition is due to onset of secondary absolute instability
at R̂ca, and this radius is uniquely determined by ωf and βf.

The aim of the open-loop control strategy is to delay onset of secondary au perturbations, and thus
transition, from Rca to larger radii by a controlled modification of the primary nonlinear state. This tech-
nique consists in replacing the naturally selected flow state by the spatial response to carefully chosen
harmonic forcing. Transition is effectively postponed for control parameters such that Rnl < Rca < R̂ca: by
enhancing primary instability, onset of secondary instability may be delayed. Thus, the natural dynamics,
where primary and secondary instabilities occur simultaneously at Rca, is replaced by an externally forced
flow structure whose primary nonlinearities appear earlier (at Rnl < Rca) but whose secondary pertur-
bations develop only later (at R̂ca > Rca). In other words, the linear (ωf,βf)-waves must be sufficiently
unstable to reach nonlinear saturation before Rca and at the same time not too unstable so that the resulting
finite-amplitude waves display secondary absolute instability only after Rca. Best control (large R̂ca) is thus
obtained by applying weakly unstable forcing: transition may be delayed by approximately 100 boundary
layer units beyond Rca when using ωf = 50 and βf = 40. However, optimizing for large R̂ca requires a
very precise tuning of the forcing parameters and is expected to be difficult to implement experimentally.
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The global dynamics of open shear flows is closely related to the nature of their local
instability characteristics, either convective or absolute. The present investigation
revisits the wake of a sphere, obtains its global behaviour by direct numerical
simulations and derives its local stability features, computed for the underlying basic
flow under a quasi-parallel flow assumption. It is shown that both the axisymmetric
and the planar symmetric basic flows exhibit domains of local absolute instability
in the near-wake region. The largest absolute growth rates occur for instabilities
developing on the non-axisymmetric basic wake and conserving its planar symmetry.

1. Introduction
The global dynamics of shear flows is known to closely depend on the local

instability characteristics, either convective or absolute (Huerre 2000). Convectively
unstable systems are sensitive to inflow perturbations and they behave as amplifiers of
external noise. In contrast, absolutely unstable systems display non-trivial dynamics
without external input, often leading to self-sustained oscillations. Thus, onset of
absolute instability is generally associated with drastic changes in the naturally
selected global flow features. With this in mind, the present investigation has been
undertaken to work out the detailed instability properties prevailing in the wake of
a sphere. By analysing the wake structure and its local stability characteristics,
it is attempted to establish a link between the naturally selected global flow
and the dynamics prevailing locally. A similar line of thought has already been
sucessfully implemented for the two-dimensional wake of a cylinder (Pier 2002).
This approach is here generalized to the fully three-dimensional flow around
a solid sphere.

At moderate Reynolds numbers, the global dynamics of the wake flow around a
sphere is now fairly well established, both experimentally and numerically (Roos &
Willmarth 1971; Nakamura 1976; Sakamoto & Haniu 1995; Johnson & Patel 1999;
Mittal 1999; Ghidersa & Duček 2000; Tomboulides & Orszag 2000; Schouveiler &
Provansal 2002; Bouchet, Mebarek & Duček 2006). The steady axisymmetric wake
is stable for Re < Re1 � 212 and a steady non-axisymmetric flow is observed for
Re1 < Re < Re2 � 272. This non-axisymmetric wake displays a symmetry plane and
is characterized by two vortex threads aligned with the outer flow. At Re2, a Hopf
bifurcation leads to periodic vortex shedding. The resulting time-harmonic regime
conserves the planar symmetry and the associated Strouhal frequency is in the range
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0.12 < St < 0.18. At even larger Reynolds numbers, the planar symmetry is lost
(Mittal 1999) and further bifurcations lead to a more complex behaviour.

Monkewitz (1988b) investigated the linear stability of an analytic two-parameter
family of model axisymmetric, locally parallel and incompressible wake profiles. In
that study, the first helical mode was found to display the largest growth rates and
to be the only one to become absolutely unstable for velocity profiles approximating
those found in the near wake.

Natarajan & Acrivos (1993) computed the axisymmetric basic flow past a sphere
and examined its global linear instability to three-dimensional modal perturbations.
The first instability was found at Re � 210, associated with a vanishing frequency
(regular bifurcation). At Re � 277.5, a second mode was found to become unstable
via a Hopf bifurcation. While these authors only investigated the stability of the
axisymmetric wake, this second critical Reynolds number is remarkably close to
Re2 � 272, corresponding to the transition from a steady non-axisymmetric wake to
periodic vortex shedding.

More recently, the role of local absolute instability in self-sustained oscillations
developing in three-dimensional axisymmetric flows has been analysed by Sevilla &
Martı́nez-Bazán (2004) for the wake of a bullet-shaped body, by Gallaire et al. (2006)
for spiral vortex breakdown, and by Lesshafft et al. (2006) and Nichols, Schmid &
Riley (2007) for variable-density round jets. These studies have all confirmed the
importance of local absolute instability in triggering large-scale global oscillations of
these spatially developing flows.

The present investigation has been undertaken in the same spirit and revisits
the wake of a sphere in order to establish its complete local absolute instability
characteristics. Unlike the above studies, however, not only axisymmetric but also
planar symmetric basic wake flows are considered here. Indeed, at Re2, onset of
vortex shedding occurs via a bifurcation from a planar symmetric basic flow, which
therefore requires stability analyses of these non-axisymmetric velocity profiles.

The paper is organized as follows. The governing equations and numerical solution
methods for the flow around a sphere are presented in §2. The results obtained by
direct numerical simulations are given in §3. This section serves two purposes: first,
to validate the numerical code by accurately reproducing the different known flow
regimes; second, to obtain the exact time-independent solutions of the Navier–Stokes
equations that are used as basic flows for the subsequent stability analyses. In §4,
the local linear stability analyses are carried out for both the axisymmetric and
the non-axisymmetric basic flows. Here the local dispersion relations are derived,
absolute frequencies are computed and the existence of absolutely unstable domains
is established.

2. Governing equations and numerical solution methods
The following study is carried out for incompressible flows governed by the Navier–

Stokes equations. The Reynolds number is defined as Re = U∞D/ν, where U∞
represents the free-stream velocity, D the sphere diameter and ν the kinematic
viscosity.

Throughout this investigation, cylindrical coordinates are used with r , θ and z (u, v

and w) denoting radial, azimuthal and axial coordinates (velocities) respectively. The
z-axis is aligned with the free-stream velocity and has its origin at the center of the
sphere. For future use, a Cartesian (x, y, z)-frame is also introduced where the x- and
y-axes coincide with the directions defined by θ = 0 and θ = π/2 respectively.
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Using non-dimensional variables based on U∞, D and ν, and denoting the total
velocity and pressure fields by u(r, θ, z, t) and p(r, θ, z, t) respectively, the governing
momentum and continuity equations may be written as

∂t u + (u · ∇)u + ∇p =
1

Re
�u + f , (2.1a)

∇ · u = 0, (2.1b)

where the different terms are defined in cylindrical coordinates as

u ≡

⎛
⎜⎝

u

v

w

⎞
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∂
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∂

∂z

)
u +

1

r

⎛
⎝
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+
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u +
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r
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∂θ
+

∂w

∂z
,

and f (r, θ, z, t) is an externally applied volume force to be specified below. The
boundary conditions are vanishing velocity fields on the sphere surface and free-
stream conditions in the far field:

u = 0 for r2 + z2 = 1/4, (2.2a)

u = v = w − 1 = p = 0 for r → ∞ or z → ±∞. (2.2b)

2.1. Immersed boundary method

For the purpose of fast numerical integration, the above equations are discretized
on a Cartesian grid in the (r, z)-plane, and the spherical obstacle is treated by an
immersed boundary method (for a review of this technique see Mittal & Iaccarino
(2005)). Thus the entire space is assumed to be filled with fluid, and a body force f b

is applied inside the region covered by the sphere (r2 + z2 � 1/4) so that the fluid
is brought to rest there and condition (2.2a) is satisfied. In the present investigation,
several implementations for the force f b have been tested to drive the components
of the velocity fields to negligible values. Best results have been obtained when the
effect of the sphere is modelled via a visco-elastic restoring force

f b = −
(

1

τv

u +
1

τ 2
e

∫ t

0

u(τ )dτ

)
φ

(√
r2 + z2

)
, (2.3)

with τv = 0.01 and τe = 1; the shape function is defined as

φ(ρ) ≡ 1

2

(
1 + tanh

0.5 − ρ

δ

)

with δ = 0.001.
By implementing this method, there is no need for body-fitted coordinates or

explicit boundary conditions on the obstacle surface, thus enabling fast computations
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on a Cartesian (r, z)-grid. Another advantage is that the hydrodynamic drag and lift
forces acting on the sphere (see §3.4) are directly obtained by spatial integration of
the volume force f b and there is no need to evaluate components of the stress tensor
near the surface.

2.2. Spatial discretization

All flow quantities are expanded as Fourier modes in the azimuthal direction (indexed
by the integer β)

u(r, θ, z, t) =
∑

β

uβ(r, z, t)e
iβθ and p(r, θ, z, t) =

∑

β

pβ(r, z, t)e
iβθ , (2.4)

their complex components satisfying the conditions u−β = u

β , v−β = v


β , w−β = w

β

and p−β = p

β , where 
 denotes complex conjugation. However, when considering flow

fields which exhibit a symmetry plane containing the z-axis, the numerical effort may
be reduced: if the flow is symmetric about the (x, z)-plane, i.e. about the (θ = 0)-plane,
it is invariant under the planar symmetry operator Π mathematically defined as

Π :

⎛
⎜⎜⎜⎝

u(r, θ, z, t)

v(r, θ, z, t)

w(r, θ, z, t)

p(r, θ, z, t)

⎞
⎟⎟⎟⎠ �→

⎛
⎜⎜⎜⎝

u(r, −θ, z, t)

−v(r, −θ, z, t)

w(r, −θ, z, t)

p(r, −θ, z, t)

⎞
⎟⎟⎟⎠ , (2.5)

and the components uβ , wβ and pβ are then real while vβ is purely imaginary (and
v0 = 0). In the numerical implementation, the expansions (2.4) are truncated at a finite
number of harmonics |β| � Nh. For the moderate Reynolds numbers of interest here,
it has been found that only a small number of modes (Nh = 3 or 4) are required to
accurately capture all the flow features, a fact already noticed by Ghidersa & Duček
(2000). Note that analyses of the axisymmetric wake features are simply carried out
by setting Nh = 0.

The discretization of the (r, z)-plane on a Cartesian grid combines finite differences
in the z-direction with Chebyshev collocation points in the r-direction (Canuto,
Hussaini & Quarteroni 1988; Boyd 2001).

An axial mesh of nz = nu + no + nd points is constructed with no equispaced grid
points separated by δz and clustered around z = 0, and nu (nd) elements in the
upstream (downstream) regions uniformly stretched according to a stretching factor
of κu (κd). All the results shown in this paper have been obtained with nu = 142,
no = 101, nd = 335, δz = 0.01, κu = κd = 1.02. The total streamwise extent of the
domain is then −8.5 < z < 387.

The radial discretization of the r-axis on nr collocation points is obtained by
mapping the Chebyshev points −1 � ξi ≡ − cos[iπ/(nr +1)] � +1 for i = 0, . . . , nr +1
onto the entire radial axis −∞ � ri � +∞ through the algebraic transformation
r
√

2/�r = ξ/(1 − ξ 2). The parameter �r governs the distribution of collocation points
over the r-axis: half of the points are located in the interval −�r < r < �r . Using
the vanishing boundary conditions (2.2b) at r = ±∞, the computation may be
restricted to the interior collocation points associated with 1 � i � nr . Moreover,
taking advantage of radial parity properties of the Fourier components (2.4), only
positive r-values need to be taken into account: the components uβ+1, vβ+1, wβ and
pβ are symmetric (antisymmetric) in r for β even (odd). The use of the appropriate
(anti)symmetric operators when computing radial derivatives then also resolves the
apparent singularity at r = 0, due to the formulation of the governing equations in
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polar coordinates (Boyd 2001). Throughout, �r = 1 has been used. Different resolution
tests have shown that reasonable but approximate results are obtained with nr = 80,
and that a high accuracy is achieved for nr � 160.

2.3. Time-marching algorithm

The integration in time of the incompressible Navier–Stokes equations (2.1) is carried
out by a second-order-accurate predictor–corrector fractional-step method (Goda
1979; Raspo et al. 2002). At the intermediate time-step, the velocity components
are obtained by solving Helmholtz-type problems. A Poisson problem then yields a
correction to the pressure required to enforce divergence-free velocity fields. A Crank–
Nicholson scheme is used for the viscous terms; the advection terms are obtained at
the intermediate time-step by extrapolation based on the previous time-steps.

3. Global flow behaviour and basic velocity fields
The present section considers the global wake dynamics for moderate Reynolds

numbers, Re � 350, and compares its features with those obtained by previous
experiments or simulations. The direct numerical simulations carried out here serve
two purposes. (1) Validate the numerical code by accurately reproducing the different
known flow regimes: steady axisymmetric flow for Re < Re1, steady non-axisymmetric
flow for Re1 < Re < Re2 and unsteady flow for Re > Re2. (2) Obtain the time-
independent solutions of the Navier–Stokes equations that are used as basic flows for
the stability analyses of the next section. These basic flow fields must be computed at
all relevant Reynolds numbers, including those for which they are globally unstable:
Re > Re1 for the axisymmetric and Re > Re2 for the non-axisymmetric basic flows.
These globally unstable non-axisymmetric basic wakes have been computed for the
first time here, by the frequency damping method of Åkervik et al. (2006).

3.1. Steady axisymmetric flow

A steady axisymmetric solution

u = uA(r, z; Re),

p = pA(r, z; Re),

}
(3.1)

of the Navier–Stokes equations (2.1) exists at all Reynolds numbers and can easily be
computed via direct numerical simulations. By truncating the Fourier expansions (2.4)
at |β| � Nh = 0, the system converges in time towards the steady state (3.1), even for
Re > Re1 when this basic state is globally unstable to non-axisymmetric perturbations
(see §3.2).

The structure of the basic axisymmetric wake fields at Re = 100, 200 and 300 is
illustrated in figure 1 where isolines of the pressure field p and the azimuthal vorticity
ωθ ≡ ∂zu−∂rw are shown. These fields are in excellent agreement with those obtained
for Re < Re1 by Johnson & Patel (1999, figures 6 and 7) using a discretization based
on spherical coordinates, a spatial grid fitted to the sphere surface and explicitly
implementing surface boundary conditions. Thus the ability of the present immersed
boundary technique to capture the flow fields with great accuracy is demonstrated.

3.2. Global instabilities

At Re1 � 212, a regular bifurcation occurs (Ghidersa & Duček 2000) and the
axisymmetric flow becomes globally unstable with respect to non-axisymmetric
perturbations. Thus, for Re > Re1, the wake flow naturally evolves towards a new
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Figure 1. Flow structure of steady axisymmetric wake. Isolines of pressure p (left) and
azimuthal vorticity ωθ (right) at (a) Re = 100, (b) Re = 200 and (c) Re = 300. Solid (dashed)
contours correspond to positive (negative) values. Pressure contours are spaced by 0.04 and
vorticity contours by 0.5.

steady non-axisymmetric state exhibiting a symmetry plane containing the z-axis. This
steady planar symmetric flow in turn becomes globally unstable at Re2 � 272, where
a Hopf bifurcation leads to periodic vortex shedding.

The breaking of axisymmetry is associated with the appearance of higher azimuthal
Fourier modes. Figure 2 shows the temporal evolution of energy contained in the first
azimuthal (β = 1) Fourier component; in these simulations the axisymmetric basic
flow solution (3.1) is non-axisymmetrically perturbed at t = 0. From figure 2(a) it is
derived that global instability of the axisymmetric state occurs for 210 < Re1 < 220,
while onset of periodic vortex shedding is seen in figure 2(b) to occur for 270 <

Re2 < 280. The steady planar symmetric wake obtained with Re = 250 can be seen
in figure 4(a) below, and a snapshot of the vortex shedding regime prevailing at
Re = 300 is shown in figure 3. The vortex shedding frequency measured for Re > Re2

weakly increases with Reynolds number and equals ω = 0.85 at Re = 300, which
corresponds to a Strouhal number of St = ω/2π = 0.135. These results are in good
agreement with the usually assumed critical Reynolds numbers of Re1 = 212 and
Re2 = 272, as well as the expected Strouhal number (Johnson & Patel 1999; Ghidersa
& Duček 2000). Since the purpose of the present investigation is not the precise
determination of these thresholds, these results are deemed sufficient validation of the
code and no further numerical refinement has been pursued.

3.3. Steady planar symmetric flow

For Re > Re1, there exists a steady non-axisymmetric but planar symmetric solution

u(r, θ, z, t) ≡ uP (r, θ, z; Re),

p(r, θ, z, t) ≡ pP (r, θ, z; Re),

}
(3.2)

of the Navier–Stokes equations (2.1). Below, the coordinates are always chosen so
that the symmetry plane coincides with the (x, z)-plane defined by θ = 0. This steady
planar symmetric wake flow is globally stable up to Re2. A direct numerical simulation
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Figure 2. Temporal evolution of energy E1 (arbitrary units) contained in the first azimuthal
Fourier mode for Re = 200, 210, . . . , 300.
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Figure 3. Snapshot of periodic vortex shedding regime at Re = 300. Isolines of azimuthal
vorticity ωθ in the (x, z)-plane (symmetry plane θ = 0) and (y, z)-plane (θ = π/2) Solid (dashed)
contours correspond to positive (negative) values, spaced by 0.5.

(with Nh > 0) thus evolves in time towards the steady planar symmetric wake for
Re1 < Re < Re2 and towards a time-dependent regime for Re > Re2. It should be
noted that the onset of periodic vortex shedding does not break the planar symmetry
of the underlying unstable basic flow: the time-dependent flow fields (see figure 3)
conserve the (x, z)-symmetry plane. Thus there is no way to obtain the steady unstable
flow solution (3.2) for Re > Re2 by imposing an additional symmetry condition in
the direct numerical simulations.
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In order to compute the planar symmetric basic flow for Re > Re2, a Newton–
Raphson search procedure could be numerically implemented that solves for steady
solutions of the full system. However, owing to the size of the system of non-
linearly coupled equations, this procedure turned out to be extremely time and
memory consuming (even when resorting to approximate iterative methods) and
poorly converging.

A much more efficient way to compute the unstable basic flow was to implement
the selective frequency damping method of Åkervik et al. (2006). In a nutshell, this
frequency damping method enables the computation of steady solutions by adding to
the right-hand side of (2.1a) a linear forcing term f d driving the system towards a
target solution

f d(r, θ, z, t) = − 1

τd

(
u(r, θ, z, t) − ū(r, θ, z, t)

)
, (3.3)

where τd can be understood as a characteristic damping time. The target solution
ū must be chosen so that it converges towards the unknown steady solution, and
this can be achieved by low-pass filtering (with cutoff frequency 1/τf ) the already
computed velocity fields

ū(r, θ, z, t) =

∫ t

0

1

τf

exp

(
− t − t ′

τf

)
u(r, θ, z, t ′)dt ′, (3.4)

or equivalently

∂t ū =
1

τf

(u − ū). (3.5)

Time-marching of the target solution governed by (3.5) can be done simultaneously
with the simulation of the Navier–Stokes equations (2.1) with f = f b + f d and only
requires minimal modifications to the original code. As this coupled system converges
towards a steady state, the additional damping term (3.3) vanishes and the resulting
time-independent flow fields are exact steady solutions of the original Navier–Stokes
equations. In the present investigation, a good compromise between stability of the
scheme and fast convergence towards a steady solution was obtained with τd = 1
and τf = 10.

The structure of the steady planar symmetric wake at Re = 200, 250 and 300 is
shown in figure 4.

3.4. Drag, lift and reverse flow

As a final check, and to conclude this section on the global flow behaviour, the drag
and lift forces acting on the sphere as well as the reverse-flow regions in the different
wake regimes have also been computed.

As mentioned in §2.1, the hydrodynamic forces are here simply obtained by spatial
integration of the volume forces (2.3) required by the immersed boundary method.
Since these volume forces are designed to maintain the fluid at rest in the domain
covered by the sphere, they exactly oppose the hydrodynamic forces due to the
surrounding flow. The drag force is the component acting in the z-direction. Since the
symmetry plane of the wakes is chosen to lie at θ = 0, defined as the (x, z)-plane, the
lift force is obtained by projection onto the x-axis, while the lateral force along the
y-axis vanishes. Drag and lift coefficients CD and CL are shown in figure 5. The
thick solid lines correspond to the steady axisymmetric wakes; the thick dashed lines
represent the hydrodynamic forces computed for the steady planar symmetric fields.
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Figure 4. Flow structure of a steady planar symmetric wake. Isolines of azimuthal vorticity
ωθ in (x, z)-plane (symmetry plane θ = 0) and (y, z)-plane (θ = π/2) at (a) Re = 250, (b)
Re = 300 and (c) Re = 350. Solid (dashed) contours correspond to positive (negative) values,
spaced by 0.5.

Beyond Re2, the wake naturally evolves towards a time-dependent state, and the thin
lines illustrate the maximum and minimum values in this periodic regime.

Since absolute instability is often associated with the existence of reverse flow, the
evolution with Reynolds number of the recirculation region is plotted in figure 6. For
axisymmetric basic wakes, the reverse-flow region terminates at a stagnation point
located at ZA


 (solid curve) on the z-axis (note that the recirculation length is given by
ZA


 −0.5). For the steady planar symmetric wakes, two quantities have been computed:
the downstream boundary of the reverse flow region ZP


 (dashed curve), defined as the
zero-crossing of minr,θ wP (r, θ, z; Re), and the location ZP



 (dotted curve) where the
z-axis crosses the reverse flow region, i.e. the zero-crossing of wP (r = 0, θ, z; Re).
At Re = Re1, the breaking of axisymmetry causes a lateral shift of the reverse-flow
region, which entails a drop in ZP



. However, reverse flow prevails off the z-axis
beyond ZP



 down to ZP

 , which is seen to increase almost linearly with Re.

The results shown in figures 5 and 6 are in excellent agreement with the data
recently obtained by Bouchet et al. (2006) using a different method; note however
that these authors did not compute the globally unstable planar symmetric base flow
for Re > Re2.
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Figure 5. (a) Drag and (b) lift coefficients as a function of the Reynolds number for the
different flow regimes: axisymmetric wake (thick solid), steady planar symmetric wake (thick
dashed), unsteady planar symmetric wake (two thin lines corresponding to minimum and
maximum values).

4. Local linear stability analyses
The next two subsections of this study investigate the local stability properties of

the previously obtained basic wake flows: both the axisymmetric uA(r, z; Re) (3.1)
and the planar symmetric uP (r, θ, z; Re) (3.2) steady solutions of the Navier–Stokes
equations. Local properties of these flows, valid at a given axial position z, are
derived from the velocity profiles prevailing at that station. Such an approach can
be justified by a rigorous asymptotic analysis based on the assumption of a slow
axial development of the basic flow. The flow around a spherical obstacle is clearly
non-parallel in the near-wake region; however, following the successful treatment of
the cylinder wake (Pier 2002), we again ignore the non-parallelism of the present flow
and study its local stability features. Local properties are then derived by freezing the
z-coordinate, at say z = Z, and studying the equivalent axially parallel shear flows of
either axisymmetric or planar symmetric velocity profiles

UA(r; Z, Re) ≡ uA(r, Z; Re) or UP (r, θ; Z, Re) ≡ uP (r, θ, Z; Re), (4.1)
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Figure 6. Reynolds-number dependence of reverse-flow region. For axisymmetric basic wakes,
the recirculation region terminates at ZA


 (solid curve). For planar symmetric basic wakes, it
extends down to ZP


 (dashed) and crosses the z-axis at ZP


 (dotted).

where Z now acts as a parameter rather than a coordinate.

4.1. Local stability of axisymmetric basic wake

When studying the local stability properties of the axisymmetric basic wake under
the parallel flow assumption, both z and θ are homogenous directions, and the total
flow fields may then be separated into basic and perturbation quantities according to

u(r, θ, z, t) = UA(r; Z, Re) + ul(r; α, β; Z, Re) exp i(αz + βθ − ωt),

p(r, θ, z, t) = P A(r; Z, Re) + pl(r; α, β; Z, Re) exp i(αz + βθ − ωt).

}
(4.2)

Here the infinitesimally small velocity and pressure disturbances have been written in
normal-mode form, where α is a complex axial wavenumber, β an integer azimuthal
mode number, ω a complex angular frequency and ul , pl the associated complex
velocity and pressure components. After substitution of (4.2) into the Navier–Stokes
equations, the linearization in the perturbation quantities yields an eigenvalue problem
in the radial direction. By using a Chebyshev spectral method based on the same radial
collocation points for which the base flow has been computed, the full ω-spectrum
is obtained for each setting of the wavenumbers α and β and of the parameters Z

and Re. In figure 7, the ω-spectra are shown corresponding to α = 2 and |β| � 4
for the velocity profiles obtained in the axisymmetric wake at Z = 1 with Re = 300
(illustrated in figure 1c). The full spectra are made up of many modes, among which
only a few are physically relevant. Note that the numerical method approximates a
continuous spectrum at ωr = α, associated with modes oscillating in the free stream.
For each β the most unstable (or least stable) mode is indicated by a bold dot in
figure 7. Identification of these modes yields the local linear dispersion relation

ω = ΩA(α, β; Z, Re). (4.3)

For axisymmetric base flows, the eigenfunctions ul(r; α, β) and ul(r; α, −β) are
associated with the same frequency, i.e. ΩA(α, β) = ΩA(α, −β), and transform
into each other under the symmetry operator Π (2.5), with respect to the
(θ = 0)-plane. A planar symmetric eigenmode is thus obtained as the combination
u = ul(r; α, β)eiβθ +ul(r; α, −β)e−iβθ , which satisfies Πu = u, whereas the combination
u = ul(r; α, β)eiβθ − ul(r; α, −β)e−iβθ satisfies Πu = −u and thus represents an
eigenmode that is antisymmetric with respect to the (θ = 0)-plane. For comparison
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Figure 7. Superposition of temporal ω-spectra corresponding to α = 2 and β = 0, 1, 2, 3, 4
for axisymmetric wake flow at Z = 1 with Re = 300.
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Figure 8. Structure of eigenfunctions obtained for axisymmetric wake flow at Z = 1,
Re = 300 with α = 2 and (a) β = 0, (b) β = 1, (c) β = 2, (d) β = 3. The axial velocity
component w(r, θ ) of the normalized modes (thick curves) is shown together with the axial
basic flow component W (r) (thin curves). (a) Radial profile of real wr (thick solid) and
imaginary wi (thick dashed) parts of the axisymmetric mode corresponding to α = 2 and
β = 0. (b–d) Modulus |w| (thick equispaced isolines) of planar symmetric modes corresponding
to α = 2 and β = 1 (b), β = 2 (c) and β = 3 (d). In (b–d), the basic wake profile W is indicated
by thin equispaced isolines.

with eigenmodes pertaining to non-axisymmetric wakes (figure 13), the structure of
the symmetric eigenmodes is illustrated in figure 8.

In the context of open shear flows, a crucial feature is the complex absolute
frequency defined as the frequency observed at a fixed spatial location in the long-
time linear response to an initial impulse. For an axially localized impulse with given
azimuthal mode number β , the local absolute frequency ωA

0 and associated absolute
axial wavenumber αA

0 are derived from the linear dispersion relation (4.3) by applying
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Figure 9. Identification of absolute frequency ω0 and wavenumber α0 for β = 1, Z = 1 in an
axisymmetric wake at Re = 300, by monitoring how the dispersion relation maps the complex
α-plane onto the complex ω-plane. (a) Isocontours of ωr (solid) and ωi (dashed) in the α-plane
display a saddle point at αA

0 � 1.75 − 0.78i marked by a solid dot. (b) The temporal curves
ΩA(α) computed for lines of constant αi display a cusp at ωA

0 � 0.52 + 0.25i in the ω-plane.

the Briggs (1964) and Bers (1983) pinch-point criterion, equivalent to the vanishing
group velocity condition

ωA
0 (β; Z, Re) = ΩA

(
αA

0 , β; Z, Re
)

and
∂ΩA

∂α

(
αA

0 , β; Z, Re
)

= 0 (4.4)

with the additional requirement that the two spatial α-branches that coalesce at
the branch-point singularity αA

0 originate from distinct half-α-planes for sufficiently
large and positive values of ωi . Pinch points are readily identified by computing the
dispersion relation (4.3) on a rectangular grid in the α-plane and monitoring how it
maps the complex α-plane onto the complex ω-plane. Plotting the associated temporal
branches in the ω-plane and ωr - and ωi-isolines in the α-plane reveals respectively the
characteristic cusp near ωA

0 and saddle point near αA
0 . Once a pinch point has thus

been approximately located, the exact values of ωA
0 and αA

0 are found by iteratively
solving (4.4) with this initial guess. This method is illustrated in figure 9 for β = 1,
Z = 1 and Re = 300, which yields ωA

0 = 0.52 + 0.25i and αA
0 = 1.75 − 0.78i. The

structure of the absolute eigenmodes obtained for azimuthal mode numbers β = 0, 1
and 2 at Z = 1 in an axisymmetric wake with Re = 300 is given in figure 10.

The streamwise evolutions of the local absolute growth rate ω0,i and real absolute
frequency ω0,r are illustrated in figure 11 for β = 0, 1, 2, 3 and axisymmetric basic
wakes in the range 100 � Re � 350.

From these plots it is found that the near wake displays absolutely unstable regions
when Re > Rea � 130 and that the strongest instability always occurs for |β| = 1.
Axisymmetric (β = 0) perturbations are weakly absolutely unstable for Re > 170
while higher azimuthal modes (|β| � 2) never reach absolute instability at these
Reynolds numbers. The discrepancy between onset of local absolute instability at
Rea � 130 and of global vortex shedding at Re2 � 272 will be addressed in the
concluding section.

4.2. Local stability of planar symmetric basic wake

When investigating the local stability features of a planar symmetric basic flow, the
local velocity profiles depend on both radial and azimuthal directions, and z is the
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Figure 10. Structure of absolute eigenfunctions for axisymmetric wake flows at Z = 1 and
Re = 300. The axial velocity component w(r, θ ) of the modes (thick curves) is shown together
with the axial basic flow component W (r) (thin curves). (a) Axisymmetric mode β = 0, radial
profile of real wr (thick solid) and imaginary wi (thick dashed) parts. (b,c) Non-axisymmetric
modes β = 1 and β = 2 respectively, equispaced (thick solid) isolines of modulus |w|.
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Figure 11. Local absolute growth rates ωA
0,i and frequencies ωA

0,r for |β| � 3 in axisymmetric
basic wake flows at Re = 100, 110, . . . , 350.

only spatial homogenous coordinate. The total flow fields are then separated into
basic and perturbation quantities as

u(r, θ, z, t) = UP (r, θ; Z, Re) + ul(r, θ; α; Z, Re) exp i(αz − ωt),

p(r, θ, z, t) = P P (r, θ; Z, Re) + pl(r, θ; α; Z, Re) exp i(αz − ωt),

}
(4.5)
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Figure 12. Frequency eigenvalues obtained with α = 2 for non-axisymmetric wake flow at
Z = 1 with Re = 300.

where α is again a complex axial wavenumber, ω a complex angular frequency and
the eigenmodes ul and pl are now functions of both r and θ and are governed by the
local Navier–Stokes equations linearized about the local planar symmetric wake flow.

For a given Reynolds number above onset of non-axisymmetry (Re > Re1),
computation of the planar symmetric steady wake following the method outlined
in §3.3 provides the basic flow fields required in (4.5). For these basic flow quantities,
the values of their azimuthal Fourier components are known on a set of radial
collocation points. Thus the same Fourier–Chebyshev expansion is used for the two-
dimensional eigenfunctions ul and pl in (4.5), and the associated eigenproblems are
then obtained as a large system of linear equations where the different azimuthal
harmonics of the eigenfunctions are linearly coupled via the harmonics of the basic
flow. The solution of these eigensystems then yields the full ω-spectrum for each
setting of the wavenumber α and the parameters Re and Z. Since the basic flow
is symmetric about the plane θ = 0, i.e. invariant under the symmetry operator Π

(2.5), the associated eigenfunctions are either symmetric (Πu = u) or antisymmetric
(Πu = −u), and the numerical resolution of the eigenproblems can be speeded up
by taking advantage of these symmetry properties. By analogy with two-dimensional
jets or wakes, the present symmetric (resp. antisymmetric) modes are also termed
varicose (resp. sinuous). Figure 12 shows the frequency spectrum corresponding to
α = 2, computed with the planar symmetric basic wake profile at Z = 1 for Re = 300
(illustrated in figure 4b). By comparison of this spectrum with the corresponding
spectra obtained at similar parameter settings for the axisymmetric wake flow (see
figure 7), the physically relevant eigenvalues in figure 12 are labelled as m = 0, ±1,
±2, . . . where the values m � 0 denote symmetric or varicose modes while the values
m < 0 denote antisymmetric or sinuous modes. Identification of these modes then
yields the local linear dispersion relation governing the planar symmetric wake flows

ω = ΩP (α, m; Z, Re). (4.6)

Comparison of figures 7 and 12 reveals that the non-axisymmetric basic flow
displays larger growth rates ωi than the axisymmetric case. Unlike the situation
prevailing for axisymmetric velocity profiles where the modes ±β are degenerate,
here the non-axisymmetric components of the basic flow lift the degeneracy of
the ±m modes, i.e. ΩP (α, m) 
= ΩP (α, −m) for m 
= 0. However, the influence
of the non-axisymmetric components is relatively weak: only the modes m = ±1
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Figure 13. Structure of eigenfunctions obtained for planar symmetric wake flow at Z = 1
and Re = 300, with α = 2 and m = 0, ±1, ±2, ±3. The modulus of the axial velocity
component |w(r, θ )| of the modes (thick equispaced isolines) is shown together with the axial
basic flow component W (r, θ ) (thin equispaced isolines).

are clearly distinguished in the frequency plane of figure 12. The spatial structure
of the associated eigenfunctions is illustrated in figure 13 by isolines of |w|,
the modulus of their complex-valued axial velocity component. Again, only the
modes m = ±1 are clearly differentiated while the higher modes closely resemble
their axisymmetric counterparts (see figure 8). Note that plots of |w| are all



Local and global instabilities in the wake of a sphere 55

Re = 200

m = +1

x–1 1

1

1

1 1

1

1

1

1

–1

x–1

1

–1

x–1

1

–1

x–1

1

–1

x–1

1

–1

x–1

1

–1

x–1

1

–1

x–1

1

–1

m = –1

Re = 220

m = +1

y

y y

m = –1 

y

Re = 240

m = +1

y

m = –1

y

Re = 280

m = +1

y

m = –1

y

Figure 14. Evolution with Reynolds number of planar symmetric m = +1 and antisymmetric
m = −1 eigenfunctions obtained for the basic wake at Z = 1, α = 2 and Re = 200, 220,
240, 280. While the modes are degenerate for the axisymmetric wake prevailing at Re = 200,
they evolve separately for Re > Re1 � 212 with increasing departure from axisymmetry. The
modulus of the axial velocity component |w(r, θ)| of the modes (thick equispaced isolines) is
shown together with the axial basic flow component W (r, θ) (thin equispaced isolines).

symmetric with respect to the x-axis: in this representation antisymmetric eigenmodes
are characterized by the vanishing of the w component on the x-axis, while
planar-symmetric eigenmodes display non-vanishing values of |w| over the x-axis.
It should be noted also that the unstable eigenfunctions (|m| � 2) are shifted towards
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Figure 15. Structure of absolute eigenfunctions for planar symmetric wake flow at Z = 1
and Re = 300, with m = 0, m = +1 and m = −1. The modulus of the axial velocity
component |w(r, θ )| of the modes (thick equispaced isolines) is shown together with the axial
basic flow component W (r, θ ) (thin equispaced isolines).

the regions where the basic wake displays the largest shear, i.e. the neighbourhood of
(x, y) = (0.5, 0) in these plots.

To further illustrate how the non-axisymmetric modes emerge from their
axisymmetric equivalents with increasing Reynolds number, figure 14 plots both
planar symmetric m = +1 and antisymmetric m = −1 eigenmodes obtained with
α = 2 and Z = 1 for Re = 200, 220, 240 and 280. For Re = 200, below onset
of non-axisymmetry, both modes are identical up to a rotation around the z-axis.
For Re > Re1 � 212, with increasing departure from axisymmetry, the discrepancy
between the m = +1 and m = −1 modes is seen to increase as they concentrate
towards the region of largest shear in the basic flow.

The analysis of absolute instability properties for non-axisymmetric wakes is carried
out in a similar fashion as for the axisymmetric case in the previous section; its
numerical implementaion, however, is more demanding on computational resources.
Application of the Briggs (1964) and Bers (1983) pinch-point criterion with dispersion
relation (4.6) yields, for each mode m, the local absolute frequency ωP

0 and associated
absolute axial wavenumber αP

0 by solving

ωP
0 (m; Z, Re) = ΩP

(
αP

0 , m; Z, Re
)

with
∂ΩP

∂α

(
αP

0 , m; Z, Re
)

= 0. (4.7)

The structure of the absolute eigenfunctions obtained for the modes m = 0, +1
and −1 for the non-axisymmetric basic wake at Z = 1 and Re = 300 is illustrated
in figure 15. These modes are associated respectively with the absolute frequencies
ωP

0 (m = 0) � −0.15 + 0.03i, ωP
0 (m = +1) � 0.76 + 0.41i and ωP

0 (m = −1) �
0.78 + 0.27i. Comparison with the corresponding absolute modes pertaining to
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Figure 16. Local absolute growth rates ωP
0,i and frequencies ωP

0,r for planar symmetric basic
wake flows at Re = 220, 230, . . . , 350 and m = 0, +1 and −1.

axisymmetric wakes (illustrated in figure 10) reveals again that the non-axisymmetric
eigenfunctions are concentrated in the regions where the planar symmetric wake
displays larger axial shear.

The streamwise evolution of local absolute growth rate ωP
0,i and real absolute

frequency ωP
0,r are illustrated in figure 16 for m = 0, +1, −1 and non-axisymmetric

basic wakes in the range 220 � Re � 350.
These results reveal that local absolute instability (ωP

0,i > 0) prevails in the near
wake for all Reynolds numbers Re > Re1, for which a planar symmetric wake exists.
For Re close to Re1, the non-axisymmetric components of the basic flow are relatively
small, and the symmetric m = +1 and antisymmetric m = −1 modes display very
similar features. With increasing Reynolds number, however, the non-axisymmetric
basic wake components strengthen and the m = +1 and m = −1 modes evolve
separately. It is the symmetric m = +1 mode that displays the largest absolute
instability, while the growth rate of the antisymmetric m = −1 increases more weakly
with Reynolds number. At Re = 350, the maximum absolute growth rate of the
m = +1 mode is in excess of 0.6, about twice the maximum value reached by the
m = −1 mode for the same Reynolds number. For the axisymmetric configuration,
the m = 0 modes are at most weakly absolutely unstable while the higher modes
(|m| � 2, not shown) do not reach absolute instability.
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β=±1) and planar symmetric (Zac
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5. Discussion
Local absolute instability analyses, based on both the axisymmetric and the planar

symmetric basic wake flows, have demonstrated the existence of absolutely unstable
regions in the near wake. The strength and the spatial extent of the absolute
instabilities increase with Reynolds number. The axisymmetric basic wakes display
absolute instability for Re > Rea � 130; planar symmetric basic wakes exist for
Re > Re1 � 212 and are always absolutely unstable.

For axisymmetric sphere wakes, the largest absolute growth rates are reached for the
β = ±1 modes, i.e. the first azimuthal harmonic. This corresponds to the general result
(Monkewitz 1988b) that the first helical modes are the most unstable in axisymmetric
wake profiles. For planar symmetric basic wakes, the non-axisymmetric basic flow
components are found to enhance the instability, and the strongest absolute growth
rates are found for the varicose m = +1 eigenmodes, which conserve the planar
symmetry of the underlying basic flow.

The relationship between absolutely unstable and reverse-flow regions is illustrated
in figure 17. For Re > Rea , transition from convective to absolute instability occurs
at Zca in the very near wake, and the flow returns to convective instability further
downstream at Zac. For axisymmetric wakes, the absolutely unstable region terminates
at Zac

β=±1 where ωA
0,i(β = ±1; Z, Re) changes sign. For planar symmetric wakes, the

domains where the m = +1 (m = −1) modes display absolute instability are delimited
by Zac

m=+1 (Zac
m=−1) defined as zero-crossings of ωP

0,i(m = +1; Z, Re) (respectively of

ωP
0,i(m = −1; Z, Re)). As already noted, the varicose m = +1 modes developing in the

planar symmetric basic wakes display the strongest absolute instabilities: Zac
m=+1 >

Zac
m=−1 > Zac

β=±1. Comparison of the marginal Zac-curves with the stagnation Z
-
curves (from figure 6) shows that reverse flow prevails beyond the absolutely unstable
region, both for the axisymmetric and the planar symmetric wakes: ZA


 > Zac
β=±1 and

ZP

 > Zac

m=+1. For planar symmetric wakes, however, the curves Zac
m=+1 and ZP


 display
the same asymptotic trend, which suggests that absolutely unstable and reverse-flow
regions exactly overlap in the limit of large Reynolds numbers.

These results confirm the presence of a ‘wave-maker’ in the near wake of the
sphere: the absolutely unstable region sustains fluctuations that develop in situ and
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feed waves into the downstream convectively unstable domain. Moreover, since the
dominant instability is a varicose (m = +1) mode, this is in agreement with the
observed planar symmetry, rather than antisymmetry, of vortex shedding.

In the context of slowly spatially developing flows, theoretical investigations have
shown that the onset of self-sustained nonlinear oscillations coincides with the
appearance of local absolute instability (Pier, Huerre & Chomaz 2001; Chomaz
2005). According to this theory, vortex shedding in the sphere wake should occur as
soon as Re > Rea � 130 and not only for Re > Re2 � 272. However, these theoretical
analyses rely on the assumption of asymptotically slow streamwise variation, which
is clearly not the case in the near wake of a sphere. This strong non-parallelism is
thought to be responsible for the discrepancy between onset of absolute instability
and onset of global instability. A similar discrepancy prevails for the two-dimensional
wake of a circular cylinder, where absolute instability starts at Re � 25, while the
onset of vortex shedding is at Re � 47 (Monkewitz 1988a; Provansal, Mathis & Boyer
1987; Pier 2002).

Concerning the Strouhal number, the frequency of a self-sustained time-periodic
finite-amplitude vortex shedding regime is expected to be governed by the criterion
of ‘steep’ or ‘elephant’ nonlinear global modes (Pier et al. 1998; Pier & Huerre 2001).
According to this theory, the global frequency equals the real absolute frequency
prevailing at the transition location from convective to absolute instability. From
the plots of figures 11 and 16, it is seen that transition from convective to absolute
instability occurs near the rear boundary of the sphere, for Z � 0.5. In this very near-
wake region, the associated real absolute frequencies are in the range 0.7 < ω < 1.3,
which corresponds to 0.11 < St < 0.21. More specifically, the frequencies prevailing at
the convective/absolute transition cover the range 0.7 < ωA

0,r < 1.0 for axisymmetric

wakes (130 � Re � 350) and the range 1.2 < ωP
0,r < 1.3 for planar symmetric

wakes (220 � Re � 350). It would thus appear that the instability properties of the
axisymmetric base flows yield frequency predictions closer to the actually observed
shedding frequencies (ω = 0.85 at Re = 300), while the non-axisymmetric base
flows somewhat overestimate the shedding frequencies. However, these quantitative
differences are thought to be inconclusive since the theoretical frequency selection
criterion is based on the assumption of weakly non-uniform systems, while the
local absolute frequency displays an important drop in the region 0.5 < Z < 1. In
view of these strong non-parallel effects in the vicinity of the sphere, the qualitative
agreement found with the actually observed frequencies is deemed very reasonable.
Note also that for the two-dimensional cylinder wake the global frequencies were
similarly found to be systematically below those derived from the local absolute
frequencies (Pier 2002). Also for the cylinder wake, Barkley (2006) has recently shown
that a linear stability analysis of the mean flow yields better frequency predictions
than a nonlinear frequency selection criterion applied to the basic flow. For the
three-dimensional wake of a sphere, the relevance of this result and comparisons with
different frequency selection criteria (reviewed in Chomaz 2005) are currently being
investigated and will be reported in a future publication.

To conclude, it should be emphasized that the motivation of the present study was
to completely work out the local absolute instability features of real sphere wakes
in order to address the link between these local properties and the fundamental
mechanisms dictating the global flow dynamics. While this link is not adequately
verified, due, among other factors, to non-parallel effects, the existence of an absolutely
unstable pocket has been clearly established.
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Abstract The dynamics of unstable systems crucially depends on the nature of the instability, either convec-
tive or absolute. The signalling problem, which is the study of the spatial response to a localized time-harmonic
forcing, is generally believed to be relevant only for stable or convectively unstable systems and to be ill-posed
for absolutely unstable systems, where the self-sustained perturbations grow faster than the forced harmonic
response. The present investigation shows that the signalling problem may still be well posed for media display-
ing absolutely unstable regions. Considering weakly spatially inhomogenous systems, conditions are derived
for the validity of the signalling problem. The complete spatial response to harmonic forcing is first analytically
derived in terms of asymptotic approximations and then confirmed by direct numerical simulations.
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1 Introduction

In spatially homogenous systems, linear stability characteristics are derived from the dispersion relation ω =
�(k) between the frequencies ω and the wave numbers k of normal modes of the form ei(kx−ωt), with x and t
denoting streamwise distance and time, respectively. These stability properties can be understood by resorting
to different methods: temporal, spatial or spatio-temporal [8,10,18].

In a temporal approach, a spatially harmonic perturbation of real wave number k is considered. This wave-
like initial perturbation evolves in time with a complex frequency ω. Its spatial structure, determined by the
wave number k, remains unchanged while its amplitude grows or decays with time. Growth or decay is deter-
mined by the sign of the temporal growth rate1 ωi, while propagation takes place with a phase speed ωr/k.
This analysis based on real wave numbers and complex frequencies is known as the temporal problem.

In a spatial approach, localized harmonic forcing is applied with real frequencyω, say at x = 0. The spatial
response to this forcing yields waves with complex wave numbers k. The wavelength of the spatial response
is determined by kr while the spatial growth or decay depends on ki: for x → +∞, the spatial response grows
when ki < 0 and decays when ki > 0; the reverse holds for x → −∞. The analysis based on real frequencies
and complex wave numbers is known as the spatial, or signalling, problem.

1 Throughout this paper, subscripts r and i denote real and imaginary parts of complex values.
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The full spatio-temporal stability properties may be investigated by applying an impulsive localized per-
turbation: the analysis of the resulting wave packet yields the complete dispersion relation between complex
wave numbers k and complex frequencies ω. While the impulsively started wave packet decays in stable
media, a growing response develops from the impulse location in unstable systems. If the growing wave
packet propagates away from its source and eventually leaves the medium unperturbed, the instability is said
to be convective. If, by contrast, the instability grows in place and invades the system both upstream and
downstream, the instability is said to be absolute. Convectively unstable (cu) systems do not display intrinsic
dynamics and essentially behave as amplifiers: external perturbations are amplified while propagating through
the system, and without continuous external input the medium returns to its unperturbed state. By contrast,
absolutely unstable (au) systems display non-trivial dynamics without external forcing: perturbations expand
in both upstream and downstream directions so as to cover the entire domain and continue to grow exponentially
at every point.

These stability concepts remain valid locally for spatially inhomogenous systems, provided the characteris-
tic inhomogeneity length scale is large compared to a typical instability length scale. However, the connection
between local stability characteristics and the long-term global dynamics of spatially developing systems is far
from obvious. In a linear framework, it has been shown [4,5,11] that the presence of local absolute instability
is a necessary but not sufficient condition for global instability: in general an au region of finite extent is
required for a spatially developing medium to become globally unstable. Thus there exists a wide range of
parameter settings for which a medium does not support any self-sustained fluctuations despite the presence
of a region of local absolute instability. In such a situation, the linear signalling problem is legitimate and this
is precisely the class of systems addressed in the present paper.

Globally stable but locally absolutely unstable systems are encountered in a variety of configurations of
practical interest, among which wakes and boundary layers: the cylinder wake flow for Reynolds numbers
in the range 25 < Re < 49 [12], a class of “synthetic” wake flows [16,17], the wake of a sphere [15], the
three-dimensional boundary layer produced by a rotating disk [7].

The paper is organized as follows: After formulating the problem in terms of the widely used partial differ-
ential complex Ginzburg–Landau equation (Sect. 2), its local (Sect. 3) and global (Sect. 4) stability properties
are recalled. In Sect. 5, the correspondence between the complex space and frequency planes and the structure
of the wave number branches are analysed. The complete analytic solution to the signalling problem is obtained
in Sect. 6 in terms of asymptotic approximations and discussed in Sect. 7. These results are confirmed by direct
numerical simulations in Sect. 8.

2 Problem formulation

Partial differential model equations account for the dynamics of a variety of physical systems [6] and are often
tractable by analytical methods. The linearized complex Ginzburg–Landau model (1) has on many occasions
proven to be a convenient testground to recognize and study generic features that have later been identified in
a variety of situations. The same strategy is adopted here.

The system under consideration is assumed to be described by a complex scalar field ψ(x, t) in an infinite
one-dimensional spatially inhomogenous domain and it is governed by

∂ψ

∂t
= − i

(
ω0(X)+ 1

2
ωkk(X)k0(X)

2
)
ψ + ωkk(X)k0(X)

∂ψ

∂x
+ i

2
ωkk(X)

∂2ψ

∂x2 + S(x, t), (1)

where the complex functions ω0(X), k0(X) and ωkk(X) account for the local properties of the medium and
only depend on a slow space variable X = εx . The coefficients of (1) have been cast in this form for reasons
that will become clear in the next section. The weak inhomogeneity parameter ε � 1 is defined as the ratio
of the typical instability length scale to the inhomogeneity length scale of the medium. The source function
S(x, t) represents an externally applied forcing to be specified below. While Eq. 1 applies to the real x-axis, the
functions ω0(X), k0(X) and ωkk(X) are assumed to be analytic and their continuation in the complex X -plane
will be used in the following sections.

3 Local stability properties

In the subsequent discussion, constant use is made of the local properties of system (1). Local characteristics
are derived from (1) by freezing X to some arbitrary (possibly complex) value and studying the corresponding
spatially homogenous system
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∂ψ

∂t
= − i

(
ω0 + 1

2
ωkkk2

0

)
ψ + ωkkk0

∂ψ

∂x
+ i

2
ωkk

∂2ψ

∂x2 + S(x, t), (2)

where the dependence of the coefficients on the parameter X has been omitted. Normal modes of the form
ei(kx−ωt), with complex frequency ω and complex wave number k, are then governed by the local dispersion
relation

ω = �(k) ≡ ω0 + 1

2
ωkk (k − k0)

2. (3)

To satisfy causality, temporal growth rates must be bounded which requires that Imωkk < 0. The particular
form in which the coefficients of (1) and (2) have been cast brings to the fore the local complex absolute fre-
quency ω0 associated with the local complex absolute wave number k0 determined by the zero group velocity
condition [2,3]

ω0 = �(k0) with
∂�

∂k
(k0) = 0.

For impulsive forcing of the form S(x, t) = δ(x)δ(t), where δ denotes the Dirac delta function, the absolute
frequency ω0 characterizes the temporal evolution of the resulting wave packet observed at a fixed station:
when Imω0 < 0, the system is stable or convectively unstable and the wave packet either decays or grows
while being swept away by advection; when Imω0 > 0, the system is absolutely unstable and the impulse
response exponentially grows at each point in space.

Now consider a spatially localized but temporally harmonic forcing of (possibly complex) frequency ω f ,
switched on at t = 0, i.e., S(x, t) = δ(x)H(t)e−iω f t where H denotes the Heaviside unit step function. The
spatial response to this harmonic forcing consists in traveling waves of frequency ω f and their wave numbers
are derived from (3) as

k±(ω f ) = k0 ±
√

2
ω f − ω0

ωkk
. (4)

Upon choosing the square-root branch cut in (4) along the positive real axis and with the square-root symbol
denoting the root with positive imaginary part, the k+ and k− branches pertain to the domains x > 0 and
x < 0 on either side of the forcing. However, turning on the forcing at t = 0 also produces a transient wave
packet that grows according to the absolute growth rate Imω0 at any fixed spatial location. Hence, two different
situations arise depending on the relative values of Imω f and Imω0:

– When Im (ω f −ω0) > 0 the switch-on wave packet is overwhelmed for large time by the spatial response
tuned to the forcing frequency ω f , and the signalling problem is well-posed.

– When Im (ω f − ω0) < 0, the switch-on wave packet overwhelms the spatial response at ω f and the har-
monic forcing does not succeed in tuning the medium to the externally applied frequency. The signalling
problem is then ill-posed.

4 Global stability properties

In spatially inhomogenous systems governed by (1), the above discussion yields stability characteristics pre-
vailing locally at each X . However the associated global behaviour cannot be immediately derived and must
be analysed carefully [5,11].

In a typical situation of interest, the local absolute growth rate Imω0(X) displays a single maximum over
the real X -axis and the medium is stable for X → ±∞. In the same spirit as Huerre and Monkewitz [9] and
in order to keep computational difficulties to a minimum, it is assumed that

ω0(X) = ωs + 1

2
ωX Xs(X − Xs)

2, (5)

where ωs , ωX Xs and Xs are complex parameters with ImωX Xs < 0. By resorting to asymptotic expansions,
it has been shown [5,11] that the impulse response of the spatially developing system is then dominated for
large time by a global mode of frequency ωs . Hence, whenever Imωs < 0 the system does not display self-
sustained solutions: any perturbation eventually decays even though large amplification may be observed in
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Fig. 1 Correspondence by the analytic mapping ω0(X) between a complex X -plane and b complex ω-plane. Associated curves
are rendered by the same symbols. The real X -axis is mapped onto the dotted curve {ω0(X i = 0)}, and the real frequencies ωca

0 ,
ωac

0 correspond to the boundaries Xca , Xac of the au interval. Horizontal lines in (b) are associated in (a) with the corresponding
isolines {X1,2(ωi = cst)} of constant absolute growth rate

the transient régime. Systems with Imωs < 0 are thus globally stable whether or not they exhibit an interval
of local absolute instability.

The paper is concerned with globally stable but locally absolutely unstable systems. In this situation all
transient behaviour displays eventual decay, and it is legitimate to study the long-term spatial response to an
externally applied time-harmonic forcing.

5 Structure of complex X-plane and spatial branches

When media are considered that are both globally stable and locally absolutely unstable, the local absolute
frequency is of the form (5) with Imωs < 0 and positive absolute growth rate (ω0,i(X) > 0) occurs over some
finite interval Xca < X < Xac. Note that this is possible only if the saddle point Xs of ω0(X) is not located
on the real X -axis. Let ωca

0 ≡ ω0(Xca) and ωac
0 ≡ ω0(Xac) denote the real marginal absolute frequencies at

the boundaries of the au interval.
The function ω0(X) defines an analytic mapping between the complex X -plane and the complex ω-plane

as shown in Fig. 1. The real X -axis is mapped onto the locus denoted as {ω0(X i = 0)} (dotted parabolic curve
in Fig. 1b) crossing the real frequency axis twice at ωca

0 and ωac
0 , corresponding to the marginally absolutely

unstable positions Xca and Xac. Note that Fig. 1 illustrates a configuration where ωca
0 < ωac

0 and Im Xs > 0;
situations with ωac

0 < ωca
0 and/or Im Xs < 0 yield similar pictures and results.

In the complex X -plane (Fig. 1a), isolines of constant absolute growth rate Imω0(X) are obtained as pre-
images byω−1

0 of horizontal lines in theω-plane. When such a line {ωi = cst} is located above the {ω0(X i = 0)}
curve in the ω-plane (thick dashed line in Fig. 1b), the two corresponding isolines in the X -plane (thick dashed
curves in Fig. 1a) do not cross the real axis and may be labelled {X1,2(ωi = cst)}, where the subscripts 1 or 2
correspond to curves confined to the upper or lower half X -planes, respectively. When the line {ωi = cst} is
lowered onto the real ω-axis, the associated X1 and X2 curves move towards each other. Since the real ω-axis
is crossed by the {ω0(X i = 0)}-curve at ωca

0 and ωac
0 , one of the associated isolines (indicated by solid curves

in Fig. 1a) necessarily crosses the real X -axis at Xca and Xac. In Fig. 1a, it is the lower {X2(ωi = 0)}-isoline
that crosses the X -axis while the associated {X1(ωi = 0)}-isoline lies entirely within the upper half-plane.
Note that the (thin-dashed) curves {X1,2(ωi = Imωs)} pinch at the saddle point Xs for the line {ωi = Imωs},
which is however located in the lower frequency half-plane and will not be considered here.

When solving the dispersion relation (3) with coefficients depending on X for a given frequency ω f , the
two spatial branches are obtained as

k±(X, ω f ) = k0(X)±
√

2
ω f − ω0(X)

ωkk(X)
. (6)

In the complex X -plane, these expressions display two branch points at X1,2(ω f ), where ω0(X) = ω f ,
and branch cuts must be introduced. Upon choosing the branch cut for the square-root function in (6) along
positive real values of its argument, the causality condition Imωkk(X) < 0 guarantees that the branch cuts for
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Fig. 2 Turning points and Stokes lines in the complex X -plane. The two turning points Xt
1,2 are located on their respective

{X1,2(ωi = 0)}-isocontours (dashed lines). Each turning point is associated with a branch cut (dotted curves) and gives rise to a
network of three Stokes lines (solid curves)

k± lie within the regions where Im [ω f − ω0(X)] < 0 and thus do not intersect the region located between
the {X1,2(ωi = Imω f )}-curves where Im [ω f − ω0(X)] > 0. Hence the branch cut starting at X1(ω f )
is located above the {X1(ωi = Imω f )}-curve and the branch cut starting at X2(ω f ) is located below the
{X2(ωi = Imω f )}-curve (see also Fig. 2). As indicated in Sect. 3, the spatial branches (6) may be unambigu-
ously interpreted as downstream k+ or upstream k− branches when Im [ω f −ω0(X)] > 0, which corresponds
to the domain of the X -plane located between the X1 and X2 curves. The above choice of branch cuts thus
extends the definition of the k±(X, ω f )wave number branches to the entire complex X -plane for any frequency
ω f with Imω f > Imωs (region above thin-dashed line in Fig. 1b). When considering real forcing frequencies
ω f in (6), the choice of k+ and k− branches corresponds to the downstream and upstream branches derived
by traditional causality considerations in the stable or convectively unstable domain of the complex X -plane,
characterized by Imω0(X) < 0 and located between the solid {X1,2(ωi = 0)}-curves of Fig. 1.

6 Signalling problem in spatially developing medium

For the signalling problem, the system is driven at some position on the real axis, say X f , with a real frequency,
say ω f , and the spatial response to this localized time-harmonic forcing is considered. Since the medium is
assumed to be globally stable, any switch-on transients will eventually decay and it is legitimate to seek a
long-term response of the form ψ(x, t) = φ(x)e−iω f t , globally tuned to the forcing frequency.

Under the slowly-varying medium hypothesis characterized by ε� 1, time-periodic solutions may be
obtained in terms of wkbj approximations [1] where the spatial structure is described by a rapidly vary-
ing complex phase, accounting for the local wavelength and spatial growth/decay rate, and a slowly varying
envelope. For a given global frequency ω f , a wkbj approximation is of the form

ψ(x, t) = A(X) exp

⎡
⎣ i

ε

X∫
k(u, ω f )du − iω f t

⎤
⎦ (7)

where the envelope A(X) is expanded in powers of ε as A ∼ A0 + εA1 + · · · and governed by amplitude
equations that can be computed recursively up to any order. In (7), the local wave number k(X, ω f ) satisfies
the local dispersion relation and follows one of the two spatial branches (6). Hence, in different domains of the
complex X -plane, the solution may be approximated by different wkbj expansions of the form (7) pertaining
to different spatial wave number branches.

The above wkbj expansions are singular [1] at each of the two turning points Xt = X1,2(ω f ) of the disper-
sion relation, where k+(Xt , ω f ) = k−(Xt , ω f ). These turning points are located on their respective {X1,2(ωi =
0)}-contours, see Fig. 2. From a turning point, three Stokes lines emerge, defined by Im

∫ X
Xt [k+(u, ω f ) −

k−(u, ω f )]du = 0, and partition the complex plane into three different sectors. Along these Stokes lines both
wkbj approximations remain of the same order of magnitude, while inside the sectors one approximation is
exponentially large with respect to the other.



12 B. Pier

Consider first the turning point Xt
1 ≡ X1(ω f ), located on the upper {X1(ωi = 0)}-contour in the complex

X -plane (upper dashed curve in Fig. 2), and the two associated linearly independent wkbj approximations

	±
1 = A±(X) exp

⎡
⎢⎣

i

ε

X∫

Xt
1

k±(u, ω f )du − iω f t

⎤
⎥⎦. (8)

Three Stokes lines and one branch cut emanate from Xt
1. The branch cut (dotted line), along which k+ and k−

branches get exchanged, is located above the {X1(ωi = 0)}-curve and extends from Xt
1 towards infinity in the

upper complex X -plane. The three Stokes lines 
1
1, 
2

1 and 
3
1 divide the complex plane into three sectors S1

1 , S2
1

and S3
1 , and sector S2

1 is further divided into S2−
1 and S2+

1 by the branch cut, see zoom to right of Fig. 2. Along
these Stokes lines both approximations	±

1 are of the same magnitude, and the dominant (resp. subdominant)
solution becomes subdominant (resp. dominant) whenever a Stokes line is crossed.

Since the region near X = +∞ is at most convectively unstable, the spatial response to the external
forcing there necessarily features the k+ wave number branch and is thus made up of the subdominant 	+

1
approximation. Hence the dominant approximation 	−

1 is not present in the sector S3
1 , defined as the sector

containing the region near X = +∞, and the solution of the signalling problem in S3
1 and along its bordering

Stokes lines 
1
1 and 
2

1 is of the formψ ∼ C+
1 	

+
1 , solely made up of the subdominant	+

1 approximation with,
say, coefficient C+

1 . When continuing the solution from S3
1 into S1

1 across 
2
1, approximation 	+

1 becomes
dominant. Inside sector S1

1 , any subdominant contribution of the form C−
1 	

−
1 may be present. On the next

Stokes line 
3
1, both approximations are again of the same order, and the solution is then approximated by

ψ ∼ C−
1 	

−
1 + C+

1 	
+

1 along 
3
1. (9)

Similarly, when continuing the solution from S3
1 into S2+

1 across 
1
1, approximation	+

1 becomes dominant
and a solution of the form C=

1 	
−
1 + C+

1 	
+
1 must be considered inside sector S2+

1 . When crossing the branch
cut, the approximations	+

1 and	−
1 get exchanged so that the same wkbj superposition reads C+

1 	
−
1 +C=

1 	
+
1

in S2−
1 , with 	−

1 now the dominant term. On the Stokes line 
3
1, both approximations are again of the same

order, and the solution is then approximated by

ψ ∼ C+
1 	

−
1 + C=

1 	
+
1 along 
3

1. (10)

Finally, comparing both expansions (9) and (10) shows that all coefficients C=
1 , C−

1 and C+
1 are identical

to, say, C1. In the different regions around turning point Xt
1, the following approximations to the signalling

problem are then obtained

ψ ∼
⎧
⎨
⎩

C1	
+
1 in S2+

1 , S3
1 , S1

1 and along 
1
1, 
2

1,
C1(	

+
1 +	−

1 ) along 
3
1,

C1	
−
1 in S2−

1 .
(11)

Note that nothing special happens across the branch cut, except relabeling of the superscripts of k± and 	±
1 .

Hence a result similar to the above holds even in situations where the orientation of the Stokes lines is such
that the branch cut is not confined between 
1

1 and 
3
1 (see example in Fig. 3a).

Thus it is only across the Stokes line 
3
1, defined as the Stokes line opposite the sector containing the region

near X = +∞ (see also Fig. 3 for further examples), that a change in the dominant wkbj approximation occurs:
a crossover between k+ and k− as dominant wave number branches takes place across 
3

1 while everywhere
else the dominant local wave number continuously depends on X .

Consider now the turning point Xt
2 ≡ X2(ω f ), located on the lower {X2(ωi = 0)}-contour (lower dashed

curve in Fig. 2). The same reasoning as above holds for the expansion of the spatial response in terms of the
two associated wkbj approximations

	±
2 = A±(X) exp

⎡
⎢⎣

i

ε

X∫

Xt
2

k±(u, ω f )du − iω f t

⎤
⎥⎦ . (12)
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Fig. 3 Spatial structure of the signalling problem in the complex X -plane for different forcing frequencies ω f . The two turning
points Xt

1,2 (thick dots) are located on their respective {X1,2(ωi = 0)}-isolines (dashed curves) and give rise to a network of
Stokes lines (solid curves) and branch cuts (dotted lines). The spatial response is dominated by the k− wave number branch in
the shaded regions and by the k+ branch everywhere else. The au interval of the real X -axis is hatched. a With ω f outside the
range ωca

0 –ωac
0 , the turning points Xt

1,2 are located in opposite half X -planes and the k+ wave number dominates over the entire
real X -axis. b,c With ω f within the range ωca

0 –ωac
0 , the turning points Xt

1,2 are located in same half X -planes, and the spatial

response displays a jump in the dominant wave number on the real axis at the intersection with the 
3
2 Stokes line

The associated branch cut (dotted curve) is now located below the {X2(ωi = 0)}-curve. With Stokes lines and
sectors around Xt

2 labeled as in Fig. 2 (left zoom), the solution to the signalling problem is then approximated
by

ψ ∼
⎧
⎨
⎩

C2	
+
2 in S2+

2 , S3
2 , S1

2 and along 
1
2, 
2

2,
C2(	

+
2 +	−

2 ) along 
3
2,

C2	
−
2 in S2−

2 ,
(13)

and crossover between the dominant k+ and k− wave number branches takes place across the Stokes line 
3
2,

located opposite the sector containing the region near X = +∞. In the complex X -plane, the solution is thus
dominated by the k+ branch everywhere except in the two sectors issuing from the turning points Xt

1 and Xt
2,

respectively, and delimited by the Stokes lines 
3
1 or 
3

2 and the corresponding branch cuts; these regions are
indicated in grey in Fig. 2. Note that, although the approximations (12) are formally identical to (8), the spatial
branches in (12) are integrated from Xt

2 and the dominant/subdominant character depends on the behaviour
for X radiating away from this turning point.

The relationship between the constants C1 and C2 is readily derived by comparing the wkbj expansions
(11) and (13) in regions where they overlap, for example for X → +∞. From

ψ ∼ C1 A+(X) exp

⎡
⎢⎣

i

ε

X∫

Xt
1

k+(u, ω f )du − iω f t

⎤
⎥⎦

and ψ ∼ C2 A+(X) exp

⎡
⎢⎣

i

ε

X∫

Xt
2

k+(u, ω f )du − iω f t

⎤
⎥⎦

it follows that

C2 = C1 exp

⎡
⎢⎣

i

ε

Xt
2∫

Xt
1

k+(u, ω f )du − iω f t

⎤
⎥⎦ . (14)

The above results (11, 13, 14) entirely specify the asymptotic wkbj approximation to the unique solution
of frequency ω f satisfying a causal boundary condition, i.e., made up of the k+ branch near X = +∞. The
spatial response of system (1) to harmonic forcing of frequency ω f thus follows this solution over the real
X -axis on the right side of the forcing location, for X f < X < +∞. When the external forcing is applied with
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O(1) amplitude, the response is also O(1) near X f which yields the magnitude of the remaining unknown

constant as C1 ∼ exp i
ε

∫ Xt
1

X f
k+(u, ω f )du. Note however that in this linear setting the precise value of C1, and

thus the exact spatial location of the forcing, does not influence the spatial structure of the response to the right
side of the forcing.

The spatial response pertaining to the domain −∞ < X < X f on the left side of the forcing is similarly
derived from the unique solution of frequency ω f made up of the subdominant k− branch for X → −∞.
The corresponding details are straightforward and will not be presented here. In a typical situation of interest,
forcing is applied upstream of the au domain, i.e., X f < Xca , so that all relevant features concerning the
structure of the spatial response over the au interval are derived from the solution valid over X f < X < +∞.

7 Discussion

The previous analysis yields the spatial response to harmonic forcing over the entire X -axis, including the au
interval Xca < X < Xac.

For harmonic forcing of real frequency ω f applied at some station X f upstream of the au domain, local
causality considerations suggest that the spatial response follows the k+(X, ω f )wave number branch over the
stable or cu interval X f < X < Xca , between the forcing location and onset of absolute instability. Similarly,
in the at most convectively unstable downstream domain extending from X = Xac to X → +∞, the solution
is obtained as the downstream response to some upstream located cause and is there also expected to follow
the k+(X, ω f ) wave number branch.

However, local considerations fail to predict the structure of the spatial response in the au interval Xca <
X < Xac since the k± wave number branches (6) are there only formal solutions of the local dispersion relation
and cannot be interpreted in terms of upstream or downstream spatial branches.

Based on the developments of the previous section, it will now be shown that in the au region Xca < X <
Xac the structure of the spatial response and the dominant wave number essentially depend on the positions
of the turning points Xt

1,2 ≡ X1,2(ω f ) relative to the real X -axis and thus on the relative values of ω f , ωca
0

and ωac
0 .

Indeed, a forcing frequencyω f outside the rangeωca
0 –ωac

0 lies above the {ω0(X i = 0)} curve in the complex
ω-plane (dotted parabolic curve of Fig. 1b). The associated turning points are then located on either side of the
real X -axis: Xt

1 in the upper half-plane and Xt
2 on parts of the {X2(ωi = 0)}-isoline in the lower half-plane, as

illustrated in Fig. 3a. In this situation, the branch cuts emanating from Xt
1,2 and, respectively, extending into

the far upper and lower half X -planes do not cross the real X -axis. As a result, the spatial branches k±(X, ω f )
continuously depend on X over the entire real axis, and the k+(X, ω f ) branches prevailing on either side of
the au interval (hatched in Fig. 3) are continuously connected over the real X -axis. Note that the branch cut
starting at Xt

2, while remaining below the {X2(ωi = 0)}-isoline, could cross the real axis twice before heading
toward the far lower X -plane; however, the conclusions are not affected as long as an even number of crossings
occurs since the branch cut could then be modified so as to avoid the X -axis. At the same time, the Stokes
lines 
3

1 and 
3
2 over which an exchange of the dominant wkbj approximations occurs do not cross the real

X -axis either. The regions in the complex X -plane where the spatial response is dominated by the k− branch
(shaded regions in Fig. 3a) then do not overlap the real X -axis. Hence the spatial response to harmonic forcing
is approximated by the wkbj approximation featuring the k+ wave number branch over the entire domain
X f < X < +∞ including the au interval Xca < X < Xac.

By contrast, for a forcing frequency ω f within the range ωca
0 –ωac

0 , i.e., below the {ω0(X i = 0)}-curve in
the complex ω-plane, both turning points are located on the same side of the real X -axis: turning point Xt

2 has
moved to the part of the {X2(ωi = 0)}-isoline located in the upper complex half-plane, as illustrated in Fig. 3b,
c. Thus the branch cut emanating from Xt

2 crosses the real X -axis and the spatial k±(X, ω f ) branches display
a discontinuity across the branch cut. The k+(X, ω f ) branches prevailing on either side of the au interval are
no longer continuously connected over the real X -axis. It follows that the local wave number of the spatial
response to harmonic forcing applied at X f must display a jump somewhere in the au interval Xca < X < Xac

if the k+ branches prevailing for both X f < X < Xca and Xac < X < +∞ are to be reconciled. In this situation
indeed, the real X -axis is also crossed by the 
3

2 Stokes line and, as shown in the previous section, an exchange
in the dominant wkbj solution approximating the spatial response precisely takes place across this Stokes line.
Hence the region where the spatial response is dominated by the k− branch (shaded regions in Fig. 3b, c)
overlaps the real X -axis, and along the au interval both the branch cut and the 
3

2 Stokes line are encountered.
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As a result, the spatial response to harmonic forcing is then obtained in terms of both wkbj approximations
and the jump of the dominant local wave number occurs at the intersection of the 
3

2 Stokes line with the real
X -axis.

8 Confirmation by direct numerical simulation

The structure of the spatial response derived by analytic methods in the previous sections has been confirmed by
direct numerical simulations of system (1). The results presented in Fig. 4 have been obtained with a spatially
varying local absolute frequency (5) defined by ωs = 2 − 0.5i, Xs = 2 + i and ωX Xs = −1 − 2i and ε = 0.1,
while the parameters k0 = 1 − i and ωkk = 1 − 0.5i were kept at constant values. These parameter settings
correspond to an au interval characterized by Xca � 1.6, ωca

0 � 3.2 and Xac = 3.3, ωac
0 � −1.1. Harmonic

forcing is applied upstream at X f = 1 with frequencies ω f = 5 (left sequence of Fig. 4) and ω f = 2 (right
sequence). The thick curves in Fig. 4 illustrate the different characteristics of the numerically computed spatial
response: envelope |ψ | and real part ψr (first row), envelope on a logarithmic scale (second row), real part kr
(third row) and imaginary part ki (fourth row) of local wave number. The thin curves in the wave number plots
represent the wave number branches k±(X, ω f ) analytically computed via (6) with the corresponding ω f .

The forcing frequency ω f = 5 lies outside the range ωca
0 –ωac

0 , so that the associated turning points Xt
1 �

2.7+2.5i and Xt
2 � 1.3−0.5i are located on either side of the real X -axis, which is thus free from any branch

cuts. Figure 3a has been computed with exactly these parameter values. The critical Stokes lines 
3
1 and 
3

2 do
not cross the real axis and the spatial response for X > X f is thus predicted to be entirely made up of the k+
wave number branch. Inspection of the numerical results given in Fig. 4a1–a4 reveals that this is indeed the
case. From Fig. 4a1, a2 it is seen that the spatial response grows from X f through the entire au interval to
reach maximum amplitude beyond Xac, before eventual decay further downstream. The local wave number
in the spatial response, numerically computed as −i∂xψ/ψ and corresponding to the thick curves in Fig. 4a3,
a4, very closely follows the analytically computed wave number branches (thin curves). The salient feature is
that the spatial response follows the k+ branch in the entire domain to the right of the forcing location X f ,
including the au interval Xca < X < Xac (delimited by dashed vertical lines).

The forcing frequency ω f = 2 lies within the range ωca
0 –ωac

0 , so that the associated turning points Xt
1 �

1.8 + 1.7i and Xt
2 � 2.2 + 0.3i are both located in the upper complex half plane, as illustrated in Fig. 3b

obtained with these parameter values. Now the Stokes line 
3
2 crosses the real axis for X3

2 � 1.9 where a jump
in the dominant wave number of the spatial response is predicted. This phenomenon is indeed observed in
Fig. 4b3, b4. The spatial response is seen to be dominated by the k+ branch from the forcing location X f to the
Stokes line at X3

2, beyond which the k− branch dominates. This exchange in dominant wkbj approximations
at X3

2 materializes by a cross-over of the numerically computed local wave number in Fig. 4b3, b4 and by a
kink of the envelope in Fig. 4b2. The spatial response then follows the k− branch from X3

2 to the branch cut
at X� � 3.0 (vertical dotted line), beyond which the k− branch is seemlessly relabelled as k+. As anticipated
from the previous section, the spatial response displays the k+ wave number branch in the two at most cu
domains X f < X < Xca and Xac < X < +∞. However, with ω f in the range ωca

0 –ωac
0 these branches are not

continuously connected through the central au interval. Hence the solution is there made up of both branches
and cross-over of the dominant wave number occurs at the intersection with the Stokes line.

9 Conclusion

The signalling problem in spatially developing systems is fairly well understood for media that are at most
convectively unstable, and it is generally believed to be ill-posed for absolutely unstable systems. The present
investigation has shown that this problem remains well-posed for a certain class of absolutely unstable sys-
tems: whenever the system is globally stable (i.e., all global modes decay with time) all transient behaviour is
eventually damped and a spatial response tuned at the forcing frequency establishes for large time. By resorting
to asymptotic wkbj expansions, the spatial structure of the time-harmonic response has been obtained in the
entire domain, including the au interval. In the au interval, the dominant local wave number of the spatial
response has been shown to depend on the positions in the complex X -plane of the turning points associated
with the forcing frequency. The positions of these turning points depend on the relative values of the forcing
frequency ω f and the (real) marginal absolute frequencies ωca

0 and ωac
0 prevailing at the end points of the au
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(a1) (b1)

(b2)

(b3)

(b4)

(a2)

(a3)

(a4)

Fig. 4 Envelope |ψ |, real part ψr , local wave numbers kr and ki of spatial response to harmonic forcing obtained by direct
numerical simulation. Forcing is applied at X f , upstream of the absolutely unstable interval Xca < X < Xac. a With ω f outside
the range ωca

0 –ωac
0 , the spatial response follows the k+ wave number branch for X f < X < +∞, including the au interval.

b For ω f within the range ωca
0 –ωac

0 , the real X -axis intersects the Stokes line 
3
2 at X3

2, where a jump in the dominant wave
number is observed. Beyond the branch cut at X�, the k− wave number branch prevailing for X3

2 < X < X� becomes k+ and
extends to X = +∞

interval. The detailed analysis in the complex X -plane of the Stokes lines and branch cuts has revealed that
two distinct situations arise:

– For forcing frequencies ω f outside the range ωca
0 –ωac

0 , the local wave number observed in the spatial
response continuously depends on streamwise distance and follows the k+-branch everywhere downstream
of the forcing location.

– For forcing frequencies within the range ωca
0 –ωac

0 , the spatial response displays a jump in the dominant
local wave number branch at the location within the au domain where the real X -axis is crossed by a Stokes
line.

The above results have been analytically derived in a general setting and confirmed by numerical integra-
tion of the Ginzburg–Landau model equation. Work currently in progress concerns application of the present
findings to the spatial response in the rotating-disk three-dimensional boundary-layer and its implications for
an open-loop control strategy [13,14], based on localized harmonic forcing.
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The three-dimensional boundary layer due to a disk rotating in otherwise still fluid

is well known for its sudden transition from a laminar to a turbulent regime, the

location of which closely coincides with the onset of local absolute instability. The

present experimental investigation focuses on the region around transition and anal-

yses in detail the features that lead from the unperturbed boundary layer to a fully

turbulent flow. Mean velocity profiles and high-resolution spectra are obtained by

constant-temperature hot-wire anemometry. By carefully analysing these measure-

ments, regions in the flow are identified that correspond to linear, weakly nonlinear,

or turbulent dynamics. The frequency that dominates the flow prior to transition

is explained in terms of spatial growth rates, derived from the exact linear disper-

sion relation. In the weakly nonlinear region, up to six clearly identifiable harmonic

peaks are found. High-resolution spectra reveal the existence of discrete frequency

components that are deemed to correspond to fluctuations stationary with respect

to the disk surface. These discrete components are only found in the weakly non-

linear region. By systematically acquiring low- and high-resolution spectra over a

range of narrowly spaced radial and axial positions, it is shown that while the tran-

sition from laminar to turbulent regimes occurs sharply at some distance from the

disk surface, a complex weakly nonlinear region of considerable radial extent con-

tinues to prevail close to the disk surface. C© 2013 American Institute of Physics.

[http://dx.doi.org/10.1063/1.4798435]

I. INTRODUCTION

Three-dimensional boundary layers are characterized by a rapid variation of all three velocity

components in the neighbourhood of a solid surface. This happens whenever a body is rotating with

respect to the surrounding fluid or if a flow impacts an obstacle obliquely. Practical configurations

include the flow around compressor blades, aircraft wings, ship hulls, or wind turbines. All these

configurations are prone to strong instabilities that rapidly lead to turbulence. The objective of the

present investigation is to carry out detailed measurements of the dynamics of such a flow in order

to shed new light on the mechanisms governing the complex transition scenario that leads from a

laminar to a turbulent state.

Within the class of three-dimensional boundary layers, the flow with the simplest geometry is

probably that due to a large disk rotating in otherwise still fluid: von Kármán1 obtained the basic flow

as an exact similarity solution of the Navier–Stokes equations. This basic-flow solution, illustrated

a)Electronic mail: benoit.pier@ec-lyon.fr

1070-6631/2013/25(3)/034102/10/$30.00 C© 2013 American Institute of Physics25, 034102-1
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RV (Z)

RU(Z)

W (Z)

FIG. 1. Basic flow over rotating disk.

in Figure 1, displays a constant boundary layer thickness proportional to

δ =

√

ν

�
, (1)

where ν is the kinematic viscosity and � the disk rotation rate. Note that the azimuthal velocity

drops to about 1% of the disk velocity at a distance 5δ from the disk surface. Throughout this study,

the axial coordinate Z and radial coordinate R are non-dimensionalized by δ. The radial, azimuthal,

and axial basic flow velocity components, non-dimensionalized by �δ, are

Ur = RU (Z ) and Uθ = RV (Z ) and Uz = W (Z ), (2)

where U(Z), V (Z ), and W (Z ) are the von Kármán similarity profiles.

When unstable, this boundary layer develops cross-flow vortices, as observed experimentally

by Gregory et al.2 Transition from laminar to turbulent regimes occurs at a non-dimensional radius

in the range 500–550.2–7 Lingwood8 has found that this boundary layer undergoes transition from

convective to absolute instability at a critical radius Rca = 507 that closely corresponds to the

position of experimentally observed transition to turbulence. However, it has been shown by Davies

and Carpenter9 that, within a strictly linear framework, this flow is globally stable despite the presence

of an extended region of local absolute instability. Subsequently, a fully nonlinear analysis10 led to a

consistent theory able to account for the onset of self-sustained finite-amplitude fluctuations beyond

Rca. While all the previous theoretical analyses assume a rotating disk of infinite extent, Healey11

has recently been able to take into account the effect of the outer edge of the disk, study its influence

on the global instability, and provide a possible explanation for the scatter in transition locations

reported by different experimental studies.

Despite numerous investigations, it appears that the precise mechanism leading from laminar

to turbulent states is not yet fully understood. The present experimental investigation has been

undertaken to precisely map out the near transition region by determining how mean-flow deviations

from the von Kármán solution and the spectral content of the fluctuations vary with radial and axial

positions, with special attention to the near-disk region. A similar aim, but with a different approach,

has been independently pursued by Imayama et al.12 The present paper is based on Ref. 13 and a

preliminary account of our findings was given in Ref. 14.

The structure of the manuscript is the following. The experimental arrangement is described

in Sec. II. Then we describe our experimental observations of mean velocity profiles (Sec. III A),

low-resolution spectra (Sec. III B 1), and high-resolution spectra (Sec. III B 2). These results are

discussed in detail in Sec. IV.
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FIG. 2. Experimental setup. (Left) 50 cm diameter glass disk that may be rotated up to 1500 rpm. (Right) Hot-wire probe

positioned parallel to the disk surface and aligned in the radial direction, positioned by a high-precision two-axes mechanism.

II. EXPERIMENTAL ARRANGEMENT

The rotating-disk facility designed for the present investigation (Figure 2) consists of a glass

disk of 500 mm in diameter that is rotated at constant angular velocity �, up to 1500 rpm. Details

of the experimental arrangement are given in Ref. 13. The disk surface was measured by a linear

variable differential transducer (LVDT) and its position adjusted so as to achieve best alignment with

a plane normal to the rotation axis. The disk roughness, characterized by the arithmetic average of

absolute surface values, was measured as 1.6 µm. A high-precision two-axes traversing mechanism

was used for positioning of a hot-wire probe, with radial and axial precisions of 20 µm and 2 µm,

respectively.

For the local velocity measurements, constant-temperature hot-wire anemometry is used, being

particularly suitable for the measurement of flows with very fast fluctuations at a fixed point in

space. A single Dantec hot wire of type 55P01 is used, consisting of a 5 µm diameter and 3 mm

wide platinum-plated tungsten wire with a 1.25 mm flow sensitive length at its center. The hot wire

is positioned parallel to the disk surface and aligned in the radial direction so as to measure the

azimuthal flow component. The traversing mechanism and velocity measurements are controlled

and recorded by a dedicated computer.

The hot wire must be calibrated using known flow velocities. Rather than using a separate wind

tunnel, which would require frequent removal of the probe from its support, we always calibrated

the hot-wire probe against the laminar boundary-layer profile, given by the von Kármán solution.

Knowing the disk rotation rate, the distance of the hot wire from the disk surface and from the disk

axis, the boundary-layer velocity at the hot-wire position can be calculated. The hot wire is then

calibrated by measuring the mean output voltage from the anemometer for a range of flow speeds.

In this calibration process, the disk rotation rate and position of the probe are chosen to remain

well within the laminar region. A fourth-order polynomial was used to fit the velocity-voltage data

pairs, and this polynomial subsequently used to convert measured instantaneous voltages to flow

velocities. Keeping in mind that the hot-wire anemometry has a sensitive temperature dependence,

this calibration was repeated before each measurement. Data acquisition is performed by moving the

hot wire in the radial and axial directions for a constant disk speed. This process is then repeated for

different values of the disk speed, and, after non-dimensionalization, the data acquired at different

rotation rates collapse to the same values. See Ref. 13 for details of the experimental procedure.

III. RESULTS

A. Mean velocity profiles

The main focus of this paper is the spectral analysis of velocity time-series. However, the

measured mean velocity profiles are briefly presented first for completeness and validation of the

setup.

Mean azimuthal velocity components are shown in Figure 3 over the range 350 ≤ R ≤ 600. In

these plots, velocities are normalized by the velocity of the disk surface at the corresponding radial

position.
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FIG. 3. Azimuthal mean-flow velocity profiles for non-dimensional radii in the range 350 ≤ R ≤ 650, along with the

analytical profile (solid line); insets show magnified view of region from Z = 1 to Z = 4. (a) Measured profiles closely follow

the analytical curve for R ≤ 480. (b) Small deviations of the measured profile from the analytical curve are observed for

2 ≤ Z ≤ 3 and 490 ≤ R ≤ 540. (c) For R ≥ 550, strong mean-flow corrections, extending beyond Z = 15 by R = 650,

characterize a transitional and fully turbulent boundary layer.

At low values of R, the measured profiles very closely follow the von Kármán similarity profile,

see Figure 3(a).

For 490 ≤ R ≤ 540, small but significant differences between the measured profiles and the

analytical profile are observed. Figure 3(b) shows that these mean flow corrections are confined to a

narrow region of the boundary layer (2 ≤ Z ≤ 3) and their amplitude is less than 5% of the maximum

velocity in this range. In the convectively unstable range, 284 < R < 507, they can be interpreted

as reflecting the radial growth of instabilities (cross-flow vortex modes) in the boundary layer. The

confinement in Z is consistent with the structure of the unstable-mode eigenfunctions, as computed,

e.g., in Ref. 10.

For R ≥ 550, stronger mean-flow distortions are observed, which progressively extend beyond

Z = 15, see Figure 3(c). Such boundary-layer thickening is the characteristic of the development

of turbulent boundary layers. This behaviour of the mean-flow profiles corresponds exactly to what

has been obtained in previous studies6, 7 and is thus deemed a sufficient validation of the present

experimental setup.

B. Spectral analysis

Frequency contents of disturbances in the boundary-layer are investigated by calculating Fourier

power spectra from azimuthal-velocity time series at different non-dimensional radii R and disk

normal positions Z.

For most of the previously published experimental results, power spectra have a low frequency

resolution, of the order of �ω = 1, non-dimensionalized by the disk rotation rate. In order to obtain

high-resolution spectra, the velocity signals were recorded over long time intervals, typically a few

thousand revolutions of the disk.

In post-processing, the power spectra are obtained by Fourier analyses of these signals. The

procedure is the following. The signal is split into n series covering m disk revolutions each. Each of

the n series is Fourier analysed and the squared moduli of the complex Fourier amplitudes are then

averaged over the n spectra. By varying m, spectra of different frequency resolutions are obtained.

Typical “low-resolution” spectra are obtained with m = 1, while spectra obtained with m = 100 or m

= 1000 are referred to as high-resolution spectra, with resolution �ω = 0.01 or 0.001, respectively.

Thus, spectra with different resolutions can be obtained from the same data, shedding new light on

the frequency content of the fluctuations developing in the rotating-disk boundary layer.
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1. Low-resolution spectra

Low-resolution power spectra are shown in Figure 4. At low values of R, these mainly consist of

uniform background noise. Starting at R = 450, a peak with a maximum near ω = 30 emerges. This

is an indication of the development of growing cross-flow modes with a characteristic frequency

around 30, but these modes as yet cause no significant distortion of the mean flow: as shown in

Sec. III A, for R ≤ 480, the measured mean-flow profiles closely follow the von Kármán solution.

At higher R, power spectra show the progressive growth and development of the disturbance. A

second-harmonic peak appears for R = 490 (Figure 4(b)), indicating effects of nonlinear interactions.

At even larger values of R, higher harmonics of the fundamental peak arise near ω = 60, 90, 120,

150, and 180. Note that the harmonics first appear at different values of R depending on the distance

Z from the disk surface. This will be further discussed in Sec. IV.

At and above R = 520, Figures 4(e)–4(h) show the progressive increase of a broadband spectral

component, followed by the disappearance of the modal peaks. This corresponds to transition to

turbulence. By R = 600 (Figure 4(h)), there are no longer any clear peaks associated with the modes

and the flow is fully turbulent throughout the boundary layer.
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FIG. 4. Low-resolution spectra for (a) R = 450, (b) R = 490, (c) R = 500, (d) R = 510, (e) R = 520, (f) R = 530, (g) R = 550,

and (h) R = 600. Spectral amplitudes are plotted on a logarithmic scale for disk normal positions Z = 1, 1.5, 2, 3, and 4.



034102-6 Siddiqui et al. Phys. Fluids 25, 034102 (2013)

(a)

0 50 100 150 200 ω
1

102

104

106

108

1010
(b)

0 50 100 150 200 ω
1

102

104

106

108

1010

R = 400
R = 450
R = 500
R = 550
R = 600
R = 650

(c)

0 50 100 150 200 ω
1

102

104

106

108

1010
(d)

0 50 100 150 200 ω
1

102

104

106

108

1010

FIG. 5. High-resolution spectra corresponding to R = 400, 450, ..., 650 and (a) Z = 0.8, (b) Z = 1.5, (c) Z = 3.0, and

(d) Z = 6.0.

From these low-resolution spectra, three distinct flow regimes can be identified: a linear regime

where the boundary layer only displays small-amplitude perturbations associated with at most a

single peak in the spectrum; a weakly nonlinear regime characterized by a dominant frequency and

its harmonics due to nonlinear interactions; and a fully turbulent regime where the harmonic peaks

have been superseded by a continuous spectrum.

In terms of mean velocities, these three regimes broadly correspond to no, weak, and strong

mean-flow deviations from the similarity profile, as shown in Sec. III A. A complete characterization

of the different regions of the rotating-disk boundary layer will be discussed in Sec. IV.

2. High-resolution spectra

As described earlier, high-resolution spectra are derived by Fourier analyzing the velocity time-

series recorded over long temporal intervals. Plots shown in Figure 5 have a frequency resolution of

�ω = 0.01 and are obtained by averaging 50 spectra computed over 100 disk revolutions. Spectra

obtained with a frequency resolution of �ω = 0.001 look very similar and are not shown here. Overall,

the high-resolution spectra display similar characteristics to their low-resolution counterparts, but

a distinctive feature is the existence of discrete peaks at integer multiples of the disk rotation rate.

These peaks are smoothed out in the low-resolution spectra. The discrete peaks are more clearly

visible in the close-up views shown in Figure 6. The radial evolution of high-resolution spectra in

the range 450 ≤ R ≤ 650 for Z = 1 and Z = 6 is illustrated in Figure 7 for 20 < ω < 40.

These measurements show that the velocity spectra are made up of both a continuous and a

discrete part. The discrete part corresponds to flow components that have exactly the same periodicity

as the disk.

It is observed that both the discrete and continuous parts of the spectrum grow with R. However,

the discrete component is the dominant feature only in the “weakly nonlinear” regime, while it is

hardly developed in both the laminar and in the turbulent regions. Also, it is more prominent for the

most amplified frequency, around ω ≃ 30, and its harmonics.

At R = 350, the spectrum is essentially background noise and the discrete component appears

to be irrelevant. For, say, 450 < R < 510, the discrete part grows to form a peak around ω ≃ 30. This

growth continues up to R = 530, but involves a wider band of frequencies and then saturates. From

R = 530 on, the continuous part grows as the boundary layer approaches the turbulent regime. By

R = 650, the spectrum corresponds to a fully turbulent flow without any visible discrete component.
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FIG. 6. Closeup view for 20 < ω < 40 of high-resolution spectra corresponding to R = 400, 450, . . . , 650 and (a) Z = 0.8,

(b) Z = 1.5, (c) Z = 3.0, and (d) Z = 6.0.

IV. DISCUSSION

In the present experimental investigation of a rotating-disk flow, hot-wire velocity measurements

have been carried out to characterize the dynamics of this boundary layer with special emphasis on

the near transition region.

As expected, mean velocity profiles follow the self-similar von Kármán solution at low radii,

small but significant mean-flow deviations from the similarity profile are obtained for 490 ≤ R ≤ 540

and 2 ≤ Z ≤ 3, and fully turbulent profiles prevail for R ≥ 550, characterized by strong mean-flow

corrections extending beyond Z = 15.

Spectral analyses of velocity-series yield the frequency content of the perturbations that develop

in the different regions of the boundary layer. Low-resolution spectra show that the first perturbations

to develop with increasing R exhibit characteristic frequencies near ω = 30. This corresponds

to the largest spatial growth rate for perturbations that are stationary with respect to the disk.

Figure 8 shows the spatial growth rate −αi as function of frequency ω and azimuthal mode number β,

derived from the local linear dispersion relation ω = �(α, β; R). This dispersion relation is obtained

by considering perturbations of the form exp i(αr + βθ − ωt) and numerically implementing a

complete stability analysis based on the linearized Navier–Stokes equations, as in Ref. 10. The

plot in Figure 8, shows that at R = 500 the largest spatial growth rate −αi ≃ 0.1 is obtained for

(ω, β) ≃ (47, 62). However, perturbations with ω �= β are traveling with respect to the disk surface.

Considering that fluctations measured in the convectively unstable range 280 < R < 510 are mainly
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FIG. 7. Radial evolution of high-resolution power spectra in the range 20 ≤ ω ≤ 40, for 450 ≤ R ≤ 650 and Z = 1 (upper

curves) and Z = 6 (lower curves).
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FIG. 8. Isolines of spatial growth rates −αi at R = 500, derived from the exact local linear dispersion relation ω = �(α, β;

R), in the ω–β (frequency—azimuthal mode number) plane.

due to imperfections and roughness of the disk surface and are therefore stationary with respect to

the disk, they correspond to the line ω = β in Figure 8. For these waves rotating at the same rate

as the disk, maximum spatial growth is attained with ω = β = 32 (at R = 500), indicated by a big

dot in Figure 8. It is also found that this maximally amplified frequency hardly depends on R in the

convectively unstable region. Thus, by carrying out a systematic computation of the spatio-temporal

dispersion relation based on the linearized Navier–Stokes equations, we confirm the origin of the

fundamental harmonic peak observed in the spectra from onset of linear instability to transition to

turbulence.

With increasing radial distance, the flow enters a weakly nonlinear regime, characterized by a

harmonic spectrum made up of the dominant fundamental frequency and its harmonics. Eventually,

the boundary layer enters a fully turbulent state associated with the disappearance of the modal peaks,

replaced by a broad continuous spectrum. The detailed characteristics of these spectra, such as the

number of harmonic peaks that may be identified or the occurrence of a broad spectrum, depend

both on the radial and the axial locations of the measurement. Counting of the harmonic peaks can

be performed automatically by a post-processing script: for each of the low-resolution spectra (cf.

Figure 4), the script first extracts the maxima located approximately at multiples of the fundamental

frequency and then retains those that are separated by a sufficiently deep minimum. A detailed map of

the flow structures is given in Figure 9(a). Measurements have been systematically carried out for R

= 350, 360, ..., 650 and Z = 0.8, 1.0, 1.5, 2.0, 3.0, 4.0, and 6.0. For each of these locations, the symbol

in Figure 9(a) depicts the type of spectrum that is obtained: the number of circles corresponds to the

number of harmonic peaks that could be identified and a grey background indicates the presence of a

broadband component. A single circle on white background thus corresponds to a laminar boundary

layer that is at most linearly perturbed. The weakly nonlinear region corresponds to at least two

identifiable broad harmonic peaks and thus starts with the double-circle symbols. With increasing

radial distance, higher-order harmonics develop; up to six clearly identifiable harmonic peaks have

been found at Z = 3 and 510 ≤ R ≤ 520. Then, a broadband component appears near R = 530

(symbols with grey background) that progressively replaces the harmonic spectrum. Eventually a

fully turbulent regime is reached with no identifiable harmonic peaks in the spectrum. From this

map one sees that the transition from laminar to turbulent flow is relatively sharp far from the disk

surface (say Z > 5), while a nonlinear region of considerable extent is observed in the near-disk

region. This nonlinear region can be considered to start as early as R ≃ 450 and to survive up to

R ≃ 570, well beyond a single transition location near R ≃ 530.

Velocity spectra with high frequency resolution have been obtained from velocity signals

recorded over long time-periods. These high-resolution spectra reveal the existence of narrow peaks

located at integer values of the frequency. Since these discrete peaks appear every integer multiple

of disk rotation rate, they are associated with the flow components that have the same periodicity

as the disk and that are probably stationary with respect to the disk surface. It should be noted that

these discrete peaks are not an experimental artifact, for otherwise they would also be present at

low and high values of R. In order to map out the regions where this discrete part of the spectrum is
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FIG. 9. (a) Detailed map of the local boundary-layer features, based on the low-resolution spectra recorded at R = 400,

410, . . . , 650 and Z = 0.8, 1, 1.5, 2, 3, 4, and 6. The symbols depict the type of spectrum that prevails at a given location:

the number of circles corresponds to the number of harmonic peaks that could be identified and a grey background indicates

the presence of a broadband component. (b) Contour plot measuring the importance of the discrete component in the

high-resolution velocity spectra. The measure is based on the mean ratio between the integer-frequency maxima and the

semi-integer-frequency minima of the high-resolution spectra.

important, another post-processing script has been developed: for each of the high-resolution spectra,

the script extracts the maxima located at integer frequencies and the minima located at half-integer

frequencies, and then computes the average separation of these alternating extrema, on a logarithmic

scale. The result represents a measure of the amplitude of the discrete spectral component and is

shown as a contour plot with equispaced iso-levels in the (R, Z)-plane in Figure 9(b). Comparing

Figures 9(a) and 9(b) clearly demonstrates that the presence of this discrete component coincides

with the existence of a weakly nonlinear regime. Moreover, the discrete component has maximal

strength around R = 520 and Z = 3, which is also where the largest number of harmonic peaks have

been identified. It should also be observed that this radial position nearly coincides with the onset

of local absolute instability at R = 507. To our knowledge, despite much previous research on the

rotating-disk boundary-layer flow, the only previous discussion of the discrete part of the velocity

spectra is to be found in Refs. 13 and 14, though it is visible in the results of Ref. 15. One reason for

the poor documentation of this feature may be the fact that it is only observable using high-resolution

spectra and thus requires measurement of velocity time-series over long time periods.

Traditionally, the rotating-disk boundary layer is considered as an example of a flow exhibiting

a transition from the laminar to the turbulent regime much shorter than the case for other boundary

layers, such as the flat plate boundary layer. However, measurements close to the disk surface indicate

that an intermediate nonlinear regime is present over a considerable range of R. In a recent study,

Imayama et al.12 have characterized the evolution of the boundary layer by measuring the probability

density function of the fluctuating azimuthal disturbance velocity. In the present investigation, by

systematically acquiring low- and high-resolution spectra over a range of narrowly spaced radial and
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axial positions, further light is shed on the detailed structure of the complex transition region close

to the disk surface.
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a b s t r a c t

The flow past a sphere rotating about an axis aligned with the streamwise direction is

numerically investigated. The dynamics is governed by the incompressible Navier–Stokes

equations and depends on two control parameters: the Reynolds number Re and rotation

rate O. The present investigation systematically covers the range Rer350 and Or2. First,

the axisymmetric steady base flow (whether stable or not) is computed for all values of the

control parameters. Then, after linearisation of the equations about the base flow, the

growth rates and frequencies of the leading eigenmodes are obtained. Fully nonlinear direct

numerical simulations yield the detailed flow fields and hydrodynamic forces acting on the

sphere. Different wake modes (low-frequency periodic helical, quasi-periodic shedding and

high-frequency periodic helical) are identified and their characteristic frequencies precisely

determined.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

At moderate Reynolds numbers, our understanding of the wake dynamics for a fixed sphere in uniform upstream flow
is by now fairly complete. More complex scenarios prevail when additional effects are taken into account, such as shear in
the oncoming flow, the presence of a wall, rotation of the obstacle or non-spherical shapes. Most of these configurations
break the axisymmetry of the formulation. The purpose of the present investigation is to shed new light on the dynamics
prevailing in a situation governed by two control parameters but preserving the axisymmetry of the problem: the wake of
a sphere rotating about an axis aligned with the incident flow.

The bifurcation scenario followed by the wake of a fixed sphere in uniform upstream flow is now fairly well established,
both experimentally and numerically (Ghidersa and Duček, 2000; Johnson and Patel, 1999; Nakamura, 1976; Sakamoto and
Haniu, 1995; Schouveiler and Provansal, 2002; Thompson et al., 2001): at low Reynolds numbers a steady, axisymmetric flow
prevails; beyond a first critical Reynolds number, Re1C212, the flow bifurcates and a steady non-axisymmetric wake with
planar symmetry is selected; beyond a second critical Reynolds number, Re2C272, periodic shedding sets in, but conserves the
symmetry plane. At still larger Reynolds numbers, the planar symmetry is broken (Mittal, 1999), and the wake becomes
progressively disordered and turbulent (Constantinescu and Squires, 2004; Ormi�eres and Provansal, 1999; Tomboulides and
Orszag, 2000). Careful measurements of the hydrodynamic forces (drag, lift, torque) acting on the sphere allow characterisation
of these different flow regimes (Benjamin, 1993; Bouchet et al., 2006; Maxworthy, 1965).
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In many situations of practical interest, the incoming flow is not perfectly uniform. In the presence of shear (Bagchi and
Balachandar, 2002a; Dandy and Dwyer, 1990; Kurose and Komori, 1999; Kim et al., 2005; Kim, 2006), strain (Bagchi and
Balachandar, 2002b) or stratification (Hanazaki, 1988), the lack of axisymmetry modifies the bifurcation scenario and the
hydrodynamic forces. If the obstacle is not fixed but allowed to interact with the flow, it may rotate and rise or fall under
the action of torque and gravity (Bagchi and Balachandar, 2002a; Ern et al., 2012; Fernandes et al., 2007; Jenny and Dušek,
2004; Jenny et al., 2003, 2004; Veldhuis et al., 2005). Numerous studies have also addressed the wake of deformable bodies
such as bubbles or droplets (Kurose et al., 2001; Legendre and Magnaudet, 1997; Legendre et al., 2006; Magnaudet et al.,
2003; Rastello et al., 2009, 2011; Sugioka and Komori, 2007).

Of particular interest in the present context are the flows around axisymmetric but non-spherical bodies. When the
symmetry axis of disks or ellipsoids is aligned with the incident flow, the problem remains axisymmetric and the wake
dynamics depend not only on the Reynolds number but also on the aspect ratio. For the extreme case of an infinitely thin
disk, Fabre et al. (2008) have identified new vortex shedding modes and introduced a symmetry-based model to explain
this scenario and predict the evolution of the lift force. For a thicker disk, yet more regimes have been found (Auguste et al.,
2010). Meliga et al. (2009) use the leading eigenmodes derived from global stability theory and develop a weakly nonlinear
model that accurately predicts the sequence of bifurcations for a thin disk. The efficiency of this model relies, among other
things, on the fact that the leading eigenmodes have very similar growth rates, favouring (weak) nonlinear interactions
which control the complex bifurcation scenario. Inspired by these findings, the present investigation revisits the
configuration used by Kim and Choi (2002): the wake of a sphere rotating about a streamwise oriented axis. The rotation
of the sphere introduces a chirality in the problem but does not break the axisymmetry. The growth rates of the leading
eigenmodes depend on two parameters, Reynolds number and rotation rate, and competition between these is expected to
lead to rich dynamics, possibly amenable to weakly nonlinear interaction models.

The paper is organised as follows. After formulating the problem and presenting the numerical methods in Section 2,
axisymmetric base flows and their linear stability properties are discussed in Section 3. The different finite-amplitude
vortex shedding regimes and associated hydrodynamic forces are presented in Section 4. Finally, Section 5 summarises the
results.

2. Problem formulation and numerical method

The study is carried out using the incompressible Navier–Stokes equations. The Reynolds number is defined as
Re¼U1D=n, where U1 is the free-stream velocity, D the sphere diameter and n the kinematic viscosity.

Throughout this investigation, cylindrical coordinates are used with r, y and z (u, v and w) denoting radial, azimuthal
and axial coordinates (velocities), respectively. The z-axis is aligned with the free-stream velocity and the origin is at the
centre of the sphere. For later use, a Cartesian (x,y,z)-frame is also defined. Using non-dimensional variables based on U1
and D, the total velocity and pressure fields are denoted by uðr,y,z,tÞ and pðr,y,z,tÞ, respectively and are governed by the
momentum and continuity equations

@tuþðu � rÞuþrp¼
1

Re
Duþf; ð1Þ

r � u¼ 0; ð2Þ

with boundary conditions

u¼ v�Or¼w¼ 0 for r2þz2 ¼ 1=4; ð3Þ

u¼ v¼w�1¼ 0 for r-1 or z-71: ð4Þ

Here O is the non-dimensional rotation rate (based on U1 and D) of the sphere about the z-axis. The dynamics of the
rotating-sphere wake are then completely determined by two control parameters, Re and O.

The numerical method closely follows the technique successfully implemented for studying the non-rotating sphere wake
(Pier, 2008). An immersed boundary method (Fadlun et al., 2000; Mittal and Iaccarino, 2005; Zhang and Zheng, 2007) is used,
whereby the presence of the sphere is enforced through the externally applied volume force f in the momentum Eq. (1). Thus,
the entire space is assumed to be filled with fluid and the body force ensures that the boundary conditions (3) of a rotating
sphere are met. All flow fields are Fourier-expanded in the azimuthal coordinate y, while the (r,z)-plane is discretised on a
Cartesian grid using finite-differences in z and Chebyshev collocation points in r. The time-marching algorithm uses a second-
order accurate predictor–corrector fractional-step method, similar to Hugues and Randriamampianina (1998).

3. Axisymmetric base flows and linear stability

Axisymmetric wakes have been computed by retaining only the axisymmetric component in the azimuthal Fourier
expansions. For all Reynolds numbers and rotation rates considered in the present study, the sphere wakes were found to
approach a steady state when time-marching the governing Eqs. (1) and (2).

The structure of the basic axisymmetric wake for different values of the control parameters is illustrated in Fig. 1 by
isolines of the azimuthal vorticity oy ¼ @zu�@rw.
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The linear stability of these axisymmetric wakes is probed by computing the response to a non-axisymmetric
perturbation. Here only a single non-axisymmetric azimuthal Fourier component is retained in the expansions of the flow
fields, and the Navier–Stokes equations are linearised around the previously computed basic flow. Growth rates and
frequencies of the most unstable modes are then derived from the time-series of selected flow components, recorded at a
fixed spatial location. Such a flow component f is expected to evolve as fpexpð�iotÞ, where o is the complex eigenvalue
associated with the mode. The growth rate oi is then obtained by a linear fit of log 9f 9, while the frequency or is obtained by
spectral analysis of the compensated f expð�oitÞ. Thus, the growth rates oi and frequencies or are obtained for the most
unstable mode at each setting of the control parameters Re and O. These values are shown in Fig. 2. It is observed that two
distinct mode types lead to instability, depending on the control parameters: at moderate rotation rates and low Reynolds
numbers, the instability is dominated by a ‘‘slow’’ mode, the frequency of which scales nearly linearly with the sphere rotation
rate O. In contrast, at higher parameter values, a ‘‘fast’’ mode dominates, whose frequency is approximately independent of O.
Similar behaviour is observed for the nonlinear dynamics, as discussed below.

4. Nonlinear dynamics

To investigate the nonlinear dynamics, a finite number of azimuthal Fourier harmonics are retained and the direct numerical
simulations take into account the nonlinear coupling between all these modes. When starting integration, the initial condition is
chosen as the previously computed axisymmetric base flow with a small non-axisymmetric perturbation. In situations where
this axisymmetric flow is unstable, the non-axisymmetric perturbation starts to grow exponentially in time. After a transient
growth phase, nonlinear effects come into play that limit the amplitude growth. At large times, the system is found to approach
a periodic or quasi-periodic regime, or to display irregular behaviour.

Monitoring the temporal evolution of the energy E1 contained in the first azimuthal harmonic illustrates the development of
non-axisymmetric components in the sphere wake. In Fig. 3, the energy content E1 is plotted for 0rOr2 and Re¼ 250 and
325. For the wakes corresponding to these plots, after entering a finite-amplitude regime, the energy E1 is seen to reach either
a constant value or to converge towards a state of periodic oscillations. At larger values of the Reynolds number, irregular
oscillations may also be found to persist indefinitely.

Fig. 1. Flow structure of the basic axisymmetric wake for (a) Re¼ 150 and O¼ 1, (b) Re¼ 250 and O¼ 1, (c) Re¼ 250 and O¼ 2. Solid (dashed) isolines

correspond to positive (negative) values of azimuthal vorticity, spaced by 0.5.

Fig. 2. (a) Growth rate oi and (b) frequency or of the leading eigenmode for axisymmetric basic wakes, computed for O¼ 0:0,0:2, . . . ,2:0 and

Re¼ 100,125, . . . ,400.
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To further characterise the flow dynamics, the hydrodynamic forces acting on the sphere have been computed. These
forces are obtained by spatial integration of the volume force used in the immersed boundary method; there is no need to
evaluate components of the stress tensor at the sphere surface. The drag coefficient Cz measures, in non-dimensional units,
the component of the force acting in the z-direction aligned with the outer flow. The lift coefficients Cx and Cy are obtained

by projection onto the x- and y-axes, respectively, while the lateral force coefficient Cl is defined as Cl ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2

xþC2
y

q
.

For axisymmetric wakes, all coefficients vanish except the drag Cz. In configurations where the axisymmetric base flow
is unstable, the development of finite non-axisymmetric flow components is accompanied by a similar development of
transverse forces, characterised by Cx and Cy (and Cl). The constant, periodic, quasi-periodic or irregular values taken by
these hydrodynamic force coefficients characterise the associated wake dynamics.

4.1. Helical regime

The wake behaviour observed for Re¼ 225 and O¼ 1 is typical of the dynamics prevailing after the first destabilisation
of the axisymmetric flow. Fig. 4 illustrates the temporal evolution of the force coefficients, starting from the slightly
perturbed (and unstable) axisymmetric base flow. After a transient regime characterised by growth of transverse force
components, the wake is seen to approach a state of constant drag, slightly higher than for the base flow (Fig. 4a). Lift
coefficients Cx and Cy display harmonic oscillations, out of phase by a quarter-period, while the magnitude of the lateral
force Cl is observed to tend to a constant value (Fig. 4b). This is further illustrated by the time-trace in the ðCx,CyÞ-plane
(Fig. 4c): beyond the transient phase, a perfect circle is described at a constant angular speed.

The spatial structure of the wake flow is illustrated in Fig. 5, where isolines of the azimuthal vorticity are plotted for
two orthogonal (x,z)- and (y,z)-planes.

Temporal spectral analysis of the force coefficients (as well as of any other flow components) demonstrates that this
regime is characterised by a single frequency. For Re¼ 225 and O¼ 1, the periodicity of the lift coefficients is obtained as
ox ¼oy ¼ 0:31. In fact, it can be shown that the entire wake is in a helical state, characterised by ‘‘solid-body’’ rotation of
the flow field about the z-axis at constant angular speed. This means that the flow is steady in a frame of reference rotating
about the z-axis at ox (¼oy). Note that the angular speed ox ¼oy is well below the sphere rotation rate O¼ 1.

4.2. Quasi-periodic vortex shedding

For Re¼ 275 and O¼ 0:8, a different behaviour is obtained. Again, the development of non-axisymmetric components
is accompanied by an increase in drag. But here, no steady state is reached: the drag coefficient continues to oscillate

Fig. 3. Temporal evolution of energy E1 (arbitrary units) contained in first azimuthal harmonic for O¼ 0:0,0:4, . . . ,2:0 and Re¼ 250 (a), Re¼ 325 (b).

Fig. 4. Temporal evolution of hydrodynamic forces for Re¼ 225 and O¼ 1. Cz: drag; Cx and Cy: lift forces; Cl: transverse force. Initial condition consists of

the axisymmetric base flow with a small-amplitude non-axisymmetric perturbation.
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(Fig. 6a). Lift coefficients Cx and Cy display quasiperiodic oscillations while the lateral force Cl fluctuates with the
same periodicity as the drag (Fig. 6b). This behaviour leads to a more complex pattern in the ðCx,CyÞ-plane, see
Fig. 6(c). Temporal spectral analyses show that these signals are characterised by two distinct (and incommensurate)
frequencies: ox ¼oy ¼ 0:21 and oz ¼ol ¼ 0:62. Indeed, Cz and Cl are periodic (with same frequency oz ¼ol) while Cx and Cy

are quasiperiodic (displaying a combination of oz and ox).
A snapshot of the spatial structure of the associated vorticity fields is given in Fig. 7. This dynamics can be interpreted

as a quasiperiodic vortex shedding regime, corresponding to the combination of a helical mode (‘‘solid-body rotation’’
about the z-axis at ox) and vortex shedding waves travelling axially downstream (frequency oz).

4.3. High-frequency helical regime

For Re¼ 300 and O¼ 1 a further wake behaviour is observed, representative of a third class of flow dynamics. After a
relatively long transient, the system approaches a (single-frequency) periodic state. The drag Cz and the lateral force Cl

reach constant values, while the lift coefficients Cx and Cy display harmonic oscillations in quadrature, leading to a circular
time-trace in the ðCx,CyÞ-plane (Fig. 8). This regime is again of periodic helical vortex shedding type, characterised by a
single frequency ox ¼oy ¼ 0:90. Note that the frequency of this ‘‘solid-body’’ rotation is quite closer to the sphere rotation
rate O. Hence, this regime could be termed ‘‘high-frequency helical vortex shedding’’.

Fig. 5. Snapshot of vorticity fields in the helical regime at Re¼ 225 and O¼ 1. Isolines of azimuthal vorticity in two orthogonal planes.

Fig. 6. Temporal evolution of hydrodynamic forces for Re¼ 275 and O¼ 0:8.

Fig. 7. Snapshot of vorticity fields in the quasiperiodic regime at Re¼ 275 and O¼ 0:8.
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The corresponding vorticity fields are illustrated for two orthogonal planes in Fig. 9. Although this regime is periodic
and the flow fields would be steady in a frame rotating at ox around the z-axis, these vorticity fields closely resemble those
prevailing in the quasiperiodic regime (see Fig. 7) and are rather different from those of the low-frequency helical regime
(see Fig. 5). It is as if the axial vortex shedding and the helical ‘‘solid-body’’ rotation were locked together, or ‘‘frozen’’ (Kim
and Choi, 2002).

4.4. Characteristic frequencies

For each Reynolds number and sphere rotation rate, the characteristic frequencies have been determined via temporal
Fourier analyses of long time series of the force coefficients. The helical frequencies ox (¼oy) are plotted in Fig. 10(a),
while the axial frequencies oz (¼ol) are shown in Fig. 10(b). In these plots, solid curves correspond to low- and high-
frequency modes while dashed curves indicate quasiperiodic (or disordered) vortex shedding. Note that helical frequencies
dominating the fluctuations of the lift coefficients Cx and Cy are obtained for any non-axisymmetric flow, while the axial
vortex-shedding frequencies governing the oscillations of the drag and lateral force coefficients Cz and Cl are only relevant
in the quasiperiodic shedding regimes.

In Fig. 10(a), it is seen that ox displays an almost linear dependence on O in the low-frequency helical and quasiperiodic
regimes. Transition from low-frequency helical to quasiperiodic vortex shedding hardly affects these values. In the high-
frequency helical regimes, however, order of magnitude larger values for ox are obtained. The axial frequencies oz shown in
10(b), correspond more specifically to axially travelling vortex shedding waves and display only weak dependence on the
rotation rate O.

Fig. 8. Temporal evolution of hydrodynamic forces for Re¼ 300 and O¼ 1.

Fig. 9. Snapshot of vorticity fields in the high-frequency helical regime at Re¼ 300 and O¼ 1.

Fig. 10. Characteristic frequencies prevailing in the rotating-sphere wake. (a) Frequencies ox ¼oy dominating the fluctuations of the lift coefficients Cx

and Cy. (b) Frequencies oz ¼ol governing the oscillations of the drag and lateral force coefficients Cz and Cl. Solid curves correspond to low- or high-

frequency helical regimes. Dashed curves indicate quasiperiodic vortex-shedding (or disordered) regimes.
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5. Conclusion and discussion

Direct numerical simulations have been carried out in order to systematically cover the governing parameter space
for sphere rotation rates Or2 and Reynolds numbers up to Re¼ 350. Fig. 11 presents a map of the observed regimes
characterised by the associated time-traces of the lift coefficients in the ðCx,CyÞ-plane.

At low Reynolds numbers, the axisymmetric wake is stable. When the Reynolds number is increased, a low-frequency
helical regime takes over, characterised by constant values of drag (Cz) and transverse force (Cl). The flow field is found to rotate
around the z-axis at constant frequency ox ¼oy without deformation. Indeed, in such a rotating frame, the flow field would be
time-independent. The rate ox at which the wake rotates around the axis is found to increase almost linearly with the sphere
rotation rate O, and this regime can be viewed as a continuous deformation, through axial rotation, of the well-documented
steady planar symmetric state for non-rotating spheres in the range Re1oReoRe2, with Re1C212 and Re2C272 (Ghidersa
and Duček, 2000; Johnson and Patel, 1999; Mittal, 1999; Schouveiler and Provansal, 2002).

A second bifurcation occurs when the Reynolds number is increased, leading to a quasiperiodic state which can be
interpreted as a modulation (at a second incommensurate frequency oz) of the previous helical regime. A rotating frame in
which the flow field would be steady no longer exists. Again, this regime can be viewed as the continuation through axial
rotation of the periodic vortex shedding regime that prevails for Re4Re2C272 for a non-rotating sphere. In the non-
rotating case, onset of vortex shedding occurs through a Hopf bifurcation (Schouveiler and Provansal, 2002). Here, our
results indicate that this remains true along the entire boundary separating the low-frequency helical wakes from the
quasiperiodic wakes. However, many more computations would be necessary to prove that the amplitude of the second-
frequency component scales as the square-root of the distance to this critical boundary.

The third type of behaviour, termed the high-frequency helical regime, occurs at still larger Reynolds numbers.
This periodic regime does not have an analogue in the non-rotating O¼ 0 case. While the transition from the low-
frequency helical to the quasiperiodic regime is a continuous process, the switching from quasiperiodic to high-frequency
helical regimes is discontinuous in the control parameters. Indeed, the dominant ox-frequency prevailing in the wake
abruptly increases while the amplitude of the transverse forces (Cl) suddenly drops. The nature of the associated
bifurcation remains unclear. Despite several attempts at slowly modifying one of the control parameters, no hysteresis
was found.

At yet larger Reynolds numbers, irregular states have been observed. No systematic survey of the parameter space
beyond Re¼ 350 has been attempted since this would require much finer spatial meshes to obtain reliable results.

In future work, it would be interesting to address the nature of the bifurcations between the different regimes in more
detail and to test whether the theory of Meliga et al. (2009) can be adapted to the present configuration.
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Fig. 11. Map of the different regimes as a function of the control parameters.
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The combined effects of axial flow and eccentricity on the temporal stability properties
of the Taylor–Couette system are investigated using a pseudospectral method.
Eccentricity is found to stabilize the Couette flow regardless of axial advection
intensity. As the axial Reynolds number Rez is increased for any fixed eccentricity
e 6 0.7, the critical mode switches from deformed toroidal Taylor vortices to helical
structures with an increasing number of waves, and with helicity opposed to the inner-
cylinder rotation. For a wide-gap configuration of radius ratio η = 0.5, increasing axial
advection has a stabilizing effect for low Rez, then a weak destabilizing effect for high
enough Rez. Centrifugal effects are always destabilizing, but axial shear is responsible
for the dominance of helical modes of increasing azimuthal complexity. The modes
localize in the converging gap region, and the energy concentrates increasingly into
axial motion for larger Rez. Critical quantities are also computed for a small-gap
case, and similar trends are observed, even though no destabilizing effect of advection
is observed within the range of Rez considered. Comparison with the experiment of
Coney & Mobbs (Proc. Inst. Mech. Engrs, vol. 184 Pt 3L, 1969–70, pp. 10–17) for
η = 0.89 shows good agreement, despite small discrepancies attributed to finite length
effects.

Key words: convection, instability, Taylor–Couette flow

1. Introduction
More than 40 years ago, Coney & Mobbs (1969–70) wrote: ‘a linear stability

theory solution for the case of eccentric rotating cylinders with a superimposed axial
flow [ . . . ] is not available and the difficulties in the way of such a solution are
formidable’. Indeed, while the flow between rotating cylinders has been one of the
benchmarks of hydrodynamic stability since the path-breaking work of Taylor (1923),
the computational cost associated with more complex versions of this flow has long
been considered a showstopper, and still remains a major challenge as we try to bridge
the gap with engineering applications. In this paper, we study the temporal stability
of cylindrical Couette flow with two additional effects: eccentricity of the cylinder
axes and axial flow. Taken separately, the two effects have already been the subject of
numerous studies, which we will briefly review in this introductory section. But to the

† Email address for correspondence: colin.leclercq@ec-lyon.fr



Temporal stability of eccentric Taylor–Couette–Poiseuille flow 69

best of our knowledge, no one has yet undertaken the complete theoretical study of the
combination of both, and very limited experimental data are available in this case.

1.1. Control parameters
This problem is governed by four control parameters. The geometry is defined by the
ratio of radii 0 < η ≡ a/b < 1 and eccentricity 0 6 e ≡ c/(b − a) 6 1, where a and b
are the inner and outer cylinder radii and c is the distance between centres. Introducing
the clearance d = b − a, one can also use the clearance ratio δ ≡ d/a = (1 − η)/η
instead of η.

The azimuthal Reynolds number ReΩ = aΩd/ν, based on the inner-cylinder rotation
rate Ω , compares centrifugal and viscous effects, while the axial Reynolds number
Rez = wd/ν, based on the mean axial velocity w, measures the importance of axial
advection.

1.2. Industrial applications: wellbore drilling and high-speed journal bearings
This model flow is of interest to the oil industry as a first step towards understanding
the dynamics of the complex annular flow of mud in wellbore drilling operations. For
drilling applications, a drillstring is rotated inside the well in order to drive a drill bit
that cuts the rock at the bottom of the well. Mud is injected through the drillstring
and flows back to the surface through the annular gap, ensuring several engineering
functions, among which are the following (Escudier, Oliveira & Pinho 2002): carrying
the rock cuttings out of the well, cooling and cleaning the drill bit, supporting the
wellbore, avoiding inflow of formation fluids and preventing settling of the cuttings
when circulation is stopped. The annular flow of mud can be modelled in a first
approximation by an eccentric Taylor–Couette–Poiseuille flow because of the rotation
of the drillstring, the pressure-driven axial flow and eccentricity caused by flexibility
of the drillstring.

For typical industrial configurations (Escudier et al. 2002; Guo & Liu 2011), the
ratio between drillstring and outer-wall radii ranges from 0.2 at the top to 0.8 at the
bottom, and the eccentricity can go all the way to the limit of touching cylinders.
The gap between the drillstring and the outer wall is of order 10−2–10−1 m. The
velocity of the inner cylinder in rotation is comparable to the mean axial velocity of
the flow, of the order of 1 m s−1. Finally, the mud density is of order 103 kg m−3,
with an equivalent dynamic viscosity in the range 10−3–10−1 Pa s (note that viscosity
is a function of local strain rate for non-Newtonian fluids). As a result, equivalent
Reynolds numbers ReΩ and Rez of the order of 102–105 are expected.

Limitations of the model for this application include non-Newtonian effects
(viscoelasticity and thixotropicity), motion of the inner-cylinder position inside the
well, contamination of the fluid by cuttings and ‘formation fluid’, variable eccentricity
and outer-wall radius with depth, and imperfect circularity of the wellbore wall.
However, the consideration of both eccentricity and axial flow in a systematic way
is already a significant improvement on existing theory.

Eccentric Taylor–Couette–Poiseuille flow is also of interest in the field of high-
speed journal bearings, where ‘the damaging effect of impurities contained in oil can
be considerably reduced when they are quickly removed from the friction contact
area [ . . . ] by intensifying axial oil flow’ (Sep 2008). In high-speed journal bearings,
Huggins (1966–67) quotes a value of Rez = 100 during tests on a 24 in diameter
journal bearing. And instabilities are expected to arise, as noted by Coney & Mobbs
(1969–70): ‘in the large-diameter journal bearings, which may be expected to operate
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in the Taylor vortex régime, there is [ . . . ] a considerable superimposed axial flow of
lubricant’.

1.3. Eccentric Taylor–Couette flow
The effect of eccentricity on the Taylor–Couette flow has been investigated by many
researchers, covering a wide range of ratio of radii and eccentricities, starting with the
experimental work of Cole (1957). Using torque measurements, flow visualization (dye
injection, aluminum flakes etc.) and hot-wire probes, Cole (1957, 1967, 1969), Kamal
(1966), Vohr (1968), Koschmieder (1976) and later Karasudani (1987), Xiao, Lim &
Chew (1997) and Lim & Lim (2008) found a stabilizing effect of eccentricity on the
appearance of Taylor vortices. On the other hand, Castle & Mobbs (1967), Versteegen
& Jankowski (1969) and Frêne & Godet (1971) found a slight destabilization at weak
eccentricities, followed by stabilization at higher values. The vortices of the first type,
confined to the neighbourhood of the inner cylinder, were later found to be caused by
endwall effects by Mobbs & Ozogan (1984) and El-Dujaily & Mobbs (1990). For the
second type of vortices, an increase in critical wavenumber at higher eccentricities
was reported in the early work of Cole (1967) and quantified by subsequent
authors.

The first theoretical analyses were made by DiPrima (1963) and Ritchie (1968),
using local stability theory (as implied by the parallel-flow approximation in
the ‘pseudo-azimuthal’ direction) and asymptotic analyses in the small-gap, small-
eccentricity limit. The first global stability analyses of the problem, considering fully
two-dimensional basic flows, were performed a decade later by DiPrima & Stuart
(1972b), DiPrima & Stuart (1975) and Eagles, Stuart & DiPrima (1978), demonstrating
a stabilizing effect of eccentricity and the weakness of the local approach to model
this flow. More recently, Oikawa, Karasudani & Funakoshi (1989a,b) and Dai, Dong
& Szeri (1992) were able to relax the small-gap and small-eccentricity constraint (e up
to 0.6–0.7, η as low as 0.5), using numerical methods to solve the two-dimensional
stability problem.

Finally, most recent numerical and experimental stability analyses seem to have
been concerned mostly with the effect of non-Newtonian fluids (e.g. Chawda &
Avgousti 1996; Dris & Shaqfeh 1998), with applications to oil drilling and polymeric
processing.

1.4. Taylor–Couette–Poiseuille flow
The effect of a pressure-driven axial flow on the concentric Taylor–Couette system
with a fixed outer cylinder has been the object of even more investigations. The
first analytical studies were restricted to the narrow-gap limit and axisymmetric
perturbations (e.g. Chandrasekhar 1960; DiPrima 1960), reaching (after some
controversy) the conclusion that advection stabilizes the Couette flow. The first correct
numerical studies of the finite-gap geometry, with non-axisymmetric disturbances,
are due to Takeuchi & Jankowski (1981) and Ng & Turner (1982). For a wide-
gap configuration η = 0.5, Takeuchi & Jankowski (1981) confirmed numerically
and experimentally (for respectively Rez 6 100 and Rez 6 150) the results from
Snyder (1962, 1965)’s experiments showing that toroidal vortices are replaced by
helical vortices for larger advection rates. Ng & Turner (1982) extended the results
to Rez 6 6000 for η = 0.77 and η = 0.95, with fair agreement with experiments.
They also considered axisymmetric disturbances for η = 0.95 up to the value
of Rez = 7739.5, where annular Poiseuille flow becomes unstable with respect to
Tollmien–Schlichting (TS) like disturbances. They showed a connection between the
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centrifugal instability and the shear instability at high advection rates, as conjectured
by Reid (1961). More recently, Cotrell & Pearlstein (2004) and Cotrell, Sarma &
Pearlstein (2004) extended the analysis of Ng & Turner (1982) to non-axisymmetric
disturbances for η = 0.5, 0.77, 0.95. Before the transition to shear instability, these
authors noted the existence of a plateau in critical ReΩ , for which the associated
critical axial wavenumber drops with increasing Rez. For the case η = 0.5, they
also noticed the existence of a maximum critical ReΩ for a specific value of Rez.
Heaton (2008) complemented their analyses by assessing the importance of non-modal
effects, and showed their relevance at moderate and large Rez ∼ 102–104. Other
recent studies concern rotation of the outer cylinder (Meseguer & Marques 2002),
absolute/convective instabilities (Altmeyer, Hoffmann & Lücke 2011), supercritical
states (Hwang & Yang 2004), time-periodic flow (Marques & Lopez 2000), additional
radial flow (e.g. Martinand, Serre & Lueptow 2009) and so on. A comprehensive
review of the large panel of work on this topic, though not completely up to date, is
available in Cotrell & Pearlstein (2004).

1.5. Eccentric Taylor–Couette–Poiseuille flow
As already mentioned, some experimental data are available in the case of combined
eccentricity and axial flow. To the best of the authors’ knowledge, only one experiment
has been undertaken, at a radius ratio of η = 0.89 (Coney & Mobbs 1969–70; Coney
1971; Younes 1972; Younes, Mobbs & Coney 1972; Mobbs & Younes 1974; Coney &
Atkinson 1978). In Coney & Mobbs (1969–70) and Younes et al. (1972), the critical
Taylor number is reported as a function of e 6 0.8 and Rez up to 125, using flow
visualization and torque measurements. It is found that axial flow always stabilizes
the Couette flow. At fixed eccentricity, stabilization due to advection is less marked
than in the concentric case. The critical curves have complicated forms for Rez > 75,
but the effect of eccentricity is generally stabilizing. However, the results display
considerable scatter and are very sensitive to the instability criterion, as shown in
Coney & Atkinson (1978). Moreover, attempts at determining the critical wavenumber
of the perturbations proved abortive, because of the complex flow structure observed.
For e> 0.2, Rez > 20, there seems to be coexistence of two helical structures winding
in opposite directions, with ‘fluctuations in the number of vortex cells occupying
the length of the apparatus at any instant or in the number of turns in the vortex
spirals’ (Coney & Mobbs 1969–70; Mobbs & Younes 1974). These experiments will
be discussed further in § 4.

On the theoretical side, apart from the semi-empirical local stability theory of Coney
& Mobbs (1969–70), inspired by the work of DiPrima (1963), no stability analysis
has been attempted so far. Modal stability analysis is the object of the present paper
and is a first step towards understanding the complex behaviour exhibited by this
flow.

1.6. Plan of the paper
The paper is organized into four sections. Section 2 introduces the linear stability
problem, including governing equations and numerical methods for basic-flow and
normal-mode computations. The main properties of the basic flow and dominant
eigenmodes are presented. In § 3, a parametric temporal stability study is performed
for η = 0.5: critical quantities are computed and stability diagrams are given. The
instability mechanism is investigated by examining the spatial structure of the critical
modes, and variations of growth rates with control parameters. In § 4, critical values
are computed for a small-gap case η = 0.89, for which comparison with experimental
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FIGURE 1. The eccentric annular domain for radius ratio η = 0.5 and eccentricity e = 0.5.
(a) Definition of the geometry. (b) A typical bipolar mesh used for calculations with
Nξ = Kφ = 16.

data is possible. A concluding section then summarizes our main findings and paves
the way for future work.

2. Linear stability framework
Recall that a, b are the inner and outer cylinder radii, d = b − a is the clearance

and Ω is the rotation rate of the inner cylinder, while ρ and ν are the density and
the kinematic viscosity. In the following, quantities will be made non-dimensional with
respect to the reference scales L ≡ d, V ≡ aΩ and P ≡ ρV2 for length, velocity and
pressure.

An azimuthal/rotational Reynolds number, defined as ReΩ ≡ VL/ν = aΩd/ν, will be
used to measure competition between centrifugal effects and viscosity. Note that this
type of definition is preferred in recent numerical work (e.g. Oikawa et al. 1989a;
Feng, Li & Fu 2007; Martinand et al. 2009) rather than using Taylor numbers of the
form Ta ∼ δRe2

Ω , which naturally appeared in the pioneering analytical studies of the
small-gap limit δ→ 0 (e.g. Taylor 1923; DiPrima 1959; Chandrasekhar 1981).

Axial advection is characterized by an axial Reynolds number Rez ≡ wd/ν, based
on the mean axial velocity w. The ratio Rez/ReΩ represents the mean axial velocity
in units of rotation velocity, and conveniently measures competition between advection
and rotation. Because of this, the use of an azimuthal Reynolds number instead of a
‘classical’ Taylor number seems particularly appropriate when axial flow is considered.

Finally, the geometry is characterized by the ratio of radii 0 < η ≡ a/b < 1 or,
equivalently, the clearance ratio δ ≡ d/a = (1 − η)/η. The eccentricity is measured by
the non-dimensional number 0 6 e = c/d 6 1, where c is the distance between centres
(cf. figure 1).

2.1. Governing equations
The incompressible Navier–Stokes equations governing velocity u and pressure p read

∂tu+ u ·∇u =−∇p+ Re−1
Ω ∇2u,

∇ ·u = 0,

}
(2.1)
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with impermeability and no-slip boundary conditions at the walls (rotating inner
cylinder, fixed outer one). Basic flows for stability analyses are axially invariant,
steady solutions of (2.1). Because of the vanishing derivatives in the axial direction ez,
velocity components u⊥ = u − wez perpendicular to the axis are decoupled from the
axial component w. Letting the subscript ‘⊥’ denote projection perpendicular to ez, u⊥
satisfies

∂tu⊥ + u⊥ ·∇⊥u⊥ =−∇⊥p+ Re−1
Ω ∇2

⊥u⊥,
∇⊥ ·u⊥ = 0.

}
(2.2)

Steady solutions of (2.2), with boundary conditions, yield ‘in-plane’ components uB,⊥
of basic flows, denoted in what follows as uB = (uB,⊥,wB). The basic axial velocity
can then be calculated by simply solving a linear system

uB,⊥ ·∇⊥wB =−G+ Re−1
Ω ∇2

⊥wB, (2.3)

where G is the imposed axial pressure gradient. Wood (1957)’s modified bipolar
coordinate system (ρ, φ), fitting the annular domain (see figure 1) with the following
conformal transformation, is appropriate for the present configuration

x+ iy= 1
δ

ρeiφ + γ
1+ γρeiφ

, (2.4)

with constants γ and β depending on the geometry through δ and e:

γ =
{(

2+ δ(1− e2)

2e

)2

− 1

}1/2

− 2+ δ(1− e2)

2e
if e 6= 0, else γ = 0, (2.5)

β = 1+ δ(1+ e)− γ
1− γ (1+ δ(1+ e))

. (2.6)

Unlike classical bipolar coordinates, this system is non-singular in the concentric
limit, allowing computations in the axisymmetric case. Local orthogonality ensures
separation of the variables in the expression of the Laplacian operator. An additional
transformation maps the non-dimensional ‘pseudo-radius’ 1 6 ρ 6 β to −1 6 ξ 6 1,
with ξ = (2ρ − β − 1)/(β − 1). In the local frame, the in-plane velocity is decomposed
as u⊥ = ueξ + veφ . Expressions for operators in (2.2)–(2.3), written in the (ξ, φ)

coordinate system, are given in the Appendix.
Linear stability theory predicts the behaviour of small-amplitude perturbations

X ′(ξ, φ, z, t) ≡ (u′, v′,w′, p′)t superimposed on the basic flow, XB(ξ, φ) ≡
(uB, vB,wB, pB)

t. The system being homogeneous along the axial direction z, small
perturbations can be written in normal-mode form:

X ′(ξ, φ, z, t)= X(ξ, φ) exp[i(kz− ωt)]. (2.7)

As usual in temporal stability analyses, the axial wavenumber k is real, and
the frequency is a complex number ω = ωr + iωi. The phase speed c ≡
ωr/k characterizes axial propagation, and the growth rate ωi indicates temporal
growth/decay (respectively, ωi > 0 and ωi < 0). Linearization of the Navier–Stokes
equations about the basic flow and use of the normal-mode form (2.7) gives the
system of differential equations AX = iωBX , expressed in the (ξ, φ) coordinate system
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as follows:

A=




A11 A12 0 Dξ

A21 A22 0 Dφ

DξwB DφwB A33 ik
Dξ + A Dφ − B ik 0


 , B =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0


 , (2.8)

A11 = (uBDξ + DξuB)+ vB(Dφ − B)+ ikwB − Re−1
Ω (∇2

⊥ − k2 + C),
A22 = (vBDφ + DφvB)+ uB(Dξ + A)+ ikwB − Re−1

Ω (∇2
⊥ − k2 + C),

A33 = (uBDξ + vBDφ)+ ikwB − Re−1
Ω (∇2

⊥ − k2),

A12 =−2AvB + (Dφ − B)uB + 2Re−1
Ω

(
ADφ + BDξ

)
,

A21 = 2BuB + (Dξ + A)vB − 2Re−1
Ω

(
ADφ + BDξ

)
.





(2.9)

The symbols Dξ , Dφ are differential operators given in the Appendix, together with
the spatially dependent factors A, B and C. At the walls, impermeability u = 0,
no-slip v = w = 0 and incompressibility Dξu = 0 conditions apply. For each value
of k, the solution of this eigenvalue problem yields a spectrum of temporal modes
ω = Ω(k; η, e,Rez,ReΩ). The critical azimuthal Reynolds number is such that the
mode with the largest growth rate is at most neutrally stable (ωi,max = 0). The value of
k for which it is neutrally stable is called the critical wavenumber.

The eigenvalue problem is invariant under complex conjugation (denoted by ?)
(k, ω,X) 7→ (−k,−ω?,X?), so only k > 0 need be considered. In the absence of axial
flow, the problem is also invariant to axial reflection, implying, with conjugation
symmetry, that the spectrum is symmetric with respect to the imaginary axis
(ω 7→ −ω?). When axial flow is added, mirror symmetry of the system in the axial
direction and the resulting symmetry of the spectrum are lost.

2.2. Numerical method
A spectral decomposition of the fields was implemented, as in Oikawa et al. (1989a)
and Chawda & Avgousti (1996), using a Fourier–Chebyshev decomposition:

u(ξ, φ)=
Nξ−1∑

i=0

Kφ∑

j=−Kφ

ûijeijφTi(ξ), (2.10)

where Ti is the Chebyshev polynomial of order i. A pseudospectral collocation
method is used in the pseudo-radial direction, employing a Gauss–Lobatto distribution
ξi = cos[iπ/(Nξ − 1)], with 0 6 i 6 Nξ − 1. Kφ is the number of Fourier components,
corresponding to Nφ = 2Kφ + 1 points on the physical grid (figure 1), after inverse
discrete Fourier transform.

Steady solutions uB,⊥ of (2.2) are calculated using a time-marching procedure, then
the axial flow wB is obtained by solving the linear system (2.3). Thanks to the linearity
of (2.3) with respect to wB, the axial pressure gradient G is just a multiplying factor on
the axial velocity, so G can be set to 1 without loss of generality. wB is then rescaled
to yield the required axial Reynolds number Rez.

Integration of (2.2) is performed using a projection method enhanced with a
preliminary pressure-prediction step (Goda 1979; Raspo et al. 2002). A simple and
robust first-order temporal scheme is used since only steady solutions are of interest
here. The stiff viscous terms of the vectorial Laplacian operator involving the scalar
Laplacian ∇2

⊥ (see the Appendix) are treated implicitly, while all other terms are
extrapolated from the previous time step. The Poisson and Helmholtz problems involve
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block pentadiagonal matrices, and are efficiently solved using the Thomas algorithm.
The choice of time step was automated in order to achieve convergence. When velocity
residuals in the physical space maxi,j |un

i,j−un−1
i,j | or maxi,j |vn

i,j−vn−1
i,j | diverged, the time

step was divided by 2: the resulting time steps ranged from 1 for the concentric case
to 10−2 for ReΩ = 250, e > 0.8, and Nξ = Kφ = 32. The convergence tolerance on the
residuals was set to 10−8.

Approximating normal modes (2.7) with the same Fourier–Chebyshev expansion
as the basic flow leads to a generalized eigenvalue problem, with matrix versions
of linear operators (2.8)–(2.9), of size 4NφNξ . This generalized eigenvalue problem
can be reduced to a standard eigenvalue problem ÃX̃ = iωX̃ of size 2Nφ(Nξ − 3),
after eliminating w, p and boundary points of u and v. The reduction is performed
numerically and allows significant time savings in full-spectrum calculation, as well as
avoiding spurious eigenvalues. A similar approach seems to have been used in Oikawa
et al. (1989a).

Full-spectrum computations were performed using the standard QR procedure
available in the free software package LAPACK (www.netlib.org/lapack). When the
region of interest in the spectrum was known beforehand, we used the Arnoldi
(1951) method to compute a few eigenvalues efficiently. The shift–invert spectral
transformation was used to enhance convergence, where the initial problem was
replaced by (Ã− σ I)

−1
X̃ = νX̃ . The eigenvalues ν = 1/(λ − σ) of largest magnitude

give the corresponding eigenvalues λ= iω of the original problem closest to the given
shift σ . The eigenvectors X̃ of the new problem are those of the initial one. The
method requires solving linear systems involving the non-sparse matrix Ã − σ I , which
is factorized in LU form in an initialization step. The calculations were performed
using the ARPACK++ class for non-sparse matrices (www.caam.rice.edu/software/
ARPACK), based on LAPACK routines.

For a given mode, critical curves were calculated using a Newton–Raphson iteration:
k and ReΩ were varied simultaneously so as to reach |ωi| and |∂kωi| less than 10−6.
Initial estimates for the critical k and ReΩ were obtained by linear extrapolation with
respect to Rez. Identification of the most unstable modes is discussed in § 2.5.

2.3. Spatial resolution
A systematic grid refinement study was performed for the basic flow with 16 6
Nξ 6 64 and 0 6 Kφ 6 128 (Kφ = 0 for e = 0), for e 6 0.99 and ReΩ 6 250. The
minimal resolution achieving convergence of six significant digits of a number
of integral quantities (forces and torque on inner cylinder, Fanning friction factor
f ≡ d|G|/(1/2ρw2), azimuthal volume flux) was found for each set of parameters, and
used for the computations in § 2.4. It appears that refining the number of collocation
points much above Nξ = 32 is unnecessary for ReΩ 6 250, and the dependence on
eccentricity is weak. On the other hand, if eccentricities close to 1 are considered,
φ varies extremely slowly in the wide gap and a large number of Fourier modes is
required. For e= 0.98 and ReΩ = 223.61, a resolution of Nξ × Kφ = 32× 128 achieves
excellent results, as can be seen in figure 2, which shows a comparison with Escudier
et al. (2000)’s calculations.

In parametric stability analyses, however (§§ 3 and 4), a fixed resolution of
Nξ = Kφ = 16 was systematically used for both basic-flow and normal modes, for
practical reasons and because of the computational cost. Tests were performed
a posteriori to check that these values provided reliable results, and are reported
in table 1. With the chosen resolution, three significant digits of the critical ReΩ are
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FIGURE 2. The basic flow for η = 0.5, e = 0.98 and ReΩ = 223.61: (i) the present
calculation using Nξ × Nφ = 32× 257 (Kφ = 128); (ii) Escudier et al. (2000) with a 40× 256
grid – (a) streamlines; (b) isolines of axial velocity normalized by mean velocity w. The
calculation recovers the secondary recirculation region in the wide gap and the two distorted
maxima in the axial velocity. The numerical values of the isolines match those of Escudier
et al. (2000).

converged in most cases. However, larger inaccuracies occur for high e and Rez, and
critical curves are truncated below ReΩ = 200 (respectively, ReΩ = 250) for η = 0.5
(respectively, η = 0.89), as remeshing above this limit quickly becomes prohibitive.

2.4. Basic flow
The most striking feature of the basic flow is the occurrence of a recirculation
eddy for eccentricities larger than a certain threshold value of ∼0.3 for η = 0.5
(see figure 3), which only depends weakly on ReΩ . This behaviour exists even for
Stokes flow and Kamal (1966) was the first to study the influence of inertial effects.
The recirculation is due to the adverse pressure gradient caused by the large expansion
of annulus clearance, downstream of the ‘bottleneck’ at φ = π. Figure 4(d) represents
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FIGURE 3. Basic flows for η = 0.5, ReΩ = 100: (i) weak eccentricity e = 0.2; (ii) high
eccentricity e = 0.7 – (a) contours of equispaced in-plane streamfunction with superimposed
in-plane velocity profiles at θ = 0,π/2,π, 3π/2 (polar angle with respect to the inner
cylinder); (b) equispaced contours of axial velocity.

the evolution of the azimuthal volume flux (per unit length) Qφ with eccentricity, for
η = 0.5 and azimuthal Reynolds numbers ReΩ up to 250. Qφ is obtained by integration
of the azimuthal velocity along the radial path φ = 0 joining the cylinders. As the
inner cylinder gets closer to the outer one, the azimuthal flow becomes progressively
‘choked’, and Qφ seems to be controlled by the smaller gap width. Indeed, the flow
in the vicinity of the inner cylinder resembles a circular Couette flow of clearance
ratio controlled by the smaller gap, while the wide-gap region hosts a low-velocity
recirculation zone contributing no net azimuthal volume flux. A comparison is made
with the value of Qφ in the Stokes régime, using Wannier (1950)’s exact formula for
the in-plane stream function. Inertial effects only have a weak impact on Qφ , which
could be expected from the fact that the fluid is entrained in rotation by viscous forces.
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FIGURE 4. The forces, torque and azimuthal flow rate (per unit length) for e= 0, . . . , 0.7 and
ReΩ = 10, . . . , 250: (a) the x-component Fx; (b) the y-component Fy of the force on the inner
cylinder; (c) the torque T on the inner cylinder; (d) the azimuthal flow rate Qφ . The dotted
lines in (b–d) correspond to the exact value in the Stokes régime, taken from Wannier (1950).

Maximum axial velocity occurs in the wide-gap region. Indeed, in the absence
of rotation, eccentric annular Poiseuille flow is nearly parabolic in the pseudo-
radial direction, and for any fixed value of φ, the maximum velocity scales as the
‘local clearance’ squared. However, the position of the maximum axial velocity is
not exactly located at φ = 0, because of convective transport of wB by cross-flow
components uB,⊥ (see (2.3)). In fact, these nonlinear effects distort the whole flow
field, and Escudier et al. (2000) performed a thorough computational/experimental
analysis of the effects of eccentricity and inner-cylinder rotation, on annular Poiseuille
flow. At low eccentricity, the maximum axial velocity was shown to be advected
towards the narrowing-gap region, inducing a slight increase in Fanning friction factor
(defined in § 2.3) with e. For moderate eccentricities 0.3 6 e 6 0.8, the maximum
moves back to the wide-gap region, with a subsequent decrease in friction factor.
For larger eccentricities, the maximum is located in the diverging-gap region, and the
friction factor increases again. At very high eccentricities and rotation rates, a second
peak in axial velocity appears in the wide gap, while a secondary recirculation is
observed at the outer cylinder wall. This complex pattern is successfully obtained with
our code, as illustrated in figure 2.

The forces on the inner cylinder can be easily computed by integration of the
pressure and viscous stresses at the wall. The expressions for the strain tensor
components in our coordinate system are given in the Appendix. Figure 4 shows a
systematic study of the effect of ReΩ and e on the loads, for η = 0.5. A comparison is
made with the Stokes régime, using analytical formulas derived by Wannier (1950). In
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this limit, the velocity and pressure distributions are antisymmetric with respect to the
symmetry plane of the annulus. Therefore, the x-component of the force is exactly 0.
At the inner-cylinder surface, the pressure increases with φ on the wide-gap side up to
0 < φmax < π, and decreases on the small-gap side up to φmin = −φmax. As e increases,
the pressure extrema both tend to the same limit φmin/max→ π. Because 0 < φmax < π,
the y-component of the force Fy is negative. The viscous torque T is obviously
opposed to the sense of rotation, so T < 0. In the Stokes limit, T and Fy both scale as
Re−1

Ω . Indeed, the torque T is induced by shear stresses τ , which scale as τ ∼ µV/L
in dimensional form, where µ is the dynamic viscosity. Non-dimensionalizing with
respect to the pressure scale P ≡ ρV2, one obtains T ∼ τ ∼ Re−1

Ω . In the absence of
inertial terms, the pressure pB also scales as τ , so Fy ∼ pB ∼ τ ∼ Re−1

Ω .
When inertial effects are added, this scaling still holds and only small deviations to

the Stokes limit are observed. Larger variations occur for an eccentricity of ∼0.3–0.4,
where the value of FyReΩ at ReΩ = 250 is almost twice the purely viscous one.
At e ≈ 0.8, variations of FyReΩ with ReΩ are almost non-existent. Similarly, the
formula for the torque in the Stokes régime applies quite robustly for all the range of
eccentricities and ReΩ up to 250. Again, this close agreement is attributed to the fact
that the flow in the vicinity of the inner cylinder is similar to a circular Couette flow
where inertial effects are weak (and non-existent in the purely axisymmetric case). For
e close to 1, Fy and T increase sharply because of lubrication effects.

When ReΩ 6= 0, the flow antisymmetry is broken, and Fx is non-zero. For low
eccentricities, Fx is negative, but for high e, Fx is positive, as expected from
lubrication theory. The change of sign of Fx is located about a critical eccentricity
of e≈ 0.7–0.75 for η = 0.5 and ReΩ 6 250, as already discussed by Feng et al. (2007)
and Podryabinkin & Rudyak (2011). Small-eccentricity perturbations about this point
tend to push the inner cylinder back to its initial position. However, pressure-induced
precession prevents any stable equilibrium for this value of eccentricity, explaining the
complex motion of drillstrings in wellbores. The intensity of Fx is determined by the
magnitude of the convective term, so the pressure scaling P ≡ ρV2 is appropriate in
this case.

2.5. Critical modes
The first step in linear stability analysis is to identify a reduced set of leading modes,
with the largest growth rates. Full-spectrum computations were used to find the most
unstable eigenvalue at each point of a coarse grid in (e,ReΩ,Rez), for η = 0.5. k
was varied between 1 and 7, a range containing all the critical wavenumbers for
the concentric case with Rez 6 200 (1.5 . k . 4.5 from the graph in Cotrell &
Pearlstein 2004), with large steps of 0.5 for computational efficiency. Approximate
critical curves were obtained, and it was found that the modes at criticality are always
either propagating ‘Taylor-like’ vortices or deformed left-handed helical modes. These
pseudo-toroidal and pseudo-helical modes correspond to the same family of critical
modes found in Taylor–Couette–Poiseuille flow (Takeuchi & Jankowski 1981), but
distorted by eccentricity (cf. figure 10). In the axisymmetric case, these modes can
be assigned an integer azimuthal wavenumber m corresponding to a normal-mode
decomposition of the form X ′ = X(r) exp[i(kz + mθ − ωt)], using the usual cylindrical
coordinates (r, θ, z). Considering k > 0, m = 0 correspond to Taylor vortices and
m> 0 (respectively, m< 0) are left-handed (respectively, right-handed) helical vortices,
with helicity opposed to (respectively, matching) that of the basic flow. Following
these modes by continuity, pseudo-helices are also assigned a ‘pseudo-azimuthal
wavenumber’ equal to the corresponding value of m in the concentric case. Henceforth,
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FIGURE 5. Spectra of eigenvalues ω = �(k; e,ReΩ ,Rez) with (k,ReΩ) at critical conditions.
Rows: (i) e = 0; (ii) e = 0.5. Columns: (a) Rez = 0; (b) Rez = 50. Numbers indicate the
azimuthal wavenumber m of the eigenmode (or pseudo-wavenumber if eccentric). Positive ωi
indicates instability. Positive (negative) m correspond to left- (right-)handed helix-like modes.
The eigenvalue in the square box corresponds to the most unstable mode.

TV will denote ‘Taylor-like’ vortices, while LH|m| and RH|m| will correspond to
left-handed (respectively, right-handed) helical vortices of order m. The symmetry of
the spectrum for Rez = 0 implies that LH and RH of equal order m have the same
growth rate and oppositely signed phase speeds. As Rez is increased, LH modes
become more unstable than TV and RH, and form the family of critical modes, as in
the axisymmetric case (cf. figure 5). The critical value of m increases steadily with
Rez.

Additional families of modes, such as wall modes related to a shear instability
mechanism, were not found to be critically unstable in the range of parameters
considered. Centre modes of Sp type, such as described by Merzari et al. (2008),
and critical in highly eccentric annular Poiseuille flow for high values of Rez, were not
found to be critical in our configuration either.

In axisymmetric Taylor–Couette–Poiseuille flow with η = 0.5, the maximum value
of m at criticality is 7 (Cotrell & Pearlstein 2004). Hence, in the subsequent parametric
study at η = 0.5 (§ 3), critical curves were calculated for TV, LH modes with m 6 7,
and RH of order one and two, as a check.

2.6. Validation
Extensive validations of basic-flow and stability calculations have been performed. In
the Stokes limit ReΩ � 1, Wannier (1950) derived analytical expressions for torque
and forces on the inner cylinder, that were matched by our code up to machine
precision. Using his analytical solution of the stream function, azimuthal volume flux
Qφ calculations were also successfully validated. Escudier et al. (2000) calculated
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FIGURE 6. Validation of critical azimuthal Reynolds number ReΩ against eccentricity e.
(a) η = 0.912, k = 3.17: solid line, Chawda & Avgousti (1996); dotted line, Dai et al. (1992),
◦, present calculation. (b) η = 0.5: ×, Oikawa et al. (1989a); ◦, present calculation.

the Fanning friction factor (defined in § 2.3) in the eccentric Taylor–Couette flow,
for 10 6 ReΩ 6 223.61 and eccentricities up to 0.98. The present numerical results
all lay within 0.67 % of their values. Feng et al. (2007) gave numerical values for
the pressure and stress contributions to the x and y components of the force on the
inner cylinder for ReΩ = 125 and eccentricities up to e = 0.98. For these parameters,
our calculations match their results, with less than 1.80 % of relative difference, and
0.76 % on average when at least four significant digits were provided by the authors.

In the axisymmetric configuration with axial throughflow, Takeuchi & Jankowski
(1981) performed the first numerical prediction of the critical curves for Rez up to
100. In their paper, they provide data for the critical values of ReΩ , k and wave speed
c= ωr/k for Rez = 0, 10, . . . , 100. The critical values are exactly matched by our code
in all cases except for Rez = 90, where only the last significant digit given by the
authors for k and c differs from our values by one.

In the eccentric configuration with no axial flow, Oikawa et al. (1989a) reported a
critical azimuthal Reynolds number of 307.59 for an axial wavenumber of 4.126 and
δ = 0.1, e= 0.7. With the same spatial resolution Nξ×Kφ = 21×24, our corresponding
critical values are ReΩ = 307.71 and k = 4.127, which gives relative errors of 0.04 and
0.02 %, respectively. Additional tests were performed using a graph of critical ReΩ
versus eccentricity for η = 0.5 from a second paper of Oikawa et al. (1989b), and
for η = 0.912 and k = 3.17 against graphical results from Dai et al. (1992) and
Chawda & Avgousti (1996). Figure 6 shows excellent agreement with the data of
Oikawa et al. (1989b) and Chawda & Avgousti (1996), who both used the same
spectral decomposition of the modes as us. Values from Dai et al. (1992) are close,
but discrepancies may be attributed to their relatively coarse meshing (Nφ = 16 points
only in the ‘pseudo-azimuthal’ direction) and to the use of piecewise polynomials to
approximate the fully nonlinear fields in their bifurcation analysis.

3. Parametric study for a wide gap η = 0.5

In this section, we give results for the case η = 0.5, representative of industrial
configurations in oil-well drilling. A resolution of Nξ = Kφ = 16 allows satisfactory
accuracy for e 6 0.7 and ReΩ , Rez up to 200, as shown in the previous section.
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FIGURE 7. (a) Critical curves ReΩ = f (Rez) for e = 0.5 and modes m = −2, . . . , 5. The
thick solid line indicates the instability threshold taking all the modes into account. The
shaded area corresponds to instability. (b) Solid (respectively, dotted) lines: critical curves
taking all the modes into account, for e = 0.1, 0.3, 0.5, 0.7 (respectively, e = 0, 0.2, 0.4, 0.6).
In both (a) and (b), filled/open circles indicate a switch in critical m, and the associated
‘pseudo-azimuthal’ wavenumber is indicated by annotation.

3.1. Critical azimuthal Reynolds number
For an eccentricity of e= 0.5, figure 7(a) shows the critical curves of the TV (m= 0),
LH (m > 0) and RH (m < 0) modes labelled from m = −2 to 5. The solid thick line
indicates the stability boundary, switching from one m to the next as Rez is increased.
Similar behaviour was found in the axisymmetric case by Takeuchi & Jankowski
(1981).

Similar results were obtained for all eccentricities and figure 7(b) superimposes on
a single figure all the results concerning the stability boundary for e = 0, 0.1, . . . , 0.7.
The main result of this study is clear from this figure: eccentricity always has a
stabilizing effect, regardless of axial advection. The origin of this stabilization, as
hinted at by Karasudani (1987) for the eccentric Taylor–Couette flow without axial
flow, seems to lie in the weakening of centrifugal effects by eccentricity. Indeed, as
already mentioned in § 2.4, azimuthal flow gets ‘choked’ with increasing eccentricity
(see Qφ in figure 4d), and the basic flow becomes similar to an axisymmetric Couette
flow of clearance ratio δ′, controlled by the small gap δ′ ∼ δ(1 − e), next to a ‘dead’
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recirculating flow zone. Decreasing the clearance ratio or, equivalently, increasing the
radius ratio of a circular Couette flow, reduces curvature effects and has a stabilizing
effect, as shown by DiPrima, Eagles & Ng (1984).

The effect of axial advection on the axisymmetric case is twofold: first, it stabilizes
the Couette flow up to Rez = 61.08; and then it slightly destabilizes it as Rez is
further increased, while maintaining the threshold above the value for Rez = 0. The
change in behaviour corresponds exactly to the intersection between the increasing
critical curve corresponding to mode m= 3 and the decreasing curve for m= 4; hence
maximal stability is achieved when the two modes exchange stability. The value of
Rez corresponding to the maximum in critical ReΩ increases with eccentricity. Above
e= 0.5, maximum stability occurs beyond Rez = 200.

At fixed Rez above 50, increasing eccentricity tends to select critical modes of lower
m: the stabilizing effect of eccentricity is even more important for higher azimuthal
wavenumbers. On the contrary, at small Rez, eccentricity favours the dominance of
the LH1 over TV. For large enough eccentricities, one can expect helices with m = 1
to dominate TV even without axial flow. In the absence of axial flow, this feature
was found experimentally by Vohr (1968) (δ = 0.099 and e > 0.707) and Karasudani
(1987) (η = 0.83, e > 0.6). Oikawa et al. (1989a) found a complex conjugate pair
of eigenvalues λ = iω at criticality for δ = 0.1, e = 0.7 (LH and RH), confirming
numerically Vohr (1968)’s findings.

3.2. Critical axial wavenumber
Figure 8 shows the evolution of the critical wavenumber. The curves display jumps
at points where modes exchange stability, and these discontinuities always correspond
to a positive jump in k. When axial flow is increased, k usually decreases as long as
the critical mode does not switch. The order of magnitude of k is always the same
regardless of eccentricity, and remains between 1.5 and 5, which indicates that the
axial wavelength of the critical perturbations is always of the same order of magnitude
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as the clearance d = b − a. These observations may explain the pattern selection
process: increasing Rez tends to elongate the modes in the axial direction, so a switch
to a higher ‘pseudo-azimuthal’ wavenumber mode occurs to reach a vortical structure
that fits the annular domain better, and is thus amplified faster.

3.3. Critical phase speed
Figure 9 shows the evolution of the phase speed at criticality. As in figure 8,
the curves are discontinuous as critical m switches with increasing Rez. The phase
speed always remains between 0.6 times and twice the average axial velocity of the
basic flow. It decreases with increasing Rez for each mode, but discontinuities always
correspond to a jump to a larger value. Interestingly, except for LH1 (LH with m = 1)
at the point of stability exchange with TV, all the critical modes see their phase speed
decrease with eccentricity, this effect being more noticeable for e > 0.3. Most critical
perturbations propagate somewhat faster than the average axial flow velocity, but see
their propagation hindered by increasing Rez.

3.4. Critical eigenmodes structure
A systematic study of the spatial structure of the critical eigenmodes has been
performed. Figure 10 shows a deformed LH1 for e = 0.5, Rez = 40. Figure 10(e)
clearly represents the helical structure, while figure 10(b) shows the m = 1 azimuthal
order. In-plane motion of the mode (figure 10a) can be quite complicated and difficult
to interpret for higher-order modes.

It is interesting to look at the disturbance kinetic energy distribution to see where
the mode localizes within the annulus. Figure 10(c) shows concentration of the
energy in the converging gap region, consistent with observations of Oikawa for
TV perturbations in both the small- and wide-gap eccentric Taylor–Couette flow (and
the numerous theoretical and experimental studies cited in the introduction, either
calculating or observing the so-called ‘maximum vortex activity’ in the saturated
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FIGURE 10. The structure of the critical eigenmode for e = 0.5, Rez = 40. (a) The real part
of the in-plane perturbation velocity u⊥ = (u, v). (b) Equispaced contours of the real part
of the axial perturbation velocity w: solid (dotted) lines indicate positive (negative) values.
(c) Map and (equispaced) contours of the disturbance energy density 1

2 (|u|2 + |v|2 + |w|2)
dark grey corresponds to high values. (d) Vertical cuts (equispaced contours) of the real part
of the axial perturbation velocity w for θ = 0,π/2,π, 3π/2 (from left to right) in a polar
coordinate system centred on the inner cylinder. (e) Isosurfaces of Re(w), showing the three-
dimensional structure of the mode: dark (light) shades of grey indicate positive (negative)
values, respectively.

régime). It is also possible to track the position of the maximum of the total
disturbance energy. It is found that both in the axisymmetric and the e= 0.5 cases, the
perturbation localizes closer and closer to the inner wall as advection is increased, at a
radius (with respect to the inner cylinder) of ∼1.2–1.5 times the inner-cylinder radius.
In the eccentric case, this maximum also moves azimuthally to the small-gap region,
with jumps as the critical mode switches. At Rez = 0 (m = 0), it is located at a polar
angle (centred on the inner cylinder) of θ = 79◦, while at Rez = 200 (m = 5), it is at
θ = 121◦. From the energy density maps, it is also clear that as Rez is increased, the
energy is less and less spread out in the annular region and peaks around some radial
position. For Rez = 0, the ratio between the maximum of the total disturbance energy
and the average is 5.7, whereas it is 16.3 for Rez = 200.

Let us define the in-plane and axial disturbance energy contributions of a mode as
the integral quantities over the annular domain A :

E⊥ = 1
2

∫

A

(|u|2 + |v|2) dA , Ez = 1
2

∫

A

|w|2 dA . (3.1)

Figure 11 shows the contributions to the total disturbance energy of the critical mode
as a function of Rez for e = 0 and e = 0.5. In both cases, the graphs show how
the energy transfers from dominantly in-plane motion to dominantly axial motion as
advection is increased, regardless of the (‘pseudo-’)azimuthal wavenumber involved.
There is a tendency for the modes to become more and more two-dimensional with
suppressed spanwise (here azimuthal) motion, as for TS waves on a flat plate or in
channel flow. This suggests that viscosity plays an important role in the destabilization
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FIGURE 12. Growth rate maps for an eccentricity of e= 0.5: (a) mode m= 2;
(b) mode m= 4.

of the modes at high Rez. This hypothesis is consistent with the fact that the modes
localize more and more in high-shear regions: closer to the inner wall at smaller
clearance. It is also consistent with the decrease in critical axial wavenumber k with
increasing Rez (figure 8). Interestingly, in the case e = 0.5, the critical axial Reynolds
number above which advection becomes destabilizing corresponds to the switch from
dominantly in-plane disturbance energy to dominantly axial disturbance energy (this
is less clear for e = 0). Note, however, that these modes are distinct from the ‘pure’
viscous wall modes referred to as modes A in Merzari et al. (2008) for eccentric
Poiseuille flow, or TS-like modes in axisymmetric Taylor–Couette–Poiseuille flow
(Cotrell & Pearlstein 2004). Those latter modes are localized about critical layers,
and are expected to become critical at higher values of Rez, typically of the order
of 104 in the axisymmetric Taylor–Couette–Poiseuille flow with η = 0.5 (Cotrell &
Pearlstein 2004).

3.5. Growth rate maps and stability diagrams
In the concentric and e = 0.5 cases, a more complete study of the dispersion relation
was carried out. Figure 12 shows maps of the maximum growth rate ωi,max in the
(ReΩ,Rez) space for modes 2 and 4 and e = 0.5. For ‘higher-order’ modes such
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FIGURE 13. Dominant unstable modes in (Rez,ReΩ) space with and without eccentricity:
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as m= 4, one can clearly distinguish two zones. For low Rez, there is a sharp increase
in ωi,max with advection and rotation has only a minor effect on stability. For higher
axial flow rates, the tendency is reversed: advection has only a weak effect on stability
and centrifugal effects govern the stability of the mode. This trend was also observed
in the concentric case for high-order left helices. For ‘low-order’ modes such as m= 2,
the separation of the two effects is less clear: the increase of ωi,max for weak axial
advection is also observed, though less markedly, and at higher axial flow rates, the
stabilizing effect of advection is comparable in magnitude to the destabilizing effect of
rotation.

It is also possible to calculate the regions in which each m dominates the instability,
as shown in figure 13. In the cases of both no eccentricity and of e = 0.5, it appears
that frontiers between these regions are always close to straight lines parallel to the
ReΩ-axis. This again illustrates the importance of advection in the destabilization of
the helical modes. While the instability mechanism is centrifugal in nature, there is a
need for a minimum axial flow rate for this instability to operate on higher-order LH
modes.

This importance of both shear and centrifugal effects in the destabilization process
at high Rez as noticed here and in the preceding subsection, is not a complete surprise.
Indeed, as pointed out in Meseguer & Marques (2002), Hagen–Poiseuille flow is
linearly stable for any Rez; however, a slow rotation may destabilize the basic flow
(Mackrodt 1976). Conversely, rigid-body rotation is linearly stable for any rotation rate,
but the superposition of axial flow can also destabilize the flow. The same mechanism
was observed for an axisymmetric Couette flow (Meseguer & Marques 2000) with
axial motion of the inner cylinder, where both shear and centrifugal effects were
needed to make the basic flow unstable. It is clear from figure 12(b) that here this
is the case for higher-order helical modes: the region of instability is bounded by a
threshold in both rotation and advection rates.

4. Parametric study for a small gap η = 0.89
As mentioned in the introduction, very little work has been done on the

experimental study of eccentric Taylor–Couette–Poiseuille flow. However, some
experimental data are available for radius ratios close to η = 0.9. We study the case
η = 0.89 (η = 0.8907 to be exact), corresponding to the sharp entry apparatus in
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Coney & Mobbs (1969–70) (comparable results were obtained for the smooth entry).
In the same fashion as in § 3, we obtain results for e up to 0.6, Rez up to 50 and
ReΩ up to 250, reaching reasonable accuracy with Nξ = Kφ = 16, as indicated in
table 1.

4.1. Critical azimuthal Reynolds number
Compared to the wide-gap case, the critical ReΩ are higher, which is as expected
because the curvature of the gap is less important. The transition to higher-order LH
modes happens at much lower advection rates, and m = 5 becomes critical before
Rez = 50 for some eccentricities. Unlike for η = 0.5, increasing the eccentricity at a
fixed Rez results in the selection of higher-order m. For the wide gap, this was the
case only for TV and LH1 (for low e), and otherwise selection of lower-order m was
observed. Figure 14(a) shows how the critical curves for the different m lie close
to each other (e = 0.2 here), including the first RH modes. Complex behaviour is
expected in the supercritical régime from the competition of the different helices. Note
that no weak destabilizing effect of advection is noticed for any value of Rez 6 50
at any eccentricity. Indeed, this effect is expected to be pushed towards much higher
values of Rez, as in the concentric case. In this case, Ng & Turner (1982) found such
an effect to occur at about Rez ∼ 103 for η = 0.77 (extremely weak effect), and did not
observe it at all for η = 0.95 and Rez 6 6000.

4.2. Critical axial wavenumber
The range of critical axial wavenumbers (figure 15) is almost the same as in the
wide-gap case. This means that the clearance is still controlling the size of the vortices.
The most noticeable difference with η = 0.5 is the fact that for weak eccentricities
(e 6 0.2) and low-order modes, k increases continuously with Rez. This was observed
only for TV and LH1 in the previous case, but is now seen for more modes. This
observation, together with the previous subsection, shows that the behaviour is globally
the same as for η = 0.5, but variation in critical m is much faster as Rez increases and
more modes are involved. This behaviour is consistent with the results of Ng & Turner
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(1982) who found a critical azimuthal wavenumber of 12 at Rez = 100 for η = 0.77,
and of 35 for η = 0.95.

4.3. Critical phase speed
As for the case η = 0.5, the phase speed is around 1–2 times the average axial speed
of the base flow (figure 16). As the eccentricity is increased, the jump in phase speed
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between consecutive critical modes becomes larger. For high enough eccentricities, the
peak phase speed is that of the LH1.

4.4. Comparison with experiments
In this section, we compare the numerical results with a series of experiments
performed on a single apparatus of radius ratio η = 0.89 and aspect ratio (length
over clearance) L= 71.8. Figure 17 compares experimental data from Coney & Mobbs
(1969–70) (sharp entry case) against our calculations, after converting their graphical
data into our system of control parameters. The agreement is quite good when there is
no axial flow, and for e< 0.5. At higher eccentricities, though, we predict transition at
higher rotation rates. It is likely that the difference is due to boundary effects, causing
early transition to a Taylor ‘pre-vortex’ flow as reported in Mobbs & Ozogan (1984).

As soon as axial flow is added, the predicted critical ReΩ is significantly lower
than the experimental values, at any eccentricity, though the trends are the same.
The experimental data lie between 10 and 20 % above the calculated threshold.
Discrepancies as high as 20 % were also noticed between the numerical predictions
of Ng & Turner (1982) and the experimental data of Nagib (1972) for the
Taylor–Couette–Poiseuille flow of radius ratio η = 0.77. Takeuchi & Jankowski (1981)
reported divergent trends between theoretical predictions and experimental data for
η = 0.5 and Rez as low as 40. Takeuchi & Jankowski (1981) claimed that the length
of the apparatus was responsible for the supercritical Taylor numbers. Indeed, they
invoked the idea of a ‘vortex development length’, defined as ‘the length needed for
a moving disturbance to reach an amplitude that is observable by the visualization
method’. With more recent theory, it would be said that the instability is convective
and is triggered by noise at the inlet of the apparatus (sharp or smooth). Indeed,
the apparatus used by Coney & Mobbs (1969–70) is quite compact compared to
other experiments. The length to gap ratio L is 71.8, whereas it was 160 for Nagib
(1972) and 110 for Takeuchi & Jankowski (1981), respectively. In comparison, for a
radius ratio of η = 0.95 and a length to gap ratio of 290, Snyder (1962) obtained
experimental data that match those of Ng & Turner (1982) very closely, supporting the
idea of the importance of the vortex development length. As advection is increased,
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Rez Torque
(1)

Visual
(1)

Visual
(1)

Visual
(2)

Visual
(3)

Present
work

0 145 175 166 162 164 178
25 208 269 219 249 301 229
50 281 349 303 334 319 296

TABLE 2. Critical ReΩ for e= 0.5, η = 0.89: (1), Younes (1972); (2), Coney & Mobbs
(1969–70) and Coney (1971); (3), Coney & Atkinson (1978).

m k ωi,max c cg −ki exp[−kiL]
−1 2.60 1.95× 10−4 0.89 1.08 0.0010 1.1
0 2.70 9.04× 10−3 1.03 1.09 0.0455 26.3
1 2.82 1.55× 10−2 1.16 1.10 0.0774 258.3
2 2.94 2.00× 10−2 1.28 1.12 0.0986 1187.6
3 3.08 2.28× 10−2 1.39 1.13 0.1112 2943.3
4 3.21 2.43× 10−2 1.50 1.14 0.1169 4429.7
5 3.37 2.46× 10−2 1.60 1.16 0.1171 4488.0
6 3.53 2.40× 10−2 1.69 1.17 0.1131 3356.9

TABLE 3. Properties of the unstable modes m = −1, . . . , 6 for e = 0.3, Rez = 50 and
ReΩ = 275. k and ωi,max are calculated from the temporal stability problem. The phase
speed c and the group velocity cg are relative to the average axial flow velocity wB. ki is
the spatial amplification rate from Gaster (1962)’s relation. exp[−kiL] is the amplification
factor from the inlet to the outlet of the apparatus (Coney & Mobbs 1969–70).

perturbations travel faster as they grow, and might not be detected for large Rez, which
also explains why the results diverge for larger Rez.

In table 2, numerical values are given for the critical ReΩ at e = 0.5, from visual
observations and torque measurements, compared to our values. The table shows
significant scatter of the experimental data, even when using the same technique; for
example, visual observations. Values obtained via torque measurements always give
lower values than those from visualization, as the method is essentially more sensitive
to the ‘pre-vortex’ flow located near the inner cylinder and difficult to visualize.
Overall, the theoretical values always lie within (or very close to) the bounds given by
the experiments.

4.5. The ‘double-vortex’ pattern
More surprising are the complex patterns observed by Coney & Mobbs (1969–70),
with an apparently random axial wavenumber. For an eccentricity of e = 0.3 and an
axial Reynolds number of Rez = 50, they described a system of two vortices coexisting
in the annulus: a left and a right helix, respectively. Looking at their graph, the
azimuthal Reynolds number associated with this state has a supercritical value of
ReΩ ≈ 275. For this set of parameters, it is possible to calculate the maximum growth
rate of all unstable modes. The results are reported in table 3, including the axial
wavenumber, the phase speed and the group velocity cg ≡ ∂ωr/∂k. Modes m = −1
to 6 are all linearly unstable, so theory allows for a RH to grow at these operating
conditions. However, the growth rates associated with higher-order LH are much
higher, and m= 5 is dominant, closely followed by m= 4. The wavenumbers of these
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latter modes lie in the lower range of what was experimentally observed: 3.25–5.20.
Temporal stability theory offers no obvious explanation for the larger wavenumber
perturbations observed in the experiment.

In table 3, we also give the equivalent spatial amplification properties of the
unstable modes, following Gaster (1962). For near-critical perturbations, the spatial
amplification rate −ki can be related to the temporal growth rate ωi, via the group
velocity of the perturbation, with the simple relation −ki ≈ ωi/cg. In the spatial
stability framework (meaningful for convective instabilities), the resulting amplification
of the perturbations over the length L of the apparatus is given by exp[−kiL].
According to this theory, the spatial amplification of higher-order spirals is very fast
due to the large growth rate and the moderate group velocity. On the other hand,
RH spiral m = −1 is barely amplified through the apparatus and is very unlikely to
saturate before exiting the system.

One could then think of this unexpected pattern as a consequence of transient
growth due to non-modal effects (for a review, see Chomaz 2005). Heaton (2008)
assessed the importance of these effects in axisymmetric Taylor–Couette–Poiseuille
flow, and showed that they could also potentially explain deviations from modal
stability predictions at moderate Rez, typically of the order of a few hundreds. For
lower Rez, however, transient growth is not significant, and modal theory alone was
shown (Cotrell et al. 2004) to match the experimental results accurately. Hence, for
Rez = 50, it seems unlikely that transient effects might be important, even though no
results are currently available for the eccentric case.

Owing to the supercritical operating conditions and the variety of unstable modes,
nonlinear simulations would surely help us to understand the double-vortex pattern. As
in the case with no advection, end effects might also have an impact on the stability
properties. Finally, phase noise may prevent a clear identification of the convectively
amplified pattern (Babcock, Ahlers & Cannell 1991; Babcock, Cannell & Ahlers
1992).

5. Conclusions and perspectives
The temporal stability of eccentric Taylor–Couette–Poiseuille flow with a fixed outer

cylinder has been investigated for a large range of parameter space. Parametric studies
have been performed for a wide-gap case η = 0.5 with Rez 6 200 and e 6 0.7, and
a small-gap case η = 0.89 with Rez 6 50 and e 6 0.6. Taylor vortices give way to
helical structures of increasing azimuthal complexity as advection is increased. The
helicity of these structures is always opposed to the inner-cylinder rotation, and are
termed left helices, as in Taylor–Couette–Poiseuille flow. Broken axisymmetry changes
the thresholds and distorts the critical modes, but was not found to trigger any new
instability mechanism for the parameter range considered.

Eccentricity is always stabilizing, regardless of the axial flow rate, and this effect
becomes even more important for higher values of e. Indeed, centrifugal effects are
weakened at e > 0.3, as a low-speed recirculation region forms in the base flow
and less fluid is driven in rotation around the inner cylinder. The effect of axial
advection at fixed eccentricities is more subtle. For the small-gap case, the critical ReΩ
increases steadily with Rez. For the wide-gap case η = 0.5, the critical ReΩ increases
for weak values of Rez, but decreases slightly as axial advection is increased further.
The maximum value of the critical ReΩ is obtained for a value of Rez that increases
with eccentricity. Despite the destabilizing effect of advection above this specific value
of Rez, the case with no advection always remains the most unstable. For the wider
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gap η = 0.5, increasing e at fixed Rez tends to lower the critical pseudo-azimuthal
wavenumber m (except for LH1 over TV), whereas ‘higher-order’ modes seem to be
selected for η = 0.89. The critical axial wavelength is always of the order of the
clearance d. For η = 0.5, the axial wavenumber k decreases continuously for a given
m (except for TV and LH1 at small eccentricities) with increasing Rez, but positive
jumps are seen as higher and higher pseudo-azimuthal wavenumber m are selected
at criticality. For η = 0.89, the behaviour is similar except that the increase of k for
small m and small e is seen for more modes. For both radius ratios, the critical phase
speed c of the travelling waves varies between 0.8 and 2.2 times the axial mean
velocity of the base flow. c decreases with Rez, except when the critical azimuthal
wavenumber switches, in which case there is a discontinuous jump to a higher phase
speed. For the small-gap case η = 0.89, the range of Rez for which a critical fixed
m dominates is much smaller than for η = 0.5 and transition to higher-order modes
happens in a smoother way as Rez increases. Mode competition is more pronounced
for the small-gap case because modes of different m lie closer to each other in the
(ReΩ,Rez) plane.

Whereas the instability mechanism for TV is only centrifugal, with a stabilizing
effect of Rez, the destabilization of helical modes m > 0 is strongly influenced by
axial advection. Indeed, higher-order LH modes require a minimum amount of axial
shear to become unstable, and this effect dominates the centrifugal mechanism for low
Rez. For large enough Rez, the effect of axial advection becomes minor, compared
to centrifugal destabilization with increasing ReΩ . Maximum vortex activity, measured
here by the maximum of the disturbance kinetic energy, is localized in the converging
gap and moves towards the small gap and inner cylinder as Rez is increased. At
the same time, the disturbance energy concentrates increasingly into axial motion,
recalling the two-dimensional structure of TS waves generated by axial shear. However,
the so-called TS-like disturbances, involving a critical layer close to the wall, are
not found in the range of the computations and are only expected to appear at
larger advection rates (Cotrell & Pearlstein 2004). Centre modes of Sp type, found
in eccentric annular Poiseuille flow by Merzari et al. (2008), are expected to exist in
eccentric Taylor–Couette–Poiseuille flow at sufficiently large values of Rez, but would
require prohibitively fine meshing to be explored thoroughly with the method used
here.

Comparison with the experiment of Coney & Mobbs (1969–70) for the small-gap
case shows agreement within 20 % and matching trends. However, transition is found
to occur below the linear threshold for e > 0.5 and Rez = 0, and above for Rez = 25
and 50 regardless of e. These differences are thought to be due to finite-length
effects. In the eccentric case with no axial flow, end effects may be responsible
for the onset of toroidal vortices below the limit of infinite-cylinder theory. When
axial flow is added, delayed onset is probably caused by the ‘vortex development
length’ invoked by Takeuchi & Jankowski (1981). In the framework of convective
instabilities, the system needs to be of appropriate length for the perturbations to
reach an amplitude detectable by experiments. The apparatus being quite compact, it is
plausible that high rotation rates would be needed to amplify perturbations before they
exit the system. Despite encouraging results overall, modal stability analysis cannot
fully explain the complex pattern observed for e = 0.3, Rez = 50, involving a double-
vortex structure. Non-modal effects, potentially responsible for transient amplification
of this unexpected structure, are likely to be weak for such a low advection rate.
According to Heaton (2008), these effects become important for Rez of the order of
a few hundreds in the concentric case, and might contribute to discrepancies in onset
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of instability. Assuming that non-modal effects are also important at high Rez for
the eccentric case, we leave the calculation of optimal perturbations as a perspective.
The double-vortex structure may result from nonlinear interactions between modes,
and fully nonlinear simulations, including end effects and inlet noise, would be very
helpful in understanding the formation of this pattern. More experimental data would
also be appreciated to ensure reproducibility of the observations.

Although the experiments of Coney & Mobbs (1969–70) suggest that instability is
triggered by noise at the inlet and amplified convectively, the effect of eccentricity
on absolute instabilities (Huerre & Monkewitz 1985, 1990) remains an open problem.
This aspect is currently being investigated and will be addressed in a future paper. A
weakly nonlinear study is also required to determine whether the bifurcation remains
supercritical over the whole parameter space, or if subcritical transition can occur.
Possible steps towards a better understanding of annular flows of drilling muds
include non-Newtonian effects and motion of the inner cylinder, as complex effects
are expected (Escudier et al. 2002; Feng & Fu 2007; Feng et al. 2007). To fully
document the linear stability properties of this flow, it would also be interesting to
investigate the connection with eccentric annular Poiseuille flow at high Rez, analysed
by Cotrell & Pearlstein (2004) and Cotrell et al. (2004) in the concentric case. At
high Rez, three families of modes of very different structure are expected to compete
(Merzari et al. 2008) and make the problem even more computationally challenging.

Appendix
This appendix contains, in non-dimensional form, the expression of some differential

operators using Wood (1957)’s modified bipolar coordinate system defined by
(2.4)–(2.6). As in § 2.2, the ‘stretched’ variable defined by ξ = (2ρ − α − 2)/α
(where α = β − 1) is used instead of ρ to transform the flow domain to −1 6 ξ 6 1.
Following DiPrima & Stuart (1972a), the infinitesimal length element ds in (ξ, φ, z) is
as follows:

ds2 = α2

4δ2J
dξ 2 + ρ2

δ2J
dφ2 + dz2, (A 1)

where J the Jacobian of the transformation (2.4), given by

J =
(
1+ 2γρ cosφ + γ 2ρ2

)2

(
1− γ 2

)2 . (A 2)

Introducing the inverse scale factors µξ and µφ associated to the coordinates ξ and φ,
respectively,

µξ = 2δ
√

J
α

, µφ = δ
√

J
ρ
, (A 3)

one can define the operators

Dξ ≡ µξ∂ξ , Dφ ≡ µφ∂φ, (A 4)

and factors

A≡ µφ − ∂ξµξ , B≡ ∂φµφ, C ≡ DξA− DφB. (A 5)
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Using Whitham (1963)’s general orthogonal coordinate formulas, the different terms in
(2.2)–(2.3) can be written (recall that ∂z ≡ 0 for the basic flow) as follows:

∇⊥p≡
[

Dξp
Dφp

]
, (A 6)

∇⊥ ·u⊥ ≡ (Dξ + A)u+ (Dφ − B)v, (A 7)

u⊥ ·∇⊥u⊥ ≡
(
uDξ + vDφ

)
u+ (Av + Bu)

[
−v
u

]
, (A 8)

u⊥ ·∇⊥w≡ (uDξ + vDφ

)
w, (A 9)

∇2
⊥u⊥ ≡

[
∇2
⊥u
∇2
⊥v

]
+
[

Cu− 2
(
ADφ + BDξ

)
v

Cv + 2
(
ADφ + BDξ

)
u

]
, (A 10)

where the scalar Laplacian has the expression

∇2
⊥ ≡ D2

ξ + D2
φ + (ADξ − BDφ). (A 11)

Finally, we give the expression for the rate-of-strain tensor in-plane components used
for force/torque calculations:





eξξ = Dξu− Bv,
eφφ = Dφv + Au,
eφξ = eξφ = 1

2(Dξv + Dφu+ Bu− Av).
(A 12)

R E F E R E N C E S
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The rotating-disk boundary layer is generally considered as an example of a flow
that displays a robust transition from laminar to turbulent régimes. By taking
into account disks of finite radius, Healey (J. Fluid Mech., vol. 663, 2010,
pp. 148–159) has predicted a stabilizing effect of the boundary condition, but
Imayama et al. (J. Fluid Mech., vol. 716, 2013, pp. 638–657) were unable to
confirm this prediction experimentally. Following these contradictory results, the
present experimental investigation revisits the rotating-disk boundary layer, without
any artificially imposed excitation, and studies in further detail the dynamics prevailing
in the region closely surrounding the edge of the disk, as well as the flow beyond
the disk. Azimuthal mean velocities and fluctuation amplitudes are recorded with small
steps in radial and axial directions for a wide range of disk sizes. An objective
criterion is used to define the onset of fluctuations consistently over a large data set.
Two distinct mechanisms for the onset of fluctuations are identified. In particular, it is
found that the flow over the edge of the disk acts as a strong source of fluctuations.
Explanations and suggestions for a possible reconciliation of previous studies are
given.

Key words: boundary layer stability, instability, transition to turbulence

1. Context

Ever since the pioneering work of von Kármán (1921), the boundary layer due to
a disk rotating in otherwise still fluid has served as the archetypical three-dimensional
boundary layer (Reed & Saric 1989; Saric, Reed & White 2003; Launder, Poncet &
Serre 2010). This flow is known for its robust laminar–turbulent transition occurring
at a radial position closely corresponding to the onset of local absolute instability
(Lingwood 1995, 1996).

Assuming a disk of infinite extent, previous studies have established the global
linear stability of the base boundary-layer flow (Garrett 2002; Davies & Carpenter
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FIGURE 1. Dependence of transition radius (Ret or Rt) on the size of the disk (Reedge or Redge):
(a) reproduced from Healey (2010), figure 7(a); (b) reproduced from Imayama et al. (2013),
figure 8. The numbers 1–6 refer to transition data from different experiments used in both
papers.

2003), while the nonlinear behaviour can be explained by a scenario involving
both local primary and secondary absolute instabilities (Pier 2003). Local absolute
instability is only a necessary but not a sufficient condition for global linear
instability (Huerre & Monkewitz 1990). In contrast, nonlinear global modes (aka
‘elephant’ global modes (Pier & Huerre 2001)) are triggered by a sharp front at
the transition from local convective to absolute instability; thus, the existence of
local absolute instability is a necessary and sufficient condition for global nonlinear
instability (Pier, Huerre & Chomaz 2001). It turns out that the rotating-disk flow
precisely falls into the category of linearly stable but nonlinearly unstable systems.

By considering spatially varying systems of finite extent, a recent theoretical study
by Healey (2010) has shown that the presence of a downstream boundary condition
may have a destabilizing effect on the base state and a stabilizing effect on the
nonlinear state. Using a simple nonlinear model, Healey (2010) has shown that
the front which appears at the onset of absolute instability when the boundary is
far from the front, moves slightly downstream when the boundary approaches the
front. For the rotating-disk configuration, the transition radius is thus expected to
increase when the size of the disk is reduced. This prediction may be supported by
plotting experimentally observed transition radii found in the literature; see figure
7(a) of Healey (2010), reproduced here as figure 1(a), where the numbers 1–6
refer to transition data from different experiments. However, this theory is unable
to quantitatively assess this stabilizing effect for the rotating disk since the nonlinear
interaction terms are difficult to quantify for this flow.

Following these theoretical predictions, the edge effects on rotating-disk transition
have been experimentally studied by Imayama, Alfredsson & Lingwood (2013).
Three different edge conditions and a range of edge Reynolds numbers have been
investigated. The authors concluded that no obvious variation in the transition location
due to the proximity to the edge of the disk had been observed in the study; see figure
8 of Imayama et al. (2013), reproduced here as figure 1(b). Note, however, that data
measured within 10 boundary-layer units from the edge were removed in that study
since the mean flow was seen to deviate from the Kármán similarity solution in this
region, and that the values of the transition radii already used by Healey (2010) were
reinterpreted in Imayama et al. (2013), using different definitions of onset.
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In view of these contradictory results, there is clearly a need for new measurements
covering a wide range of disk radii and for an unbiased criterion to define the
transition location consistently over a large data set. From a long history of rotating-
disk experiments (Theodorsen & Regier 1944; Smith 1947; Gregory, Stuart & Walker
1955; Chin & Litt 1972; Fedorov et al. 1976; Kobayashi, Kohama & Takamadate
1980; Malik, Wilkinson & Orszag 1981; Wilkinson & Malik 1985; Lingwood 1996;
Othman & Corke 2006; Imayama, Alfredsson & Lingwood 2012; Imayama et al.
2013; Siddiqui et al. 2013), the reported radii for onset of transition display significant
scatter. This scatter may be attributable to edge effects, but also to the use of
different definitions of onset radius. Although the rotating-disk boundary layer is
usually associated with a sharp laminar–turbulent transition, detailed measurements by
Siddiqui et al. (2013) have shown that there exists a significant intermediate nonlinear
régime, and that the extent of this intermediate region (of the order of 50 units) also
depends on disk-normal distance. This observation again calls for new measurements
and for the use of a consistent criterion.

Therefore the present investigation aims to make a contribution to our understanding
of the dynamics prevailing near the edge, as well as the flow behaviour beyond the
disk. By considering a wide range of non-dimensional disk sizes, the aim is to perform
measurements with small steps in radial and normal directions and to use an objective
criterion to gain further insight into the role played by the edge region in the global
dynamics.

2. Experimental setup and procedure

The experimental facility (see figure 2) used in the present investigation has been
improved following Siddiqui (2011)’s thesis and consists of a synthetic resin disk
of R?e = 250 mm radius that is rotated at constant angular velocity, up to 2000 r.p.m.
The disk surface topography was characterized using by a linear variable differential
transducer (LVDT) and adjustments were made so as to achieve best alignment with
a plane normal to the rotation axis. The residual out-of-flatness was less than 20 µm
(i.e. the entire disk surface is within two parallel planes that are no more than 20 µm
apart) and the azimuthal imbalance is less than 10 µm (i.e. below any fixed point
in the laboratory frame, the surface of the disk travels by less than 10 µm under
rotation). The edge of the disk is a sharp right angle (see figure 2b), and the disk
protrudes 23 mm above the aluminium plate that holds it. Since a typical boundary-
layer thickness is less than 0.5 mm, it is thus reasonable to assume that this setup is a
good approximation of a disk of finite radius and infinite thickness.

Following Siddiqui (2011), local velocity measurements are carried out via constant-
temperature hot-wire anemometry, which is particularly suitable for measuring flows
with fast fluctuations at fixed points in space. A single Dantec hot wire of type 55P01
is used, positioned parallel to the disk surface and aligned in the radial direction so
as to measure the azimuthal flow component. A high-precision computer-controlled
traversing mechanism is used for positioning the probe in the radial and axial
directions with precisions of 20 µm and 2 µm respectively. The accessible range of
radial positions is such that measurements up to 20 mm beyond the edge of the disk
are possible. In the axial direction, the hot wire can reach down to 9 mm below the
disk surface. Due to the size of the hot-wire probe (5 mm), it is safe to measure below
the disk surface only for R? > 253 mm.

Here, the constant boundary-layer thickness is proportional to δ = √ν/Ω , where ν
is the kinematic viscosity and Ω the disk rotation rate. Since all distances are non-
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(a) (b)

FIGURE 2. Experimental setup. (a) General view of disk and two-axes traversing mechanism
for computer-controlled measurements. (b) Hot-wire probe above the sharp edge of the disk,
protruding 23 mm out of the aluminium plate.

dimensionalized by δ, the non-dimensional disk-edge radius Re = R?e/δ may be varied
by adjusting the disk rotation rate. Then, velocity measurements are automatically
performed over specified ranges of non-dimensional radial and axial positions, R and
Z; at each position, data are typically acquired over 100 disk revolutions. Velocities are
always non-dimensionalized by the local disk velocity: V = V?/(RδΩ).

3. Results

Mean azimuthal velocity profiles are shown in figure 3 for Re = 400, 500, 550
and 600. Symbols correspond to measurements, while the solid curve indicates the
von Kármán similarity solution. These plots show that the azimuthal velocities depart
from the Kármán profile either when transition starts (R & 500) or when the edge is
approached (R & Re). Strong azimuthal shear prevails in the boundary layer over the
entire disk (R < Re and 0 < Z < 4). Beyond the disk edge (R > Re), the azimuthal
shear rapidly decays and the velocity profiles flatten out over the entire Z-range, above
and below the disk surface. Even when the flow is expected to remain laminar up
to the edge of the disk (e.g. Re = 400, figure 3a), the presence of the boundary is
felt about 10 boundary-layer units inboard. For this reason, Imayama et al. (2013)
removed all data measured close to the outer edge from their results and discussions.
While Healey (2010)’s theory assumes a point-like boundary condition and vanishing
fluctuations at this point, the cross-over from the boundary layer prevailing over the
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FIGURE 3. Mean azimuthal velocity profiles obtained with (a) Re = 400, (b) Re = 500,
(c) Re = 550, (d) Re = 600. The solid curve indicates the Kármán similarity profile and symbols
correspond to measurements at the specified non-dimensional radial positions.

disk surface to the low-velocity region beyond the disk clearly occurs in a more
gradual way. We believe therefore that an investigation of the edge effects should
precisely take into account this cross-over region.

The structure of this cross-over region is more clearly illustrated in figure 4, where
radial sections of the mean azimuthal velocity are plotted for different edge radii and
different normal distances. For R < Re and R < 500 all plots are almost horizontal
lines, which shows that they closely follow the Kármán similarity solution, whatever
the disk-normal distance Z. Beyond the edge, R > Re, the velocities depend much less
on Z and rapidly drop with increasing radial distance. It is only for larger edge radii
(Re > 550) that a significant departure from the Kármán solution occurs before the disk
edge is reached.

The amplitude of the fluctuations around the basic flow has been characterized
by Vrms, the root-mean-square (r.m.s.) value of the velocity. Figure 5 shows the radial
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FIGURE 4. Radial traverses of mean azimuthal velocity for a range of disk-normal distances Z
and edge radii Re.
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FIGURE 5. Radial evolution of Vrms at Z = 1 (a) and Z = 3 (b) for Re = 400, 450, 480, 500, 510,
520, 530, 540, 550, 560 and 600.

evolution of the fluctuating amplitude for a range of Re, measured at Z = 1 (figure 5a)
and Z = 3 (figure 5b). These plots show two distinct features. For Re . 500, the
boundary layer remains unperturbed over most of the disk surface and the r.m.s. values
rapidly increase near the edge of the disk to reach a maximum value near Re + 5
beyond which they decay again. For Re & 500, fluctuations start to rise as R = 500 is
approached and continue for the rest of the boundary layer.

These measurements clearly indicate that the near-edge region acts as a strong
source of noise, even at very low Re (i.e. at very low disk rotation rates). At a
given disk-normal distance Z, this sudden increase of fluctuations in the vicinity of
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FIGURE 6. Dependence of onset radius Rt on edge location Re for different values of
disk-normal distance Z.

the edge has a characteristic shape that hardly depends on the value of Re, provided
that Re < 500. For larger disks, Re > 500, a slow increase of fluctuation amplitude is
observed to start around R = 450 and to saturate around R = 550. This more gradual
development of fluctuation amplitude does not seem to be much affected by the value
of the edge radius. For much larger disks (see plots corresponding to Re = 600 in
figure 5), large-amplitude fluctuations are fully developed before the edge is reached,
and the r.m.s. values display only a weak peak at the edge before decaying beyond the
edge.

In order to characterize more precisely the influence of the edge, an objective
criterion for the onset of finite-amplitude fluctuations is required. Here we define Rt as
the radial position where the above r.m.s. values cross the value 0.05 (thin horizontal
lines in figure 5). Note that, due to the steep slope of the curves in figure 5, this
criterion yields onset values that are largely insensitive to the precise threshold value
used (here 0.05). Applying this criterion to the data acquired over a large number of
experimental runs yields the dependence of the onset radius Rt on the edge location Re

and disk-normal distance Z, shown in figure 6. These plots show that for all Re 6 500
and Z 6 5, onset always occurs at the disk edge: Rt = Re. For Re > 500, the onset
radius Rt no longer linearly increases with Re and eventually reaches a nearly constant
value. The onset radius moreover significantly depends on the disk-normal distance Z:
earliest onset is observed for Z ' 1.4, while it is delayed in the regions further above
the disk. Since for most of these curves the onset radius Rt slightly decreases with
increasing Re for Re > 500, this could be interpreted as pointing towards a weakly
stabilizing edge effect, as predicted by Healey (2010). However, considering only
curves derived from measurements at Z = 2.0 and Z = 1.8, which are nearly flat, one
could also argue that the stabilizing edge effect is negligible at these disk-normal
distances.
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4. Summary and discussion

In the present investigation, the near-edge region of the rotating-disk boundary layer
has been characterized in detail for a wide range of non-dimensional disk radii. Mean
azimuthal velocity measurements reveal how the cross-over from the boundary layer
prevailing over the disk surface to the low-velocity region beyond the disk occurs.

Detailed measurements of the spatial development of fluctuating amplitudes have
been carried out, using small steps in R and Z for a range of disk radii Re. The
onset radius Rt has then been obtained via automatic data processing, using the same
criterion consistently across a large data set. It has been found that for small disks, i.e.
Re < 500, onset always occurs at the disk edge: Rt = Re independently of Z. For large
disks, i.e. Re > 500, it is observed that the onset radius Rt depends weakly on Re and
also significantly on Z, and no stabilizing trend can be clearly established.

In view of these results, it seems that Healey (2010)’s theory cannot be confirmed
and also that any attempt to compare data obtained via different experiments and
criteria cannot be justified. Indeed, the present investigation has shown that the scatter
of Rt due to different values of Z is of the same order as the data given by Healey
(2010) or Imayama et al. (2013) (see figure 1).

Two distinct mechanisms have been identified for the onset of fluctuations:
Larger disks (typically Re > 500) display a gradual increase of fluctuating amplitude

for 450 < R < 550, which is mostly independent of disk size. This may be interpreted
as a self-sustained boundary-layer global mode (Pier 2003), triggered by absolute
instability near R= 500 and largely insensitive to edge effects.

Smaller disks (typically Re < 500) display a sharp increase of fluctuating amplitude
in the vicinity of the edge. This shows that, even at low rotation rates, the flow over
the edge of the disk is strongly unstable. The flow over the edge is a combination of
a radial wall jet (shooting over the edge) and an azimuthal shear layer that rapidly
decay with radial distance. We conjecture that this flow over the edge is locally
absolutely unstable, thus triggering another self-sustained global mode that cannot be
suppressed.

By masking any stabilization due to the zero-fluctuation outlet condition, this strong
source of fluctuations could provide an explanation for the inapplicability of the
theory (Healey 2010). A possible reconciliation between Healey (2010)’s theory and
Imayama et al. (2013)’s interpretation might be achieved if the theory could be
modified so as to model the downstream boundary condition as a source of random
noise rather than by vanishing fluctuating amplitude.

Further theoretical investigations are planned to obtain the base flow solutions
prevailing beyond the disk and their stability characteristics, in order to study the
possible existence of a self-sustained edge global mode and its competition with the
boundary-layer global mode.
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The effect of eccentricity on absolute instabilities (AI) in the Taylor–Couette system
with pressure-driven axial flow and fixed outer cylinder is investigated. Five modes
of instability are considered, characterized by a pseudo-angular order m, with here
|m| 6 2. These modes correspond to toroidal (m = 0) and helical structures (m 6= 0)
deformed by the eccentricity. Throughout the parameter range, the mode with the
largest absolute growth rate is always the Taylor-like vortex flow corresponding to
m= 0. Axial advection, characterized by a Reynolds number Rez, carries perturbations
downstream, and has a strong stabilizing effect on AI. On the other hand, the effect
of the eccentricity e is complex: increasing e generally delays AI, except for a
range of moderate eccentricites 0.3 . e . 0.6, where it favours AI for large enough
Rez. This striking behaviour is in contrast with temporal instability, always inhibited
by eccentricity, and where left-handed helical modes of increasing |m| dominate
for larger Rez. The instability mechanism of AI is clearly centrifugal, even for the
larger values of Rez considered, as indicated by an energy analysis. For large enough
Rez, critical modes localize in the wide gap for low e, but their energy distribution
is shifted towards the diverging section of the annulus for moderate e. For highly
eccentric geometries, AI are controlled by the minimal annular clearance, and the
critical modes are confined to the vicinity of the inner cylinder. Untangling the AI
properties of each m requires consideration of multiple pinch points.

Key words: absolute/convective instability, Taylor–Couette flow

1. Introduction

The flow between rotating cylinders has attracted attention since the end of the 19th
century, starting with the experiments of Couette (1888a,b) and Mallock (1888), and
the landmark work by Taylor (1923), who first predicted theoretically the threshold for
centrifugal instability. Taylor characterized centrifugal effects using a non-dimensional
number appropriate in the limit of small clearance, d= (b− a)� a, with a and b the
inner and outer cylinder radii (see figure 1). In this paper, a wide gap geometry with
radii ratio η=a/b=0.5 will be considered, and centrifugal effects will be conveniently
measured by an azimuthal Reynolds number ReΩ = aΩd/ν, with Ω the inner cylinder
rotation rate and ν the kinematic viscosity.

† Email address for correspondence: colin.leclercq@ec-lyon.fr
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W
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b

c

FIGURE 1. Eccentric annulus of radius ratio η= a/b= 0.5 and basic flow U=U⊥+Wez.

Adding axial flow to this system, one obtains a simple prototype for the
study of pattern formation in real open flows. The effect of axial advection
can also be measured by a Reynolds number Rez = Wd/ν, based on the mean
axial velocity W. First theoretical predictions of the absolute instability (AI)
threshold were obtained by Tsameret & Steinberg (1991a) with a criterion based
on a one-dimensional Ginzburg–Landau equation (with coefficients determined by
two-dimensional numerical simulations), and then by Babcock, Ahlers & Cannell
(1991), Babcock, Cannell & Ahlers (1992), using the full set of hydrodynamic
equations and a saddle-point criterion (Briggs 1964; Bers 1983) that will be
discussed in § 2.3. They showed that upon crossing the AI threshold, periodic
self-sustained vortices appear, in contrast with the irregular patterns emerging from
noise amplification in the convectively unstable régime. In these papers and subsequent
work (Tsameret & Steinberg 1991b; Babcock et al. 1992; Lücke & Recktenwald 1993;
Babcock, Ahlers & Cannell 1994; Swift, Babcock & Hohenberg 1994; Tsameret &
Steinberg 1994), effort was dedicated to identifying the noise sources (inlet noise
versus thermal noise) which sustain the convective instability (CI). These studies were
restricted to small axial Reynolds numbers Rez, typically below 4, and it was found
that the most unstable (fastest growing) perturbations were in the form of propagating
Taylor vortices. For higher values of axial advection, Takeuchi & Jankowski (1981)
and Ng & Turner (1982) had previously shown numerically (and also experimentally
for the former reference) that critical modes consisted of propagating helical vortices,
with helicity opposite that of the basic flow, and with azimuthal order m increasing
with Rez. However, the concept of AI was not widespread in fluid mechanics back
then, and these studies were restricted to CI.

Theoretical prediction of AI of helical modes was investigated only recently (Pinter,
Lücke & Hoffmann 2003; Altmeyer, Hoffmann & Lücke 2011). In these papers, the
authors studied the effect of axial through-flow on the spatio-temporal properties of
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toroidal and helical wavepackets with angular orders |m|6 2, for Rez 6 20. For |m|6 1,
it was shown that critical azimuthal Reynolds numbers ReΩ are higher for AI than
for CI, and that the difference between the two thresholds increases with Rez. For
|m| = 2 and a stationary outer cylinder, AI was found to occur in a closed region
of the Rez–ReΩ plane, considering only the saddle point originating at the critical
conditions for CI with Rez = 0 (detailed in § 2.4). However, the authors mentioned
other saddle points expected to destabilize these modes in other regions of parameter
space and which will be taken into account in the present article. More recent work
on AI in the Taylor–Couette–Poiseuille flow concerned the effect of radial flow at the
inner cylinder, representative of filtration devices (Martinand, Serre & Lueptow 2009).
In this analysis, it was shown that axisymmetric modes become absolutely unstable
for inward radial flow, while helical modes with helicity identical to that of the basic
flow dominate at high enough Rez, for outward radial flow.

When the two cylinder axes do not coincide, axisymmetry is broken and the
stability properties of the flow are modified. Eccentricity is generally measured
by the non-dimensional distance between the two cylinders e = c/d (see figure 1).
Adding eccentricity to the Taylor–Couette flow with axial advection, one obtains a
basic model for annular mud flows in oil-well drilling, or lubrication flows present in
high-speed journal bearings. In the first case, mud is injected in a rotating drillstring,
and flows back to the surface through the annular domain between the drillstring and
the rock face, with several engineering functions: carry the rock cuttings out, lubricate,
prevent inflow of formation gases and wellbore collapse, etc. (Escudier, Oliveira &
Pinho 2002; Guo & Liu 2011). For deep wells, the drillstring inevitably bends along
its axis, on a typical length scale much larger than the well diameter. As a result,
a parallel-flow assumption is reasonable, and the flow can be locally described
as a Taylor–Couette–Poiseuille flow between eccentric cylinders. In high-speed
turbomachinery, a similar configuration is found: oil is contained in eccentric journal
bearings for lubrication purposes, and a pressure gradient is imposed along the shaft
to evacuate damaging impurities (Sep 2008).

Aside from its fundamental interest, these industrial applications motivate the
present analysis. In both applications, transition to complex hydrodynamic régimes
would result in increased frictional losses, detrimental to the system efficiency. If the
basic flow advection is weak compared to the rotation rate, hydrodynamic resonance
may occur and the entire flow would bifurcate to an undesired self-sustained
oscillatory state. This specific behaviour, called absolute instability, is particularly
‘dangerous’, because it does not require a permanent forcing: once the instability
is triggered, it will propagate in both the downstream and upstream directions, and
amplify using energy from the basic flow. On the other hand, convective instabilities
correspond to wavepackets propagating only in the downstream direction: in the
absence of forcing, the system eventually relaxes to its initial state at any fixed
location, after perturbations have been ‘blown away’ from the source. The most
temporally amplified perturbations are given by a classical temporal stability analysis,
and such a study was recently carried out for this flow (Leclercq, Pier & Scott
2013). It was shown that the physics is essentially similar to the axisymmetric case
(Takeuchi & Jankowski 1981; Ng & Turner 1982), with propagating toroidal vortices
replaced by helical structures of increasing azimuthal complexity as Rez is increased.

Eccentricity deforms the critical modes, but does not introduce new instabilities
to the problem. The effect of eccentricity is stabilizing for all values of Rez, and
this result is interpreted as a consequence of the reduction of centrifugal effects in
the basic flow. Indeed, as eccentricity increases, the azimuthal flow rate decreases
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for a fixed inner cylinder rotation rate, resulting in weaker driving of the instability.
This is a consequence of the appearance of a recirculation region in the wide gap
which does not contribute to the net azimuthal flow rate. Outside this zone, in the
vicinity of the inner cylinder, the flow resembles an axisymmetric Taylor–Couette flow
with clearance scaling with the inner gap d(1 − e). The reduction of the ‘effective’
clearance ratio δ= d/a with eccentricity, or increase in ‘effective’ radius ratio η, also
explains stabilization; see DiPrima (1960) for the effect of η on the Taylor–Couette
flow. To date, it is, to the authors’ knowledge, the only available theoretical study of
eccentric Taylor–Couette–Poiseuille flow. The only known series of experiments were
performed by Coney & Mobbs (1969), Coney (1971), Younes (1972), Younes, Mobbs
& Coney (1972), Mobbs & Younes (1974), Coney & Atkinson (1978) and show good
agreement with our a posteriori predictions, despite small discrepancies attributed to
finite-length effects. For a brief review of other theoretical and experimental results
on eccentric Taylor–Couette flow on the one hand, and axisymmetric Taylor–Couette–
Poiseuille flow on the other hand, we refer to Leclercq et al. (2013).

The present paper extends this previous linear stability analysis by considering the
case of AI. In § 2, the linear stability framework is presented. The governing equations
and numerical methods are briefly described, and the main properties of the basic flow
and normal modes are recalled. In § 2.3, the methods used to investigate AI, based
on the Briggs (1964)–Bers (1983) pinching criterion, are described. In § 3, results are
presented for the five modes of instability with angular orders |m|6 2, which include
the fastest growing temporally unstable modes for Rez 6 50.

2. Linear stability framework
In the following, the geometry will be described using the ratio 0 < η = a/b < 1

between the inner and outer cylinder radii a and b (see figure 1), and the eccentricity
0 6 e = c/(b − a) < 1, based on the distance c between centres, divided by the
clearance d = b − a. The gap varies azimuthally between d(1 − e) and d(1 + e).
The radii ratio will be fixed at the value η = 0.5 throughout this paper. Rotation
and axial advection will be quantified using the two Reynolds numbers given in the
introduction: ReΩ = aΩd/ν and Rez =Wd/ν, with Ω the inner cylinder rotation rate,
W the basic-flow mean axial velocity and ν the kinematic viscosity.

The velocity u will be made non-dimensional with the rotation speed V ≡ aΩ . The
clearance d will be taken as the reference length scale L. Finally, the pressure p will
be in units of P ≡ ρV2, with ρ the density of the fluid. All equations and physical
quantities will be written in non-dimensional form, using V , L and P.

2.1. Basic flow
The velocity u can be decomposed into a component w parallel to the axis ez, and a
component u⊥= u−wez in a plane perpendicular to the axis. The axial flow is driven
by a pressure gradient G in the z-direction. Denoting the in-plane pressure gradient
as ∇⊥p=∇p−Gez, the incompressible Navier–Stokes equations read:

(∂t + u · ∇)
[

u⊥
w

]
= −

[∇⊥ p
G

]
+ Re−1

Ω ∇2

[
u⊥
w

]
,

∇ · u = 0,



 (2.1)

with impermeability and no-slip boundary conditions on the fixed outer cylinder and
on the inner cylinder, whose rotational velocity is 1. In-plane and axial derivatives
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r

FIGURE 2. Modified bipolar coordinate system (ξ , φ) fitting the eccentric annular domain.
Polar coordinates (r, θ) are centred on the inner cylinder, with θ = φ = 0 along the line
joining the cylinder axes.

can be separated, using convenient notation: u⊥ · ∇⊥ ≡ u · ∇−w∂z, ∇2
⊥≡∇2− ∂2

zz and
∇⊥ · u⊥ ≡ ∇ · u − ∂zw. Assuming an axially invariant flow, the problem is
two-dimensional and u⊥ becomes independent of w:

∂tu⊥ + u⊥ · ∇⊥u⊥ = −∇⊥ p+ Re−1
Ω ∇2

⊥u⊥,
∇⊥ · u⊥ = 0.

}
(2.2)

Basic flows Q≡ (U, P), denoted with capital letters, are defined as axially invariant,
steady solutions of (2.1). Such solutions are found by integrating forwards in time
(2.2) until convergence of U⊥ is attained, and then solving for the corresponding axial
velocity W, given by:

U⊥ · ∇⊥W =−G+ Re−1
Ω ∇2

⊥W. (2.3)

Equations are expressed using locally orthogonal, body-fitted coordinates (ξ , φ), with
−1 6 ξ 6 1 and 0 6 φ < 2π the pseudo-radial and pseudo-azimuthal coordinates
respectively (see figure 2). In this modified bipolar coordinate system, a Fourier–
Chebyshev pseudospectral projection method is implemented, with Nφ = 2Kφ + 1
Fourier modes, and Nξ Gauss–Lobatto collocation points. For more details on the
numerical procedure, the reader is referred to Leclercq et al. (2013).

For an axisymmetric flow, the basic in-plane motion results from diffusion of axial
vorticity from the rotating inner cylinder to the fixed outer cylinder. In cylindrical
coordinates (r, θ), it takes the well-known form U⊥ = (0, Ar + B/r), with A and B
two constants depending on the geometry. For low eccentricities, the result is quite
similar, as can be seen in figure 3(ai) . However, for higher eccentricities, a low-speed
recirculation region forms in the wide gap (figure 3aii). For the relatively high value
of ReΩ = 500 presented here, small recirculation can already be seen for e = 0.2,
whereas in Leclercq et al. (2013), figure 3, it was not present for ReΩ = 100 and
appeared around e≈ 0.3 for that lower value of ReΩ .

In the axisymmetric case, W is independent of U⊥, and the axial flow is very similar
to a parabolic Poiseuille flow, with small corrections due the annular geometry. As
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(bi)

(bii)

(ai)

(aii)

FIGURE 3. Basic flows for ReΩ = 500: (i) weak eccentricity e= 0.2, (ii) high eccentricity
e=0.7. (a) Contours of equispaced in-plane streamfunction with superimposed U⊥ profiles
at θ = 0, π/2, π, 3π/2 (polar angle with respect to the inner cylinder). (b) Equispaced
contours of W.

eccentricity is increased, W decreases in the small gap, because of viscous effects, and
most of the volume flux passes through the wide gap (see figure 3bii). Distortion also
occurs, due to coupling with U⊥, and the peak velocity is no longer in the symmetry
plane. For high rotation rates, the nonlinear interaction term U⊥ · ∇⊥W can locally
dominate the viscous term Re−1

Ω ∇2
⊥W, and there is significant transport of W by in-

plane components.

2.2. Normal modes
Let q′ ≡ q − Q be three-dimensional perturbations of small amplitude superimposed
onto the two-dimensional basic flow, and satisfying the linearized Navier–Stokes
equations with no-slip boundary conditions. Because of temporal and axial invariance
of the basic flow, perturbations are sought in the form of normal modes

q′ = q̃(ξ , φ) exp i(kz−ωt)+ c.c., (2.4)

where c.c. denotes the complex conjugate. In a general framework, k is the complex
axial wavenumber and ω is the complex frequency. As usual, ωr ≡ Re(ω) is the
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temporal frequency and ωi ≡ Im(ω) is the temporal growth rate. Equivalently,
kr ≡ Re(k) is the wavenumber of the mode, and −ki ≡−Im(k) is the spatial growth
rate. Injecting the modal form (2.4) into the linearized Navier–Stokes equations
with boundary conditions, one obtains a problem of the form (A − iωB)q̃ = 0,
where (A , B) are two linear operators, with A depending on k. Expressions for
A and B are given in Leclercq et al. (2013), in the modified bipolar coordinate
system. The wavenumbers k and frequencies ω satisfying this problem for non-zero
q̃ define the dispersion relation D(k, ω) = 0. Using the same Fourier–Chebyshev
decomposition as for the basic flow, the linear problem is converted into a generalized
eigenvalue problem for ω and q̃ that can be solved numerically, using LAPACK
(www.netlib.org/lapack) or ARPACK++ (Lehoucq, Sorensen & Yang 1997) routines.
For more information on the numerical procedure, the reader is referred to Leclercq
et al. (2013).

In that previous study, a temporal stability analysis was carried out to predict the
fastest growing perturbations with k real and ω complex. It was found that among
the large set of temporal modes ω(k), the most unstable ones were in the form
of deformed toroidal vortices for low Rez, or complex helical structure for higher
Rez. The modes were labelled according to a pseudo-azimuthal integer wavenumber
m, or angular order. The labelling was done in accordance with the axisymmetric
case, where normal modes can be written as q′ = q̃(r) exp i(kz+mθ −ωt) in polar
coordinates (r, θ) (see figure 2). Restricting attention to positive k, because of
symmetry arguments to be discussed in the next paragraph, positive values of m (resp.
negative) correspond to helical structures winding clockwise (resp. counter-clockwise)
around the inner cylinder, and were called left-helical (resp. right-helical), or LH|m|
(resp. RH|m|) modes. The case m = 0 corresponds to the classical toroidal Taylor
vortex flow (TV). By following these modes as eccentricity is continuously varied,
one obtains the corresponding pseudo-angular order m for e 6= 0. Figure 4 shows the
structure of modes m=−2, . . . , 2 for the classical Taylor–Couette flow.

Note that the symmetry Π0 ≡ (m, ω, w)→ (−m, −ω?, −w) (with ? denoting the
complex conjugate) between RH and LH in figure 4 is broken when axial flow
is added, or when k is complex. Indeed, by taking the complex conjugate of the
axisymmetric modal form, the general symmetry Π1 ≡ (k, m, ω)→ (−k?, −m, −ω?)
appears, also valid for e 6= 0. By considering the mirror image of the system (z→−z),
one obtains another symmetry: Π2 ≡ (Rez, k, w)→ (−Rez, −k, −w). Combining Π1
and Π2, one gets

Π3 ≡ (Rez, k,m, ω,w)→ (−Rez, k?,−m,−ω?,−w). (2.5)

Setting Rez to zero and k real in Π3, one recovers Π0. In the general case, because of
Π3, one can choose to study only m > 0, or only Rez > 0, without loss of generality.
Π1 also indicates that it is possible to restrict computations to kr > 0.

2.3. Absolute instability threshold
Absolute instability occurs when the impulse response wavepacket is temporally
growing at any fixed axial position z. The asymptotic dynamics of the wavepacket is
dominated by the normal mode which satisfies the pinching criterion of Briggs
(1964)–Bers (1983) and has the largest temporal growth rate. This mode has
zero group velocity ∂ω/∂k(k0)= 0 for the complex absolute wavenumber k0. This
condition indicates the presence of a saddle point of ω(k) at k0. This saddle point is
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RH2 RH1 TV LH1 LH2
–2 –1 0 1 2

(a) (b) (c) (d) (e)

FIGURE 4. Structure (isovalues of axial velocity) of the five modes of interest m =
−2, . . . , 2, from left to right. For this example, e = 0, ReΩ = 68.19, Rez = 0 and k =
3.16, corresponding to the critical conditions for temporal instability of the axisymmetric
Taylor–Couette flow (see DiPrima & Swinney 1985 for a review).

associated to a branch-point singularity at the complex absolute frequency ω0=ω(k0).
Additionally, the saddle point must comply with causality and result from the collision
between downstream- and upstream-propagating spatial branches, respectively denoted
k+(ω) and k−(ω). The flow is absolutely unstable if and only if the most unstable
pinch point has positive absolute growth rate ω0,i. Otherwise, the flow is either
stable or convectively unstable. In the latter case, the wavepacket grows while being
advected away from the impulse location so the system eventually relaxes to its initial
state at any axial position. For a comprehensive review of these concepts, the reader
is referred to Huerre & Monkewitz (1990), Huerre (2000), Chomaz (2005).

The border of the absolutely unstable domain is determined by following all
the neutrally stable saddle points in parameter space. This is done by performing
Newton–Raphson iterations at each point, varying simultaneously kr, ki and ReΩ
until |ωi|, |Re(∂ω/∂k)| and |Im(∂ω/∂k)| are all below 10−6. Estimated values for
the independent variables are obtained by linear extrapolation with respect to the
parameter being varied, e.g. e, ReΩ or Rez. For |m| = 2, critical curves display folds,
and it is necessary to implement a continuation scheme based on an arclength variable
(Keller 1977).

However, not all saddle points are valid and only the ones satisfying the pinching
criterion are relevant. In order to discard invalid saddle points, extensive tests
are carried out, where the two spatial branches k(ω) coalescing at k0 are tracked
numerically as ωi is increased from ω0. The saddle point is a genuine pinch only
when the spatial branches separate into the upper and lower half-k-planes for large
enough ωi. Indeed, causality demands that this be true for ωi > ωi,max, where ωi,max

is the maximum temporal growth rate for real k. Spatial branches are obtained by
numerically inverting the relation ω(k) with a Newton–Raphson iteration.
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FIGURE 5. ‘Island’ of AI in the axisymmetric case, for mode LH2. Line: present
calculation; dots: figure 8(b) in Altmeyer et al. (2011).

2.4. Validation
To validate the numerical procedure, critical curves in the axisymmetric case were
computed and compared with literature results. For m= 0 and 1, Pinter et al. (2003)
provide the coefficients of fourth-order polynomials fm fitting their data in the range
−20 6 Rez 6 20, with step δRez = 1. The same procedure was applied here, and our
calculated values g̃m at the same points were fitted by polynomials gm. To compare
our results, the residual

∑20
−20 | fm(Rez)− gm(Rez)|2 between the two fits was divided by

the residual
∑20
−20 |gm(Rez)− g̃m(Rez)|2 between our fit and our calculated values. For

m= 0 and 1, this ratio is respectively 1.16× 10−2 and 1.10× 10−2, showing agreement
with the Pinter et al.’s calculations. For m=2, only graphical data were available, and
figure 5 shows excellent agreement with the ‘island’ of instability found by Altmeyer
et al. (2011) in the ReΩ–Rez plane.

In their analysis, those authors considered only the saddle points originating at
the real critical wavenumber kc of temporal instability with Rez = 0, as will be
explained now. For ReΩ above the temporal instability threshold ReΩ,c, the medium
is unstable, and the growing part of the wavepacket is bounded by two spatio-temporal
rays referred to as leading and trailing fronts, respectively z/t = V+ and z/t = V−
with V− < V+. The fronts are defined by the conditions ∂ω/∂k(k±∗ ) = V± and
ωi(k±∗ ) − V±k±∗,i = 0 (see Huerre 2000 for more details). At critical conditions for
temporal instability, ReΩ = ReΩ,c and k = kc, the constraint ∂ωi/∂k = 0 for k real
defines two degenerate fronts propagating at the group velocity Vmax of the most
rapidly amplified temporal mode: V± = Vmax = ∂ω/∂k(kc). For ReΩ just above ReΩ,c,
V+ 6= V− so the fronts are properly defined and the now complex wavenumbers k±∗
are close to kc so V± ≈ Vmax. In general, Vmax > 0, so the wavepacket is advected
downstream and the flow is only convectively unstable. But when ReΩ is further
increased, one front may eventually change propagation direction, which translates
into the saddle-point condition ∂ω/∂k = 0 defining the AI threshold. In Altmeyer
et al. (2011), only the two fronts bounding the convectively unstable wavepacket at
ReΩ slightly above ReΩ,c and Rez = 0 were considered. These specific fronts were
followed as ReΩ and Rez were varied, and the AI boundary in figure 5 corresponds
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m 0 1 −1 2 −2
e 0.3 0.7 0.3 0.7 0.3 0.7 0.45 0.7 0.45 0.7

16× 8 402.59 283.22 475.66 285.22 431.88 300.21 465.54 305.73 472.77 347.83
16× 16 402.59 283.32 475.66 285.70 431.88 300.22 465.54 306.79 472.77 347.90
32× 32 402.59 283.33 475.65 285.71 431.88 300.29 465.52 306.80 472.46 348.34

TABLE 1. Critical azimuthal Reynolds number ReΩ for Rez = 50 and different resolutions
Nξ ×Kφ .

to points where one of the fronts was stationary. Saddle points corresponding to
other stationary fronts were ignored in figure 5, even though the authors mentioned
the existence of more. Note that validation for m > 0 is sufficient because of the
Π3-symmetry (2.5).

In this study, only values of |m| 6 2 will be considered and a small number of
Fourier modes Kφ = 8 is deemed satisfactory, as can be seen in table 1. A higher
number of collocation points Nξ = 16 is however required for accuracy at large ReΩ .

3. Results
A parametric study has been performed within the ranges e 6 0.7, 0 6 Rez 6 60

and 0 6 ReΩ 6 500. Within these bounds, modes m = 0, 1, 2 are always the most
temporally unstable, except for a small range e6 0.3, 506Rez 6 60, where m= 3 has
the largest temporal growth rate (Leclercq et al. 2013). It will be assumed that the
absolute growth rate of these modes will be higher than that of |m|>3. However, right
helical modes RH1 and RH2 will be retained in the analysis, as RH are known to
be more absolutely unstable than TV and LH in some cases (e.g. high-Rez, outward
radial flow, e = 0, cf. Martinand et al. 2009). Because we are considering both
positive and negative m, it is unnecessary to consider negative Rez, because of the
Π3-symmetry (2.5).

3.1. Reference saddle point
The bifurcation to (pseudo-)toroidal vortices without axial flow is a steady one,
ωr(m= 0)= 0, so CI and AI thresholds, respectively denoted here ReΩ,c and ReΩ,c−a,
coincide in this case. For modes m 6= 0, CI occurs through Hopf bifurcations at
Rez = 0, so AI only occurs above a higher threshold: ReΩ,c−a > ReΩ,c. For these
modes, ReΩ,c−a(Rez = 0) is found by locating the saddle point with k0 closest to
kc, the real critical wavenumber of CI. This neutral saddle point corresponds to a
stationary front of the impulse response wavepacket for ReΩ just above ReΩ,c, as
explained in detail in § 2.4. For m = 1, 2, the stationary front is the trailing one:
V− = 0, k0,i < 0. For negative m, k0,i > 0 because of the Π3-symmetry (2.5), and
the stationary front is the leading one: V+ = 0. The present subsection defines the
reference saddle point for each m, obtained for Rez = 0 and e = 0. These saddle
points are systematically followed in parameter space to define critical curves of AI.
However, as will be seen in the next subsection, other saddle points are also relevant
to the spatio-temporal dynamics and must be considered.

3.2. Multiplicity of saddle points
Pinch points corresponding to other stationary fronts can be identified using the
geometric method described in § 3.2 of Juniper (2006). The same approach is used
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FIGURE 6. Contours of temporal growth rate at criticality for m= 0, e= 0.3075 and Rez=
60 (ReΩ = 472.24). Saddles are indicated by white circles. The thick line indicates the
steepest descent path associated with the pinch points s1 and s2. The white cross indicates
a branch point ∂k/∂ω= 0 from which originates a branch cut (vertical dotted line). The
temporal growth rate of s2 is larger than that of s1: the pinch s2 dominates the impulse
response.

here to study the dispersion relation of mode m = 0 in the presence of strong axial
advection, Rez = 60, for three eccentricities around e = 0.3. Figure 6, similar to
figure 2 in Juniper (2006), shows isocontours of ωi(k) for complex values of k. The
thick black line indicates a contour in the complex k-plane including the steepest
descent paths of all genuine pinch points, here s1 and s2 (s3 and s4 are ‘spurious’
k−/k− saddle points). The impulse response can be obtained at any time using a
classical inverse Laplace transform formula (see Huerre 2000 for instance), which is
easily evaluated at large time using this integration contour. The asymptotic response
is indeed dominated by the pinch point of largest temporal growth rate, which here
is s2. With this geometrical approach, genuine pinch points and invalid saddle points
are easily identified.

If the eccentricity is varied by a small amount, the nature of the saddle points may
change: valid saddle points may become invalid and vice versa. This is illustrated in
figure 7: in case (b), s1 and s2 are the two pinch points, but in case (a), only s1 is a
pinch, and in case (c), s1, s2 and s3 are all three valid. Since the growth rate of each
saddle point also varies with the control parameters, the dominant pinch may either
be s1, s2 or s3, and a careful analysis is required when parameters are varied.

Maps similar to figure 6 are drawn for each value of m, and a large number of
saddle points are identified each time. Saddle points with growth rate close to the
reference-saddle-point’s are systematically followed in parameter space. Over the
whole range of parameters, three different ‘pinch points’ are found to be relevant
for TV, two for LH1, LH2 and RH2, but surprisingly, just one for RH1, despite
numerous candidate saddle points.
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FIGURE 7. Zoom of the bottom-left corner of figure 6 for the same value of Rez, three
eccentricities around e≈ 0.3 and their associated critical ReΩ : (a) e= 0.285,ReΩ = 471.65,
s1 is the dominating pinch; (b) zoom of figure 6, s2 dominates; (c) e= 0.33,ReΩ = 468.00,
s3 dominates.

3.3. Critical azimuthal Reynolds number
In figure 8, the critical azimuthal Reynolds number is represented as a function of
eccentricity, for Rez= 0, 10, . . . , 60. We start by describing the curves in terms of m.
Solid lines correspond to m > 0, and dotted lines are for m< 0. Changes of critical
saddle point are indicated with a filled (resp. open) circle for m > 0 (resp. m < 0).
The most important result is that for any value of e and Rez, m= 0 always has the
lowest critical ReΩ , followed by |m| = 1, and finally |m| = 2. This observation gives
credence to the assumption that modes with |m| > 3 can be ignored in the analysis.
Curves in figures 8(b) and 8(c) also prove the importance of considering both positive
and negative m, as LH are not always more absolutely unstable than RH. Indeed, for
low eccentricities, RH1 is slightly more unstable than LH1, but the converse is true for
high eccentricities. The dynamics is even more subtle for |m|=2, as LH2 are generally
more unstable than RH2, except for a small range of eccentricities that varies with
Rez.

The effect of axial advection is to stabilize all the modes. For high enough Rez, the
critical ReΩ seems to increase almost linearly with Rez. The rate of increase is much
stronger for low eccentricities than for high eccentricities, regardless of the value of m,
as already mentioned. Critical ReΩ are typically one order of magnitude higher than
Rez, which means that the inner cylinder must be rotated much faster than the mean
axial velocity to have self-sustained oscillations. Indeed, axial flow prevents AI by
carrying perturbations downstream while rotation amplifies them.

The effect of eccentricity is more complex than that of Rez. For low eccentricities,
ReΩ increases slowly for m= 0, 1, but decreases for all other modes. For high enough
e, all the curves have the same shape: ReΩ decreases before reaching a minimum and
then increases again beyond this minimum. TV and LH1 display another similarity:
they switch critical saddle point between 0.2 6 e 6 0.4, for high enough Rez. This
change of saddle point coincides with the change in sign of the slope: critical ReΩ
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FIGURE 8. Critical azimuthal Reynolds number ReΩ versus eccentricity e for (a) m= 0,
(b) |m| = 1 and (c) |m| = 2. Curves are drawn for Rez = 0, 10, . . . , 60. Solid lines are for
m > 0, and dashed lines for m< 0. Filled/open dots indicate a change of saddle point.

increases with e for the first saddle point, but decreases for the second one. As was
already mentioned in § 3.2, TV even changes pinch point twice for Rez = 60. On
the other hand, the critical curves for RH1 are smooth, because they are obtained
by continuously following a single saddle point. Finally, two saddle points define the
critical curves of LH2 and RH2. For low values of Rez and e, the AI threshold is quite
complex, and the curves display folds. Folds in the critical curves mean that there
are finite ranges of AI in parameter space, surrounded by CI. This unusual behaviour
has already been pointed out by Altmeyer et al. (2011) in the concentric case, but it
seems important here to underline the fact that for high enough ReΩ , all the modes
eventually become absolutely unstable, regardless of any ‘island’ of AI occurring at
lower ReΩ (cf. figure 5).
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FIGURE 9. (a) Absolute wavenumber k0,r, (b) spatial growth rate −k0,i and (c) frequency
ω0,r for m = 0 at critical conditions, versus eccentricity e. Curves are given for Rez =
0, 10, . . . , 60.

3.4. Critical absolute wavenumber k0,r

Figure 9 shows the evolution of the absolute wavenumber k0,r, spatial growth rate −k0,i
and frequency ω0,r associated with the dominant mode m = 0, at critical conditions.
As before, curves are plotted as functions of e, for Rez = 0, 10, . . . , 60. The absolute
wavenumber k0,r (figure 9a) evolves in different ways below and above e≈ 0.3. Below
e ≈ 0.3, critical modes have longer wavelengths as Rez increases, spanning up to 6
times the clearance for Rez= 60 and e≈ 0.3. When e is high enough, the trend is the
opposite, and critical modes have shorter wavelengths as Rez increases. Below e ≈
0.3, k0,r is almost constant, or slightly decreasing with e, whereas above e ≈ 0.3, it
is clearly increasing with e. For large enough e, the critical wavelength seems to be
controlled by the smaller clearance d(1− e). Small discontinuities in k0,r around e≈
0.3 indicate a change of critical saddle point.
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Comments on the curves obtained for other m, although not displayed here for
clarity, can be made. First, curves of k0,r for LH1 are very similar to those of TV,
except that LH1 only changes saddle point once for Rez= 60 instead of twice for TV.
Ignoring the change of saddle point, they are also qualitatively similar to those of RH1.
For all m, k0,r always increases with e for high enough eccentricities, showing that all
modes scale with the small gap at critical conditions. For |m| = 2, large values of k0,r

up to 8 and more are obtained for low eccentricites as well, provided Rez is high
enough. This behaviour is not found for other modes, where k0,r is always between 1
and 3.5 when e . 0.3. For LH2 and RH2, a large discontinuity of axial wavenumber
is observed upon switching saddle point. For example, k0,r of LH2 varies from ∼7.5
to ∼3.5 for Rez = 60 and e≈ 0.6.

3.5. Critical absolute spatial growth rate −k0,i

The absolute spatial growth rate −k0,i (figure 9b) measures the ‘steepness’ of the
stationary front of the impulse response wavepacket. For e . 0.3, it is slightly
increasing with e. It varies quickly for Rez . 20, and then slowly varies in the range
2.5.−k0,i . 4 for higher Rez. For e& 0.3, −k0,i increases with e, reaches a maximum
value, and then decreases again. For high enough e, −k0,i increases steadily with Rez.

Similar trends are noticed for LH1 and RH1, with comparable ranges of values. For
LH2 and RH2 however, the curves are quite different. For low eccentricities, −k0,i

increases significantly with Rez, whereas it is almost constant for other m. Therefore,
extreme front steepness occurs for LH2 at low e, with −k0,i > 12 for Rez = 60.

For RH1 and RH2 at low Rez, −k0,i can be negative over the whole range of
eccentricities. Physically, this means that the stationary front is the leading one in
this case V+ = 0 (cf. section § 2.4), and that the most temporally unstable RH wave
has a negative group velocity.

Finally, a common feature of all m is that −k0,i has a maximum as a function
of e.

3.6. Critical absolute frequency ω0,r

The absolute frequency ω0,r (figure 9c) is given here for reference. After nonlinear
saturation of the instability, self-sustained oscillations with frequency close to ω0,r are
expected for a supercritical transition. Therefore, the values of ω0,r can be used as a
good estimate of the hydrodynamic resonance frequency of the flow, and may be of
interest for engineering applications. The trends of the curves are very similar to those
obtained for the spatial growth rate. The frequency range is shifted towards higher
values as m increases. For RH1 and RH2, ω0,r can be negative (always the case for
RH2), indicating that the absolute phase speed c0 ≡ ω0,r/k0,r of the mode is negative
in this case. Finally, discontinuities in the absolute frequency occur for all modes but
RH1, because of changes in critical saddle point. Discontinuities are not clearly visible
for m = 0 and the change of saddle point is ‘smooth’, as will be discussed later in
§ 4.3.

3.7. Absolute temporal growth rate ω0,i maps
Critical curves in § 3.3 indicate the AI domain for each m. However, they do not
indicate which mode will be the most absolutely unstable if ReΩ is above two or
more thresholds. Indeed, the mode which bifurcates first as ReΩ is increased does not
necessarily have the highest absolute growth rate ω0,i for larger driving. Figure 10
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represents isocontours of ω0,i in the ReΩ–Rez plane for m= 0, 1, 2, and e= 0, 0.2, 0.7.
Curves for m=−1,−2 can be recovered upon applying the Π3-symmetry (2.5).

The first conclusion is that m= 0 remains the most unstable mode over the whole
range of parameters. However, for e = 0.7, isocontours of m = 1 are very close to
those for m= 0, and one may expect LH1 to become more absolutely unstable than
TV for larger eccentricities and large Rez.

Isocontours of ω0,i for m= 1 and m=−1 (using Π3-symmetry) are generally close.
For low eccentricity, RH1 is always more unstable than LH1, but for high eccentricity,
the converse is true. For a moderate eccentricity of e ≈ 0.5 (not shown here), the
dominant mode depends on the specific values of ReΩ and Rez.

For m = 1, 2, some isocontours have discontinuous slopes, as a consequence of
a change of dominant saddle point. In figure 10(aiii), the ‘island’ of instability
previously presented in figure 5 is shown to be connected to a ‘continent’, for higher
values of ReΩ , via a change of critical saddle point. Indeed, in their analysis of
m = 2 in the axisymmetric case, Altmeyer et al. (2011) restricted their analysis to
the reference saddle point defined in § 3.1, even though the authors mentioned the
existence of other saddle points. Figure 10(aiii) gives the complete AI boundary for
this case. For higher eccentricities, the ‘continent’ of instability absorbs the ‘island’,
and for e= 0.7, the saddle point associated with the ‘island’ is always sub-dominant.
When considering the saddle point associated with the ‘continent’, LH2 is generally
more unstable than RH2. On the other hand, for low e and very low Rez, RH2
can be more unstable than LH2 because of the ‘island’ of instability. For moderate
eccentricities, the ordering depends on the specific values of ReΩ and Rez.

4. Discussion
In this section, we study the critical modes and the production of perturbation

kinetic energy. We discuss the results and the instability mechanism in the light of
these elements.

4.1. Critical modes
In figure 11, we examine the spatial distribution of the mode m = 0 at critical
conditions for Rez = 60 and three representative eccentricities: e = 0.2, 0.4, 0.7.
The three-dimensional distribution of axial velocity is shown, together with the
corresponding time-averaged distribution of perturbation kinetic energy E = 1

2(‖ũ⊥‖2+
|w̃|2)/2 (the exp[−kiz] dependence of the mode amplitude is omitted).

Consider the polar angle θ of the maximum of energy, with respect to the inner
cylinder centre, indicated in figure 2. For low eccentricities or low Rez, the mode is
localized in the wide gap, at positive θ . However, for larger e or Rez, this maximum is
shifted upstream to the region −90◦6 θ 6 0◦. For e= 0.7, the mode is concentrated in
the vicinity of the inner cylinder, on the wide gap side, but has a radial extent scaling
with the small gap. When e increases for Rez = 60, the ratio between the maximum,
and the average value increases from less than 2 for e= 0 to almost 14 for e= 0.7,
indicating confinement of the mode into a smaller region of the annulus. Finally, the
only contribution of ũ⊥ to E accounts for 65 % to 85 % of the total perturbation
energy when e increases from 0 to 0.7.

Similar behaviour is found for LH1 at Rez = 60. For RH1 however, the energy is
less tightly concentrated. The maximum of E still occurs at negative angles, but does
not go beyond −45◦ in this case. It is concluded that the appearance of the peak of
perturbation energy at large negative angles is associated with the change of saddle
point occurring for both TV and LH1.
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FIGURE 11. Critical mode m = 0 for Rez = 60: (a) e = 0.2, ReΩ = 465.82, (b) e = 0.4,
ReΩ = 432.74, (c) e = 0.7, ReΩ = 314.16. (i) Distribution of axial perturbation velocity
Re(w̃). Dark (resp. light) grey is for positive (resp. negative) values. (ii) Distribution of
perturbation kinetic energy E = 1

2 (‖ũ⊥‖2 + |w̃|2). Dark grey indicates high values, and
isocontours are equispaced.

Surprisingly, the critical modes of AI and CI peak in completely different regions of
the annulus for moderate eccentricities and high Rez. In comparison (cf. Leclercq et al.
2013), the maximum energy of the critical mode of CI for e= 0.5 is always localized
at large positive angles. No direct comparison should be made with AI because critical
modes of CI are obtained for different threshold values of ReΩ . It is nonetheless
interesting to observe that modes can be localized at either positive or negative polar
angles depending on the situation.

Finally, we enumerate characteristics common to all m. First, in-plane motion
accounts for the larger contribution to the total perturbation kinetic energy of all m
for Rez = 60. Also, as e approaches 0.7 for Rez = 60, all m tend to have similar
distributions of energy, with strong localization close to the inner cylinder, over
a radial extent scaling with the small gap. In addition, we recall that the critical
wavenumber of all modes takes on large values k0,r ∼ 6.5–8 when e = 0.7 and
Rez = 60. These observations indicate that for high eccentricities, the critical modes
for all m scale with the small gap.

4.2. Production of perturbation kinetic energy
To further investigate the instability mechanism, the production of perturbation kinetic
energy is calculated. In the well-known Reynolds–Orr equation, the local rate of
production of E is given by −u′ · (u′ · ∇U). Averaging in time and separating
velocities into in-plane and axial components, one can define two contributions



Absolute instabilities in eccentric Taylor–Couette–Poiseuille flow 561
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FIGURE 12. Distribution of kinetic energy production for m= 0 and Rez = 60, at critical
conditions. (i) P⊥ and (ii) Pz. (a) e = 0.2, ReΩ = 465.82, (b) e = 0.4, ReΩ = 432.74,
(c) e= 0.7, ReΩ = 314.16. Dark grey indicates large contributions and white corresponds
to zero or negative contribution. Isocontours are equispaced.

(the spatial growth of the mode amplitude along z is ignored again)

P⊥ =− 1
2 Re

{
ũ?⊥ · (ũ⊥ · ∇⊥U⊥)

}
and Pz =− 1

2 Re {w̃?(ũ⊥ · ∇⊥W)} , (4.1)

corresponding to the work of the Reynolds stresses against the in-plane and axial shear
respectively. Expressions for the nonlinear terms in the modified bipolar coordinate
system are given in Leclercq et al. (2013). Because the basic flow is axially invariant,
these two terms are the only contributions to the production of E .

Figure 12 represents the distribution of P⊥ and Pz for m = 0 and Rez = 60, at
e= 0.2, 0.4, 0.7, as in figure 11. Only positive contributions are shown in grey shades,
as negative contributions inhibit temporal growth. Distributions of P⊥ and E look
very similar: P⊥ is maximum in the wide gap for low e, then at negative polar angles
for moderate e, then close to the inner cylinder on the wide gap side for e close to 1.
The dominant contribution to P⊥ comes from the Reynolds stress term involving the
pseudo-radial derivative of the azimuthal velocity V . The same calculation of P⊥ and
Pz has been performed for the critical mode of CI at Rez = 60 and e= 0.5 (m= 2).
P⊥ was also found to account for most of the kinetic energy production (81 %), but
the peak was located at a positive polar angle of 92◦.

Distributions of Pz show larger contributions near the walls, where ‖∇⊥W‖ is
larger. As eccentricity increases, production of kinetic energy close to the outer
cylinder decreases, as the mode is concentrated in the vicinity of the inner cylinder.
For e= 0.7, Pz peaks almost in the same region as P⊥ and E , namely close to the
inner cylinder in the wide gap.

Integration of P⊥ and Pz over the annular domain for Rez = 60 indicates that
in-plane shear dominates the production of kinetic energy, P⊥ always accounting
for more than 85 % of the total amount, and even more than 97 % for e = 0.7.
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The dominant contribution comes from the term involving pseudo-radial variations of
pseudo-azimuthal velocity, characteristic of a centrifugal instability.

4.3. Instability mechanism
The striking destabilization occurring at moderate eccentricities remains difficult to
explain even after examining the basic flow, the critical mode and the production of
kinetic energy. The transition from a stabilizing to a destabilizing effect of eccentricity
occurs around 0.2 6 e 6 0.4 for both TV and LH1, through a change of critical
saddle point when Rez is large enough. The recirculation region appears for e ≈ 0.2
for ReΩ ≈ 500 so it seems that the change of behaviour occurs after the recirculation
zone has reached a critical size. The basic flow is then significantly different from
a classical Couette flow. Indeed, while energy of the mode mostly localizes in the
vicinity of the inner cylinder, it also partially spans over the recirculation region for
moderate eccentricities (cf. figure 11b). Surprisingly, a region of the flow located at
negative polar angles seems to drive AI for moderate eccentricities, whereas kinetic
energy production always peaks at positive angles for CI at criticality. Arguments
based on local stability of the flow, however tempting in a quest for explanation,
should be avoided here because of strong non-parallelism of the basic flow in
the pseudo-azimuthal direction. Indeed, assuming the flow to be locally parallel
in φ leads to completely wrong predictions of instability thresholds of eccentric
Taylor–Couette flow (DiPrima 1963; Ritchie 1968). The most temporally unstable
velocity profile, theoretically located at φ= θ = 0◦, does not coincide with the location
of maximum vortex activity found in the experiments (Vohr 1968). On the other hand,
global analyses yield good results in this geometry (DiPrima & Stuart 1972, 1975;
Eagles, Stuart & DiPrima 1978), showing the limits of the local approach. Therefore,
localization of the modes and kinetic energy production at moderate eccentricities
should be regarded as a global property of the entire flow field.

The consecutive switchovers of dominant saddle point for e ≈ 0.3 and Rez = 60
occur very near collisions of the distinct pinches into third-order saddle points (Davies
1989) or ‘super branch points’ (Healey 2004), satisfying simultaneously ∂ω/∂k = 0,
∂2ω/∂k2 = 0 and ωi = 0. Indeed, s1 and s2 collide while being neutral for e= 0.2839,
Rez = 50.115, ReΩ = 403.21 while s2 and s3 coalesce with ωi = 0 for e = 0.3032
and Rez = 43.188, ReΩ = 353.60. As a result, the saddle points swap dominance but
the absolute wavenumber, frequency, and spatial growth rate vary almost continuously
through the exchange (see figure 9a–c). Consequently, the spatial distribution of the
critical mode is little changed and the physical reason for the switchover remains
unclear.

As e approaches 1, all m tend to behave in a similar way. After reaching a minimum
value, the critical ReΩ increases again as e becomes larger. Instability thresholds of all
m > 0, and even their respective absolute growth rate for any Rez–ReΩ combination,
become close at high e and less sensitive to variations of Rez. More similarities are
found by inspecting the critical modes. For Rez=60, all m have absolute wavenumbers
k0,r in the range 6.5–8, indicating a similar length scale. Indeed, the kinetic energy
of all these modes is localized around the inner cylinder, on a radial extent of the
order of the smallest gap d(1− e), consistent with a small wavelength. The localization
is so strong that the difference between toroidal and helical structure of the modes
is partially ‘blurred’. These similarities between m at high e is reminiscent of small
gap Taylor–Couette–Poiseuille flow, where critical thresholds associated with different
m are very close (Ng & Turner 1982; Leclercq et al. 2013). Indeed, as eccentricity
increases, the Couette-like flow associated with rotation of the inner cylinder scales as
d(1− e), curvature effects become less important, and m behaves more and more like
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FIGURE 13. Absolute (solid lines) and convective (dashed lines) instability thresholds:
critical ReΩ versus Rez, for e= 0, 0.1, . . . , 0.7. Open circles indicate a change of critical
m for CI. For AI, the critical mode is always m= 0.

a continuous real wavenumber, as when η→ 1. Matching between localization of the
modes and the Couette-like part of the basic flow may also explain the weaker effect
of axial advection on the instability thresholds. Indeed, for large eccentricities, most
of the axial volume flux passes through the wide gap, and the maximum value of W
is located in the recirculation region, far from the inner cylinder. Hence, the region
where perturbations are most amplified is spatially separated from the region where
they are most rapidly ‘blown away’. This observation could explain why critical ReΩ
are less sensitive to Rez for e close to 1.

4.4. Convective versus absolute instability
We conclude this section by comparing the thresholds of CI (Leclercq et al. 2013) and
AI in the eccentric Taylor–Couette–Poiseuille flow. Figure 13 represents the critical
ReΩ for CI (dashed lines), and for AI (solid lines), as a function of Rez for e =
0, 0.1, . . . , 0.7. For Rez = 0, the two thresholds for m = 0 coincide, as expected
for a steady bifurcation. The critical ReΩ increases with Rez for both CI and AI, but
with a much larger rate for AI. This was expected as axial advection tends to carry
the perturbations away from the source, so a larger driving is required to reach AI.
The critical mode is always m = 0 for AI, corresponding to closed pseudo-toroidal
Taylor vortices, propagating when Rez 6= 0. For CI, LH modes of increasing m become
critically unstable as Rez increases. Open circles indicate a change of critical m on the
CI thresholds. The effect of eccentricity is clearly stabilizing for CI, but the effect on
AI is more complex. For high enough Rez, as eccentricity increases, the critical ReΩ
of AI slightly increases for low e, but then decreases before reaching a minimum and
increases again for larger values of e.

5. Conclusions
In this paper, an absolute instability analysis has been performed for the flow

between eccentric cylinders, with rotation of the inner one and a superimposed
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pressure-driven axial flow. The ratio between cylinder radii was fixed at η = 0.5,
a value representative of an oil-well-drilling configuration. Five modes of instability
have been considered, m=−2,−1, 0, 1, 2, thus including the most temporally unstable
modes up to Rez = 50 found in Leclercq et al. (2013). Throughout the range of Rez
and e considered in the present study, the mode with the largest absolute growth
rate is always the pseudo-toroidal vortex flow corresponding to m = 0. Unlike the
temporal growth rate, the absolute growth rate of left-handed pseudo-helical modes
(m> 0) is not always larger than that of right-handed ones (m< 0).

Increasing Rez tends to hinder absolute instability because axial flow sweeps
perturbations downstream. As a rule of thumb, the rotational velocity of the inner
cylinder needs to be approximately one order of magnitude larger than the mean
axial velocity to trigger absolute instability.

The effect of eccentricity is more complex and increasing e can result in
destabilization for large enough Rez and moderate eccentricities 0.3 . e . 0.6. In
this case, the critical mode has a complex structure, and the production of kinetic
energy peaks at a well-defined region of the annulus, located in the diverging gap
region. Outside this range of eccentricities, increasing e has a stabilizing effect,
increasingly so as the limit of touching cylinders is approached.

The instability mechanism is purely centrifugal in nature and the critical-mode
axial wavelength and radial extent scale as the smallest gap d(1 − e). For large
eccentricities, all the modes localize in the vicinity of the inner cylinder, and their
spatial distributions become more and more similar. The effect of Rez on absolute
instability thresholds becomes weaker, and the distance between thresholds associated
with different m diminishes.

Overall, many valid saddle points were found for the different instability modes,
and the critical pinch point switches upon varying the flow parameters. The physical
interpretation of the switchovers of saddle point occurring near e≈ 0.3 for m= 0 and
Rez=60 is unclear, because the saddle points are associated with modes having almost
the same spatial distribution and spatio-temporal properties. Indeed, when they swap,
the saddle points almost collide into third-order saddle points, where they would be
impossible to distinguish.

We believe that the most crucial outlook of this work is additional experiments
to confirm our findings on convective and absolute instabilities, since the last
measurements made on such a configuration are older than the introduction of
absolute instability theory to fluid mechanics (Huerre & Monkewitz 1985)! Even in
the convectively unstable régime, the literature is very lean, and only one apparatus
seems to have ever existed, whereas the domain of application is vast. From a
theoretical viewpoint, it would be particularly interesting to investigate the properties
of nonlinear global modes, partly based on local absolute instability properties (Pier,
Huerre & Chomaz 2001), when eccentricity varies slowly along the axis. Indeed,
bending of the long drillstring results in axially varying eccentricity. Moreover, such
weakly non-parallel open flows are believed to be good candidates to confirm the
potential existence of hat modes (Pier & Huerre 1996, 2001), theoretically predicted
for model equations, but yet to be identified in a real configuration.
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The global linear stability of steady axisymmetric flow through a model fusiform
aneurysm is studied numerically. The aneurysm is modelled as a Gaussian-shaped
inflation on a vessel of circular cross-section. The fluid is assumed to be Newtonian,
and the flow far upstream and downstream of the inflation is a Hagen–Poiseuille
flow. The model aneurysm is characterized by a maximum height H and width
W, non-dimensionalized by the upstream vessel diameter, and the steady flow is
characterized by the Reynolds number of the upstream flow. The base flow through
the model aneurysms is determined for non-dimensional heights and widths in the
physiologically relevant ranges 0.1 6 H 6 1.0 and 0.25 6 W 6 2.0, and for Reynolds
numbers up to 7000, corresponding to peak values recorded during pulsatile flows
under physiological conditions. It is found that the base flow consists of a core
of relatively fast-moving fluid, surrounded by a slowly recirculating fluid that fills
the inflation; for larger values of the ratio H/W, a secondary recirculation region
is observed. The wall shear stress (WSS) in the inflation is vanishingly small
compared to the WSS in the straight vessels. The global linear stability of the
base flows is analysed by determining the eigenfrequencies of a modal representation
of small-amplitude perturbations and by looking at the energy transfer between the
base flow and the perturbations. Relatively shallow aneurysms (of relatively large
width) become unstable by the lift-up mechanism and have a perturbation flow
which is characterized by stationary, growing modes. More localized aneurysms (with
relatively small width) become unstable at larger Reynolds numbers, presumably by
an elliptic instability mechanism; in this case the perturbation flow is characterized
by oscillatory modes.
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1. Introduction
Following the observation of transition to turbulence in the human aorta by Nerem,

Seed & Wood (1972), the stability of blood flow in the arterial system has been
studied extensively. Shortis & Hall (1999), Boiron, Deplano & Pelissier (2007) and
Trip et al. (2012), among others, have analysed the stability of pulsatile flow in
straight and curved tubes of circular cross-section under physiological conditions.

† Email address for correspondence: shyam-sunder.gopalakrishnan@univ-lyon1.fr



Global stability analysis of flow through a fusiform aneurysm 91

Recently, because of its association with atherosclerosis, the stability of flow through
arterial blockages (stenoses) has been the subject of much research (Sherwin &
Blackburn 2005; Blackburn & Sherwin 2007; Peterson & Plesniak 2008; Blackburn,
Sherwin & Barkley 2008; Griffith et al. 2009; Mao, Sherwin & Blackburn 2011).
The structure and stability of flow through arterial inflations (fusiform aneurysms, or
abdominal arterial aneurysms), on the other hand, has attracted less attention. Some
notable exceptions are the papers by Finol & Amon (2001), Yip & Yu (2001), Finol
& Amon (2002b), Salsac et al. (2006) and Sheard (2009); other work is discussed in
the reviews by Lasheras (2007) and Humphrey & Taylor (2008).

Faced with the complexity of analysing pulsatile flows in arterial blockages or
inflations, it is sensible to first consider the stability of steady flows in such geometries.
Obviously, the results are not physiologically realistic, although they may be relevant
for clinical practice and will certainly be helpful in setting up experiments. Thus,
the stability of steady flow through arterial stenoses has been addressed by Sherwin
& Blackburn (2005), Griffith et al. (2007), Blackburn et al. (2008), Griffith et al.
(2008), Vétel et al. (2008) and Griffith et al. (2013). This paper concentrates on
the stability of steady flow through fusiform aneurysms. The velocity field and wall
shear stress (WSS) distribution in steady flow through fusiform aneurysms have been
studied earlier by, for example, Peattie et al. (1994), Bluestein et al. (1996), Peattie
et al. (1996) and Finol & Amon (2002a).

The model aneurysms studied here are axisymmetric with an inflation of the wall
that takes a Gaussian shape. This shape has an advantage over the sinusoidal shapes
used in other studies (Sheard 2009) in that its spatial derivatives are continuous
to all orders – this is a desirable feature, particularly in the context of studies of
hydrodynamic stability; moreover, it is what one would expect to be the case in real
aneurysms.

The fluid mechanical problem and the methods of analysis are introduced in § 2,
where we also describe the numerical procedures and verification of the code. The
results are presented in § 3, i.e. the structure of the steady basic flows through the
model aneurysms, the conditions for linear global stability and the structure of the
critical amplitude functions. Conclusions are given in § 4.

2. Methods
2.1. Problem formulation

The model aneurysm considered in this paper is shown schematically in figure 1. Let
r denote the distance from the centreline of the vessel and z the distance along the
centreline, with the origin placed at the axial midpoint of the inflation; then the vessel
wall r= R(z) is defined by

R(z)= 1
2 D+H exp

(− 1
2 z2/W2

)
. (2.1)

Here D is the vessel diameter far upstream and downstream of the inflation, H is the
maximum height of the inflation and W is a measure of the width of the inflation. For
comparison, the vessel with a sinusoidally shaped inflation studied by Sheard (2009),
or Model 3 in Salsac et al. (2006), is indicated in figure 1 by the dotted lines. It is
important to note that the parameter W is a measure of the length of the abdominal
arterial aneurysm, and is not the wavelength of the sinusoidal function used to model
the aneurysm dilatation in Sheard (2009). To cover different stages of development
of an aneurysm, the following parameter ranges are considered: 0.25 6 W/D 6 2 and
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FIGURE 1. The cylindrical geometry considered in the present study, with the radius
described by a Gaussian function. In this example W/D = 0.5 and H/D = 0.5. The
sinusoidal shape used in Sheard (2009) and Model 3 of Salsac et al. (2006) is shown
by the dotted lines.

0.1 6 H/D 6 1. The latter corresponds to a dilatation ratio of 1.2 6 DR 6 3, where
DR= 1+ 2H/D is the ratio of the maximum diameter of the inflation to the diameter
of the non-inflated vessel.

The fluid motion is assumed to be incompressible and governed by the Navier–
Stokes equations. The no-slip condition prevails at the vessel wall, which is
assumed to be rigid. The fluid velocity distribution is taken to converge to that of a
Hagen–Poiseuille flow far upstream and downstream of the inflation. The Reynolds
number of the flow is defined as Re= ŪD/ν, where ν is the kinematic viscosity of
the fluid and Ū is the (specified) cross-sectionally averaged velocity in the vessel.
Reynolds numbers up to Re = 7000 are considered, in view of the fact that typical
peak Reynolds numbers of pulsatile blood flow in the abdominal region of the aorta
may vary from 600 at rest up to 6000 under exercise conditions (Ku 1997). In what
follows, all lengths and velocities are non-dimensionalized by the vessel diameter D
and the mean velocity Ū, respectively.

2.2. Stability analysis
Using cylindrical coordinates, the radial velocity Ur(r, z), the axial velocity Uz(r, z)
and the pressure P(r, z) of the steady axisymmetric flow through the aneurysms are
governed by

Ur
∂Ur

∂r
+Uz

∂Ur

∂z
=−∂P

∂r
+ 1

Re

[
1
r
∂

∂r

(
r
∂Ur

∂r

)
+ ∂

2Ur

∂z2
− Ur

r2

]
, (2.2a)
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+ ∂
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∂z2

]
, (2.2b)

∂Ur

∂r
+ Ur

r
+ ∂Uz

∂z
= 0, (2.2c)

with the no-slip condition Ur =Uz = 0 along the wall

r= R(z)≡ 1
2 +H exp

(− 1
2 z2/W2

)
(2.3)

and with the following conditions far upstream and downstream (z→±∞):

Ur = 0, Uz = 2 (1− 4r2). (2.4a,b)



Global stability analysis of flow through a fusiform aneurysm 93

The linear stability of the base flow (U, P) is investigated by superimposing a
three-dimensional small-amplitude perturbation (u′, p′). The linearized Navier–Stokes
equations governing the behaviour of the perturbation are

∂u′

∂t
+ (U · ∇)u′ + (u′ · ∇)U = −∇p′ + 1

Re
1u′, (2.5a)

∇ · u′ = 0. (2.5b)

The steadiness and axisymmetry of the base flows allow us to write the perturbations
in the modal form

[u′, p′](r, θ, z, t)= [ûr, ûθ , ûz, p̂](r, z) ei(mθ−ωt), (2.6)

where m is the (integer) azimuthal wavenumber and ω ≡ ωr + iωi is the complex
eigenfrequency. The perturbation is stationary when ωr= 0 and oscillatory when ωr 6=
0; when the growth rate ωi is positive, the perturbation grows exponentially in time.

Substitution of (2.6) into the linearized Navier–Stokes equations (2.5) yields a
generalized eigenvalue problem of the form

Aû=−iω Bû, (2.7)

where û= (ûr, ûθ , ûz, p̂) is a vector consisting of the amplitude functions and A and
B are the matrices associated with (2.5). A discussion of methods of global linear
instability analysis, together with many examples, can be found in Theofilis (2011).

2.3. Energy transfer analysis
The rate of change of the kinetic energy of the perturbation flow is governed by the
Reynolds–Orr energy equation

d
dt

(∫

V

1
2

u′iu
′
i dV
)
=− 1

Re

∫

V

(
∂u′i
∂xj

2
)

dV −
∫

V

1
2

u′iu
′
j

(
∂Ui

∂xj
+ ∂Uj

∂xj

)
dV, (2.8)

where contributions due to advection of kinetic energy through the domain boundaries
have been neglected. The first term on the right-hand side of (2.8) represents the
viscous dissipation of kinetic energy, and the second term represents the transfer of
kinetic energy from the base flow to the perturbations. This equation has proven to
be helpful in deciding which instability mechanisms are involved in the evolution of
the perturbations.

Following Lanzerstorfer & Kuhlmann (2012), the perturbation velocity u′ is
decomposed into components u′‖ and u′⊥ which are, respectively, parallel and
perpendicular to the base velocity U:

u′‖ =
(u′ ·U)U

U ·U
, u′⊥ = u′ − u′‖, (2.9a,b)

such that the local energy transfer from the base flow to the perturbations may be
written as

4∑

i=1

Ep,i=−
[
u′⊥ · (u

′
⊥ · ∇U)+ u′‖ · (u

′
⊥ · ∇U)+ u′⊥ · (u

′
‖ · ∇U)+ u′‖ · (u

′
‖ · ∇U)

]
. (2.10)
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Here, the index i numbers all terms on the right-hand side consecutively. The use of
coordinates which are locally aligned with the flow direction is appropriate because
locally no other distinguished direction exists. Each of the terms Ep,i may be viewed
as representing a different energy transfer process. For example, Ep,2 represents the
local rate of change of the energy density of the perturbations due to convective
transport by the cross-stream perturbation velocity component u′⊥ of the basic-state
momentum per unit mass, U. Hence, if u′⊥ · ∇U has a component parallel to and in
the direction of u′‖, kinetic energy is locally transferred from the base flow to the
perturbations. When Ep,2 < 0, the perturbations locally lose energy to the base flow.

2.4. Numerical methods
The flow problem (2.2)–(2.4) and the generalized eigenvalue problem (2.5)–(2.7) are
solved numerically by a finite element method. The spatial discretization is a mixed
finite element formulation using P2 and P1 Taylor–Hood elements, i.e. six-node
quadratic triangular elements with quadratic interpolation for velocities (P2) and
three-node linear triangular elements for pressure (P1). The meshes and the discrete
matrices resulting from the variational formulation of the problems are generated with
the software FreeFem++ (http://www.freefem.org).

The base flows are computed as in Marquet et al. (2009). First, a steady solution
of the full time-dependent Navier–Stokes equations is computed, for a small Reynolds
number such that the flow is stable. Next, a Newton–Raphson iteration method is
used to compute a solution of the steady Navier–Stokes equations, starting with the
small-Reynolds-number solution as a first guess, and approaching the required large-
Reynolds-number solution by incrementing the Reynolds number in small steps.

Once a base flow has been computed, the associated linear global stability problem
is solved. To compute the eigenfrequencies with largest imaginary part, first a shift-
and-invert strategy is used, as in Ehrenstein & Gallaire (2005) and Marquet et al.
(2009), to single out the region of interest in the complex frequency plane. The result
is an eigenvalue problem, which is then solved with the implicitly restarted Arnoldi
algorithm provided by the UMFPACK software library. The method is discussed in
detail in Sorensen (1992) and Nayar & Ortega (1993).

2.5. Code validation
To validate the computation of the base flows, grid convergence and independence of
the size of the computational domain were addressed. Table 1 gives information on the
meshes M used for the vessel geometry with W = 0.5 and H = 0.5, representative of
the tests that were carried out. The size of the computational domain is characterized
by Ω , which gives the axial extension measured in vessel diameters with respect to
the origin. The number of nodes associated with the P2 and P1 elements of a mesh
are denoted by N2 and N1, respectively. The subscript b indicates that the mesh is
associated with the computation of a base flow; the subscripts s and l indicate that
the computational domain is, respectively, smaller or larger than the ‘standard domain’
(−10, 10).

To check for convergence when computing the base flow fields, the WSS is used as
a sensitive measure of the overall grid resolution. The WSS distribution follows from
evaluation of the expression

2
(
∂Ur

∂r
− ∂Uz

∂z

)
cos α sin α −

(
∂Ur

∂z
+ ∂Uz

∂r

) [
cos2 α − sin2 α

]
(2.11)
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Mesh Ω N2 N1

Mb (−10, 10) 183 061 46 516
Mb1 (−10, 10) 152 449 38 788
Mb2 (−10, 10) 66 398 17 050
Mb3 (−10, 10) 17 058 4 490
Mbs (−5, 5) 136 049 34 613
Mbl (−20, 20) 229 558 58 515

TABLE 1. Meshes used to validate the computation of the base flow for H = 0.5 and
W = 0.5.
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FIGURE 2. The distribution of WSS computed using the different meshes listed in table 1.
The parameter settings are H = 0.5, W = 0.5 and Re= 2500.

at the vessel wall r = R(z). In this expression α(z) denotes the local angle of wall
slope, defined by tanα= dR/dz. A negative value of the WSS corresponds to reversed
flow.

Figure 2 presents the results of the computation of the WSS distribution in a vessel
inflation using the meshes listed in table 1. This distribution is normalized by the
value of the WSS exerted by the associated Hagen–Poiseuille flow. The Reynolds
number is 2500. It is observed that where the vessel is inflated, corresponding
roughly to the range −1< z< 1, the WSS is reduced significantly; in fact, it becomes
vanishingly small. Near the downstream end of the inflation, however, a sudden
change occurs, from a negative relative value of one-half to a positive relative value
of one-and-a-half. Similar observations on WSS distributions were made by Budwig
et al. (1993) and Bluestein et al. (1996). With the exception of the computations
done with the rather coarse mesh Mb3, all the computations match perfectly with
those carried out on the fine mesh Mbl.

Next, we consider the validation of the stability calculations. As before, the results
of tests carried out for the values W = 0.5, H= 0.5 and Re= 2500 are presented. The
meshes used in this case are specified in table 2, which also reports the computed
values of the real and imaginary parts of ω1, the eigenfrequency with the largest
imaginary part associated with wavenumber m= 1. With the exception of the coarse
mesh Ms3, all meshes yield values for the eigenfrequencies which agree up to the
fourth digit. This finding permits us to use mesh Ms2 for the stability computations.
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Mesh Ω N2 N1 ω1i ω1r

Ms1 (−10, 10) 124 566 31 742 −0.030 1923 0.031 0782
Ms2 (−10, 10) 66 398 17 050 −0.030 1750 0.031 1178
Ms3 (−10, 10) 17 058 4 490 −0.029 3571 0.030 4471
Ms0 (−10, 10) 152 449 38 788 −0.030 2183 0.031 0903
Mbs (−5, 5) 136 049 34 613 −0.030 2199 0.031 0871

TABLE 2. Size of the computational domain, as characterized by Ω , and the number of
nodes N1 and N2 used in convergence tests of the stability analysis; ω1i and ω1r are the
computed imaginary and real parts of the eigenfrequency of the wavenumber m= 1. Here
the parameter values are H = 0.5, W = 0.5 and Re= 2500.

(a) (b)
Lo b Re m N2 N1 ω1i Lo b Re m ω1i

40 0.500 2000 2 114 578 29 470 −0.014 909 38 40 0.500 2000 2 −0.014 783
20 0.500 2350 2 28 310 7 478 0.000 257 31 40 0.500 2350 2 0.000 00
20 0.750 770 1 8 258 31 230 −0.000 141 51 40 0.750 770 1 0.000 00

TABLE 3. (a) Results of the global stability calculations of steady flow through a stenosis;
Re is based on the inlet diameter D and the cross-sectionally averaged velocity Ū, and the
growth rate ω1i has been normalized by Ū/D. (b) Corresponding results from Griffith et al.
(2008).

Extensive validation tests have been performed at higher Reynolds numbers and for a
range of bulge heights, which are discussed in detail in Gopalakrishnan (2014).

We have also performed computations of flow through model arterial stenoses, to
verify our numerical results against those of Griffith et al. (2008). Flow through a
stenosis presents different numerical challenges than flow through an aneurysm. Large
regions of recirculating flow occur downstream of a stenosis, which makes the proper
choice of the length of the straight vessel outlet an important issue. In flow through
an aneurysm, the recirculating flow, as well as the extent of the critical amplitude
functions, is limited to the region of vessel inflation. Table 3 presents a comparison
between our results and some of those from Griffith et al. (2008). Here the parameter
b is the stenosis degree, defined as

b= 1−
(

d
D

)2

, (2.12)

where d is the diameter of the vessel at the centre of the blockage and L0 denotes
the length of the vessel outlet in units of vessel diameter.

3. Results
3.1. Base flows

Streamlines and distributions of azimuthal vorticity of the steady axisymmetric base
flows through inflated vessels are shown in figures 3–5. In these figures the values
of the dimensionless width W and Reynolds number Re are: W = 2.0 and Re= 4000
for figure 3; W = 0.5 and Re= 5500 for figure 4; and W = 0.25 and Re= 5500 for
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FIGURE 3. Basic flow visualized by the vorticity and streamlines at Re=4000 for W=2.0.
The parameter settings are: (a) H = 0.3; (b) H = 0.5; (c) H = 0.8.
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FIGURE 4. As figure 3, but with Re= 5500 and W = 0.5.

figure 5. In each of these figures the dimensionless height is H = 0.3 in (a), H = 0.5
in (b) and H= 0.8 in (c). Note that, to bring out details, the scales in the figures have
been chosen differently. We would like to remind the reader that the peak Reynolds
numbers in the abdominal aorta can vary from 600 at rest up to 6000 under exercise
conditions (Ku 1997).

The flow through the model aneurysms is qualitatively similar for all parameter
values such that H/W is relatively small, consisting of a jet-like core of diameter
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FIGURE 5. As figure 3, but with Re= 5500 and W = 0.25.

roughly that of the non-inflated vessel, surrounded by slowly recirculating fluid in
the inflation. In the recirculation region, the radial velocity is at least two orders of
magnitude smaller than the axial velocity, except near the downstream end of the
inflation, where it is approximately one order of magnitude smaller. The vorticity
distribution in the core region is uniform, with magnitude similar to that in the
Hagen–Poiseuille flow far upstream and downstream. The vorticity distribution in the
recirculation region is also approximately uniform, but of opposite sign and smaller
magnitude. Near the stagnation point at the downstream end of the inflation, there is a
small region in which the vorticity is vanishingly small. This flow structure has been
observed by Budwig et al. (1993) and Bluestein et al. (1996) in their experiments
and numerical calculations.

The migration with increasing Reynolds number of the centre of the recirculation
zone towards the distal end, resulting in a concentration of vorticity at the downstream
end, was reported in Bluestein et al. (1996). However, it has not been reported before
that a secondary recirculation region appears, with weak vorticity of opposite sign to
that in the primary recirculation zone, as the ratio H/W or the Reynolds number Re
is increased. The centre of the primary recirculation zone is displaced towards the
distal end of the inflation as H/W or Re is increased further, while the centre of the
secondary recirculation zone is displaced towards the proximal end of the inflation.

3.2. Critical modes and stability boundaries
A typical eigenfrequency spectrum in the complex ω-plane is shown in figure 6. In
this example W = 0.5, H = 0.5 and Re= 5500, parameter values for which the basic
flow is shown in figure 4(b). Two modes with a positive temporal growth rate ωi can
be observed; they are associated with the azimuthal wavenumbers m = 4 and m = 5.
The real parts ωr of these eigenfrequencies are non-zero, so that the unstable modes
represent three-dimensional oscillations which grow in amplitude.

With each azimuthal wavenumber m a ‘leading mode’ can be associated; this is the
mode with the largest imaginary part ωi of the eigenfrequency. The variation of the
temporal growth rate ωi of these leading modes with Reynolds number is shown in
figure 7(a), again for W = 0.5 and H= 0.5. Figure 7(b) shows the real part ωr of the
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FIGURE 6. (a) Eigenfrequency spectrum for different azimuthal wavenumbers m, in the
setting where W = 0.5, H= 0.5 and Re= 5500. (b) A close-up view of the eigenfrequency
spectrum, showing the unstable modes corresponding to m= 4 and m= 5.
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FIGURE 7. Plots as a function of the Reynolds number Re of the leading modes associated
with different azimuthal wavenumbers m, in the setting where W = 0.5 and H = 0.5:
(a) temporal growth rates ωi; (b) oscillation frequencies ωr.

leading modes associated with wavenumbers m= 4 and m= 5. The temporal growth
rates of both of these modes become positive at Re≈ 4875; both modes are found to
switch abruptly from stationary to oscillatory at much smaller Reynolds numbers.

The stability boundaries in the Re–H plane for different azimuthal wavenumbers m
are shown in figure 8, for four values of the bulge width: (a) W = 2.0; (b) W = 1.0;
(c) W = 0.5; (d) W = 0.25. For small values of the height H, the aneurysm can
be viewed as a small perturbation to a fully developed flow in a circular pipe; that
flow is linearly stable for all Reynolds numbers. Although a critical value cannot be
given, it is fair to say that the base flow is linearly stable for bulge heights H <

0.2 (for Reynolds numbers Re< 7000). As the height H is increased, the base flow
becomes unstable to stationary critical modes; these are indicated by the dotted curves
in figure 8. The azimuthal wavenumbers that correspond to these critical modes differ
according to the width W. No trend is observed, although the wavenumbers m = 2
and m= 5 seem to be involved most often. As the bulge height is increased further,
the base flow also becomes unstable to oscillatory modes, as indicated by the solid
curves in figure 8. With regard to the influence of the width of the inflation, we
find that as the width is reduced from W = 2.0 to W = 0.5, the base flow becomes
unstable at smaller values of the Reynolds number and of the height of the inflation.
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FIGURE 8. (Colour online) Critical curves associated with different azimuthal
wavenumbers m in the Re–H plane, where the width of the inflation is: (a) W = 2.0;
(b) W = 1.0; (c) W = 0.5; (d) W = 0.25. The solid curves indicate oscillatory modes and
the dotted curves stationary modes.
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perturbation energy density field. (b,d) Variation with axial distance z of the magnitude of
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∫ |ûr|2 dr (dot–dash);∫ |ûθ |2 dr) (dotted). The parameter values are Re=5500, m=3, W=0.5 and (a,b) H=0.3;

(c,d) H = 0.8.

However, a further reduction of the width improves the linear stability of the base
flows significantly.

3.3. Instability mechanisms
The analysis of the energy transfer processes that take place suggest that different
instability mechanisms are involved when the base flow has just a single recirculation
region versus when it also includes a secondary recirculation region. To see this, one
can compare two flows at Re = 5500 through a model aneurysm of width W = 0.5,
where in one case the bulge height is H = 0.3 and in the other case it is H = 0.8.
From figure 8(c) it can be seen that a stationary mode with wavenumber m = 3 is
unstable for H = 0.3, whereas for H = 0.8 this mode is oscillatory.

Figure 9 presents the perturbation energy density distribution associated with the
amplitude function (ûr, ûθ , ûz) for two different cases: (a,b) the basic flow with a
single recirculation region (H = 0.3); (c,d) the basic flow with also a secondary
recirculation region. We observe (see figure 9a,c) that in the first case the disturbance
energy is distributed all along the axis of the inflation, while in the second case it is
localized in a small region at the downstream end. This can be seen even more clearly
from the cross-sectional averages of the energy density associated with the individual
perturbation velocity components (figure 9b,d). Note also that in both cases, most of
the perturbation energy is in the axial perturbation velocity component, and that in
the second case there is also a small contribution of the radial velocity component,
which is totally absent in the first case; in the first case, then, the disturbance motion
takes place in circular planes.

That different mechanisms are involved in the instability of the two basic flows is
also clear from figures 10 and 11, which provide information on the energy transfer
between the basic flow and the perturbation flow. In each figure, the total energy
transfer rate is shown in panel (d), and the three separate contributions Ep,1, Ep,2 and
Ep,4, which were defined in (2.10), are shown in panels (a), (b) and (c), respectively.
The global picture is the same as that which emerges from figure 9, but here we
can further see that the main energy transfer mechanism in both cases is the one
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FIGURE 10. Basic streamlines and local energy production rates for H= 0.3 at Re= 5500
and for an azimuthal mode number m= 3: (a) Ep,1; (b) Ep,2; (c) Ep,4; (d)
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FIGURE 11. Basic streamlines and local energy production rates for H= 0.8 at Re= 5500
and for an azimuthal mode number m= 3: (a) Ep,1; (b) Ep,2; (c) Ep,4; (d)

∑4
i=1 Ep,i.

represented by Ep,2; the locations at which this mechanism is active are different,
though.

What are the instability mechanisms? Although this cannot be established rigorously,
we consider two typical cases, corresponding to a shallow cavity with H = 0.3 and
a deeper cavity with H = 0.8, for which our computations suggest the following: in
the case with a relatively shallow inflation (H = 0.3), the unstable mode is stationary
and the disturbance motion primarily takes place on cylindrical planes. Figures 12
and 13 provide a more detailed view of this perturbation velocity field. The picture
that emerges is one of a flow with alternating slow and fast streamwise streaks
(figure 12) and an arrangement of alternatingly rotating vortices distributed in the
layer between the core and the recirculation zone (figure 13). These vortices transport
low-velocity fluid to high-speed regions within the perturbation flow. This is the
familiar lift-up mechanism, first described by Orr in 1907. The lift-up mechanism has
also been identified by Lanzerstorfer & Kuhlmann (2012) as being the mechanism
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FIGURE 12. Velocity distribution at r = 0.5 of the most unstable mode associated with
wavenumber m= 3 in the form of streaks (arrows) and the total local energy production∑4

i=1 Ep,i (grey shading). The parameter values are H = 0.3, W = 0.5 and Re= 5500.
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FIGURE 13. Velocity distribution (arrows) and streamwise perturbation velocity u′z (grey
shading) at the axial location of maximum perturbation energy of the most unstable mode
associated with wavenumber m= 3. The parameter values are H= 0.3, W = 0.5 and Re=
5500.

that governs the instability of two-dimensional flow past a backward-facing step with
small expansion ratio; compare their figure 20 with our figure 10(d).

For the more localized inflations (with H = 0.8), it can be seen from figure 11(d)
that the energy transfer to the perturbation occurs only in a small region, namely
at the centre of the primary vortex. This is typical of an elliptical instability
mechanism. Lanzerstorfer & Kuhlmann (2012) have also demonstrated that the
elliptical instability mechanism is involved in the global instability of flow past a
two-dimensional backward-facing step of moderately large expansion rate; note the
close correspondence between our figure 11(d) and their figures 13 and 14. This is
further exemplified in figure 14(a), where the total local energy production for H=0.5
at Reynolds number Re= 5500 for an azimuthal mode number m= 4 is shown along
with the critical velocity field vectors and the basic flow streamlines. We can see
that the perturbation flow is strongest where the energy transfer is maximal, which is
entirely localized in the core region of the primary recirculation region, and that they
are aligned with the principal direction of strain. Figure 14(b) shows the resulting
perturbation flow that arises as a sequence of counter-rotating vortices in the azimuthal
plane. The same features are observed at larger bulge heights, which indicates that
the instability mechanism is of elliptic type. Although we have demonstrated that the
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FIGURE 14. (a) Base flow streamlines (continuous lines), critical velocity fields (arrows)
and total local energy production

∑4
i=1 Ep,i. (b) Critical velocity fields (arrows) and the

total local energy production
∑4

i=1 Ep,i (grey shading) at an axial location where the energy
transfer reaches its maximum. The parameter settings are H = 0.5, Re= 5500 and m= 4.

instability mechanism is of an elliptic nature at H= 0.5, the exact regimes where the
lift-up mechanism or elliptic mechanism dominate cannot be established rigorously,
and the value of the bulge height at which the transition occurs is not well-defined.

4. Conclusion
It may be tempting to draw conclusions concerning the pathophysiology of

abdominal aortic aneurysms from the results found in this study. However, in our
opinion this idealized model is too far removed from reality to allow one to draw
such conclusions. The motivation for the present study is to provide a basis for
further, more realistic studies, which should enable us to quantify the effects of
pulsatility of the flow (as will be done in a sequel to this paper), non-axisymmetry
and other characteristics of the geometry of aneurysms, as well as the presence of
the iliac bifurcation and other vasculature downstream of the aneurysm. Nevertheless,
the present study does suggest that in inflated arteries, regions of slowly recirculating
fluid occur, with very low WSS, which alternate in direction during a flow pulsation.

The steady axisymmetric flow through the model aneurysm studied here is
unstable for Reynolds numbers that correspond to the peak values observed under
physiological conditions. This instability occurs for dimensionless aneurysm ‘heights’
of approximately H = 0.3. Also, the flow in relatively shallow aneurysms (i.e. with
large widths W) is more susceptible to instability than that through more localized
aneurysms. The base flow in these shallow aneurysms is characterized by a single
large recirculation region; this flow becomes unstable to a stationary mode by the
lift-up mechanism. Steady flows through more localized aneurysms also include a
secondary recirculation zone; these flows become unstable to oscillatory modes which
involve energy transfer from the base flow to perturbations in a small region at the
downstream end of the aneurysm, presumably by an elliptical instability mechanism.
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To contribute to the understanding of flow phenomena in abdominal aortic aneurysms,
numerical computations of pulsatile flows through aneurysm models and a stability
analysis of these flows were carried out. The volume flow rate waveforms into
the aneurysms were based on measurements of these waveforms, under rest and
exercise conditions, of patients suffering abdominal aortic aneurysms. The Reynolds
number and Womersley number, the dimensionless quantities that characterize the
flow, were varied within the physiologically relevant range, and the two geometric
quantities that characterize the model aneurysm were varied to assess the influence
of the length and maximal diameter of an aneurysm on the details of the flow.
The computed flow phenomena and the induced wall shear stress distributions
agree well with what was found in PIV measurements by Salsac et al. (J. Fluid
Mech., vol. 560, 2006, pp. 19–51). The results suggest that long aneurysms are less
pathological than short ones, and that patients with an abdominal aortic aneurysm
are better to avoid physical exercise. The pulsatile flows were found to be unstable
to three-dimensional disturbances if the aneurysm was sufficiently localized or had
a sufficiently large maximal diameter, even for flow conditions during rest. The
abdominal aortic aneurysm can be viewed as acting like a ‘wavemaker’ that induces
disturbed flow conditions in healthy segments of the arterial system far downstream
of the aneurysm; this may be related to the fact that one-fifth of the larger abdominal
aortic aneurysms are found to extend into the common iliac arteries. Finally, we
report a remarkable sensitivity of the wall shear stress distribution and the growth
rate of three-dimensional disturbances to small details of the aneurysm geometry near
the proximal end. These findings suggest that a sensitivity analysis is appropriate
when a patient-specific computational study is carried out to obtain a quantitative
description of the wall shear stress distribution.

Key words: biological fluid dynamics, instability

1. Introduction
An abdominal aortic aneurysm (figure 1) is a localized dilatation of the infrarenal

aortic wall, between the renal arteries and the iliac bifurcation. A dilatation of
the aorta is considered to be an aneurysm when its maximal diameter is greater

† Email address for correspondence: shyam-sunder.gopalakrishnan@univ-lyon1.fr
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(a) (b)

Abdominal aorta

Aneurysm

FIGURE 1. (Colour online) (a) Sketch of an abdominal aortic aneurysm that is confined to
the infrarenal aorta (Lasheras 2007). (b) Image of an abdominal aortic aneurysm observed
in vivo (courtesy: P. Feugier, Hôpital Édouard-Herriot).

than 1.5 times the local diameter of the healthy aorta (Johnston et al. 1991), which is
approximately 2 cm in the abdominal parts of the aorta. One-fifth of large abdominal
aneurysms are not limited to the infrarenal aorta, but also extend into one or both of
the common iliac arteries (Armon et al. 1998).

When the mechanical stress in the vessel wall exceeds a critical value the dilated
vessel ruptures, which leads to a bleeding that is often lethal. Presently, clinical
intervention is recommended if the maximum diameter reaches 5.0 cm in women
and 5.5 cm in men or if the maximal diameter increases by more than 0.5–1 cm in
one year (Grootenboer et al. 2009). Yet, as observed by Vorp (2007), many smaller
lesions rupture (13 % of those of less than 5 cm), while larger lesions may not rupture
over long periods (54 % of those of over 7 cm). This leaves physicians to face the
dilemma of either subjecting patients to a complex surgery with high morbidity and
complications or to an unknown risk of rupture, to paraphrase Lasheras (2007). As
pointed out by Humphrey & Taylor (2008) and Humphrey & Holzapfel (2012), there
is a pressing need to better understand the mechanobiology, pathophysiology and
treatment of abdominal aortic aneurysm; an understanding that should result from
combining advances in vascular biology, medical imaging, biofluid mechanics and
biosolid mechanics.

To provide a background and motivation for the present study, we briefly mention
some of the recent work on the haemodynamics of abdominal aortic aneurysms; for
a more elaborate discussion the reader is referred to the reviews by Lasheras (2007)
and Humphrey & Taylor (2008). A highly advanced approach, which has increasingly
become the standard, is the experimental and computational study of blood flow
in models of the cardiovascular system obtained from patient-specific anatomical
data acquired by medical imaging. An introduction to this approach can be found
in Taylor & Draney (2004) and Taylor & Figueroa (2009). Recent studies of the
haemodynamics of abdominal aortic aneurysms using this approach include Les et al.
(2010), Sheidaei et al. (2011), Stamatopoulos et al. (2011) and Suh et al. (2011).
Such studies can provide a quantitative description of the flow in an aneurysm and
the distribution of shear stress along the vessel wall, and may even incorporate the
presence of atherosclerotic plaque. There is no question that in the near future these
computational tools will be sufficiently developed that they will be important for
decisions on medical intervention. Yet, given the complexity of the geometries used
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in these studies, it will prove very difficult to develop an understanding of the fluid
mechanical phenomena that occur and of the relation between these phenomena and
the geometrical details. It seems that there will remain a need for detailed studies of
the flow in simplified ‘unrealistic’ models of aneurysms. This paper presents a study
of pulsatile (physiological) flow through an axisymmetric model aneurysm with a wall
that is described by a Gaussian function. In doing so, we follow, to a certain extent,
the ‘simplified approach’ of the work by Taylor & Yamaguchi (1994), Finol, Keyhani
& Amon (2002), Yip & Yu (2002), Salsac, Sparks & Lasheras (2004), Deplano et al.
(2007) and Sheard (2009). Regarding the assumption of an axisymmetric geometry, it
may be added that it has been observed that aneurysms tend to be symmetric during
the early stages of the disease, only becoming non-axisymmetric during the later
stages, as reported in Salsac (2005). This means that our results may have a direct
bearing on what can be observed during the early stages. To this we should add
that in our work we focus on the fluid flow dynamics and assume rigid boundaries,
ignoring any compliance of the arterial wall or of an endoluminal thrombus. The
idealized geometry used in this study should be understood as the boundaries of the
fluid domain (where the blood is in contact either with the arterial wall or with a
thrombus).

A question that has received some attention in recent years is the connection
between cardiovascular flow and conditions of physical activity, in particular the
differences between the conditions of rest and exercise. Here, the articles by Egelhoff
et al. (1999), Taylor, Hughes & Zarins (1999), Deplano et al. (2007), Les et al.
(2010) and Suh et al. (2011) should be mentioned. It has been hypothesized that
prolonged physical exercise may eventually slow the growth of aneurysms, but
supporting arguments are indecisive. What has been established is that during part of
the cardiac cycle the blood flow in the abdominal aorta becomes weakly turbulent
during exercise, but it remains laminar during rest conditions (Les et al. 2010). A
local dilatation of the abdominal aorta may be expected to promote instability of the
blood flow, and it is not unlikely that flashes of turbulence may occur during part of
the cardiac cycle even during rest conditions (Yip & Yu 2001). This is believed to be
beneficial, on the grounds that the presence of turbulence reduces the size of regions
of flow stasis and the existence of a correlation between the presence of such regions
and thrombus formation (Reininger et al. 1994; Vorp et al. 2001; Salsac et al. 2004).
Although we have no support for this, we believe that the repeated occurrence of a
vessel wall loading with random small-scale fluctuations in time and space, due to
the fact that during part of the cardiac cycle the flow becomes turbulent, may have a
detrimental effect on the structure of the vessel wall, and thereby enhance the growth
and rupture of aneurysms. To the best of our knowledge, a study of the stability of
flow through abdominal aneurysms, even using a simple model configuration, has
not yet been published. The present paper provides a first look into this complex
problem.

The paper is organized as follows. The geometry of the model aneurysm, the
parameters and structure of the pulsatile flow at the inlet of the aneurysm, as well
as the numerical methods used to analyze the flow in the aneurysm are described in
§ 2. It will appear that two geometrical dimensionless quantities, representative of the
length and the maximum diameter of the dilatation, and two dimensionless physical
flow quantities, the Reynolds number and the Womersley number, characterize the
problem. The results of numerical computations of the flow through the model
aneurysm are presented in § 3, where we also discuss how the characteristics of this
flow change as the geometrical and physical parameters vary in a physiologically
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H
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W

FIGURE 2. The Gaussian vessel wall configuration used in the present study. In this figure
W/D= 0.5, H/D= 0.5.

realistic range. Most of the discussion is centred on a blood flow rate waveform
that is observed during rest, with a brief discussion of what has been found for a
flow rate waveform that is typical for an exercise condition. Section 4 describes the
first results of a global stability analysis of pulsatile flow through a model aneurysm,
and how these results change with the values of the geometrical and dynamical flow
parameters. In § 5 we report a remarkable sensitivity of the flow to details of the
aneurysm geometry. Finally, § 6 summarizes the main conclusions. Some physiological
implications are mentioned, even though these are highly speculative.

2. Methodology
2.1. Geometry

The axisymmetric model dilatation that is considered in the present study is shown in
figure 2. The vessel wall is described by a Gaussian function

r(z)=
[

D
2
+H exp

(
− z2

2W2

)]
, (2.1)

where z and r denote the axial and radial coordinates with the origin taken at the
centre of the dilatation. Thus, the geometrical quantities that characterize the model
aneurysm are the inlet diameter D, the height H and the width W. The length of an
aneurysm depends on how it is defined; in most definitions the length will involve
both parameters H and W. The so-called dilatation ratio DR, the ratio of the maximum
diameter to the inlet diameter, is here given by DR = 1 + 2H/D. In what follows,
lengths are non-dimensionalized by the inlet diameter D, so that the model aneurysm
is characterized by two geometrical dimensionless quantities H and W. To study the
effects of variations in the size of aneurysms or, to put it differently, the change in
the hydrodynamic loading of the vessel wall at different stages of the development of
an aneurysm, two values of W are chosen, 0.5 and 1, and H is varied in the range
0.36H/D6 1 (this corresponds to 1.66DR 6 3). Most of the geometrical parameters
considered in the present study correspond to limited size aneurysms (except for
the case where H = 1) which are clinically shown to be devoid of an endoluminal
thrombus (Harter et al. 1982).

2.2. Fluid flow
The velocity distribution of the unperturbed blood flow, taken to be a Newtonian fluid,
is considered as solenoidal and axisymmetric, with zero velocity in the azimuthal
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direction. The governing equations in cylindrical coordinates are then
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where Ur(r, z) and Uz(r, z) are the radial and axial velocity components, respectively,
and P(r, z) is the pressure distribution. The Reynolds number Re is based on the
vessel diameter and the mean flow velocity, Re = 4Q/πDν, with Q the volume
flow rate averaged over a cardiac pulse cycle and ν the kinematic viscosity of the
fluid. According to Ku (1997), the peak Reynolds number, based on the maximum
volume flow rate during a cycle, can vary from 600 at rest up to 6000 under exercise
conditions in the abdominal aorta.

The governing equations have been solved imposing the no-slip condition at the
vessel wall, assumed to be rigid, a standard no-stress condition at the outlet of the
vessel, and the usual symmetry conditions at the axis. The inlet velocity distribution
is the Womersley solution for the time-dependent flow in a cylindrical vessel of
constant circular cross-section (Pedley 1979). This velocity distribution is determined
completely by specifying the radian frequency ω and the Fourier components Qn of
the imposed flow rate waveform,

Q(t)=
∞∑

n=−∞
Qneinωt. (2.3)

Writing this inlet condition in dimensionless form introduces a second dimensionless
physical quantity that characterizes the fluid flow, namely the Womersley number
Wo=D(ω/4ν)1/2 (Pedley 1979). The two physiological flow rate waveforms that have
been used in the present study are discussed in the following section.

2.3. Physiological flow rate waveforms
Blood flow rate waveforms differ between rest and exercise conditions. Recently,
several studies have been carried out to elucidate how these differences may affect
the pathogenesis of abdominal aneurysms. The studies of Salsac et al. (2006) and
Sheard (2009) were based on a flow rate waveform obtained from a healthy male
subject at rest. The difficulty is that the flow rate waveform varies significantly with
the location in the aorta. Moreover, during the progression of the pathology the
flow rate waveform may change in response to the alterations of the blood vessel
geometry. In our study, we have used data presented in a recent article by Suh et al.
(2011), who recorded blood flow rate waveforms of 10 subjects (nine male, one
female) suffering from abdominal aortic aneurysms. The recordings were made at an
infrarenal location just upstream of the aneurysm, and during both rest and exercise
conditions.

The waveforms, the one corresponding to rest conditions denoted Q1 and the
one corresponding to exercise conditions denoted Q2, are shown in figure 3(a); in
figure 3(b) the non-dimensionalized value of the mean flow rate Q has been given the
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FIGURE 3. (a) Flow rate waveforms corresponding to rest (Q1) and exercise (Q2)
conditions, as recorded by Suh et al. (2011) at an infrarenal location just above an
abdominal aortic aneurysm. (b) The two flow rate waveforms when non-dimensionalized
by the cycle-averaged volume flow rate.

Waveform D (cm) Q (l min−1) Heart rate (min−1) µ (Pa s) Re Wo

Q1 (rest) 1.7 0.8 72 0.004 264 12
Q2 (exercise) 1.7 5.1 95 0.004 1700 13.8

TABLE 1. Values of flow parameters related to the flow rate waveforms recorded by
Suh et al. (2011).

value one. Details of the two waveforms are given in table 1. In Suh et al. (2011)
blood is considered to be a Newtonian fluid with a density of 1.06 g cm−3 and a
viscosity of 0.004 Pa s. To convert the recorded volume flow rates to non-dimensional
quantities, one also needs to know the diameters of the abdominal aorta at the
locations of the recording. These values are not given in Suh et al. (2011). The
values of the Reynolds number and Womersley number in table 1, for example
Re= 256 and Wo= 12 for waveform Q1, are based on a vessel diameter of 1.7 cm,
which seems to be a typical value of the inlet diameter of an abdominal aneurysm.
The same waveform Q1 in a blood vessel with diameter 2.0 cm would correspond to
Re= 250 and Wo= 15. The coefficients Qn of a Fourier series representation of the
waveforms, using 10 Fourier coefficients, are listed in table 2.

Given the fact that it is often easier to determine the blood flow rate waveform
at a particular location than the values of the blood viscosity and the local arterial
diameter, we have studied the characteristics of the pulsatile flow through the model
aneurysm with the flow rate waveform Q1 at the inlet, for three values of the
Womersley number (10, 12 and 15) and for Reynolds numbers between 200 and
500. The characteristics of the flow with waveform Q2 at inlet conditions that are
mentioned in § 3 are for Re= 1700 and Wo= 13.8, as mentioned in table 1. However,
it proved to be convenient for the study of the stability of the flow to set the Reynolds
number to 500, while keeping 13.8 as the value of the Womersley number.

2.4. Stability analysis
To study the stability of the axisymmetric time-periodic flow to three-dimensional
perturbations, the Navier–Stokes equations (2.2) are linearized around the axisymmetric
time-periodic base flow. Let base flows be time periodic with period T such that
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Q0 1.0 1.0
Q1 0.4461− i0.9481 0.0203− i0.4735
Q2 −0.7231− i0.5638 −0.1923− i0.0389
Q3 −0.3046+ i0.3181 −0.0392+ i0.0068
Q4 0.0042+ i0.1447 −0.0405+ i0.0103
Q5 0.0469+ i0.1112 −0.0054+ i0.0170
Q6 0.0780+ i0.0169 −0.0026+ i0.0008
Q7 0.0256− i0.0184 −0.0009+ i0.0023
Q8 0.0192− i0.0104 0.0013+ i0.0003
Q9 −0.0021− i0.0119 −0.0002− i0.0022

(a) (b)

TABLE 2. The coefficients Qn of the Fourier series representation of the waveforms
shown in figure 3. (a) Rest: Q1, (b) exercise: Q2.

U(r, z, t)=U(r, z, t+ T). Then, to this flow a three-dimensional perturbation velocity
field u′(r, z, θ, t) is added to form the composite velocity field:

u(r, z, θ, t)=U(r, z, t)+ u′(r, z, θ, t). (2.4)

Substitution of this expression into (2.2) and retaining terms that are linear in the
perturbation velocities then yields the equations

∂u′

∂t
+ (U · ∇)u′ + (u′ · ∇)U=−∇p′ + 1

Re
1u′, (2.5a)

∇ · u′ = 0. (2.5b)

The perturbations are taken to have the form



u′r(r, θ, z, t)
u′θ(r, θ, z, t)
u′z(r, θ, z, t)
p′(r, θ, z, t)


=




ûr(r, z, t)
ûθ(r, z, t)
ûz(r, z, t)
p̂(r, z, t)


 exp i(mθ)+ c.c., (2.6)

where m is the azimuthal mode number. For the computations, a plane of symmetry
for the perturbations is chosen by considering ûr(r, z, t), ûz(r, z, t) and p̂(r, z, t) to
be purely real and ûθ(r, z, t) to be purely imaginary. This permits one to rewrite the
above equations in terms of purely real variables, thereby reducing the computational
cost.

The numerical analysis of the stability of the time-periodic flows is carried out
by time-marching (2.5) for a suitable number of pulse cycles and monitoring the
perturbation fields until they converge. Once the perturbations have converged, the
evolution of the perturbation velocity fields at specific points in the computational
domain is recorded to determine the Floquet multiplier. According to Floquet theory
(Herbert 1988), the velocity and pressure perturbations grow or decay exponentially
from period to period, thus

û(r, z, t+ T)= exp(σT)û(r, z, t), (2.7)

where T is again the period of the pulsatile flow and σ is the (complex) growth rate.
The coefficient µ = exp(σT) is the so-called Floquet multiplier. The absolute value
|µ| of the Floquet multiplier is computed as

|µ| = Ek(t+ T)/Ek(t), (2.8)
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with Ek(t) defined as

Ek(t)=
{∫

Ω

[u′r(t)2 + u′θ(t)
2 + u′z(t)

2] dΩ
}1/2

. (2.9)

For |µ|> 1 the flow is unstable, and for |µ|< 1 the flow is stable; a value |µ| = 1
represents neutral stability. Further, modes can be classified according to the value
of the Floquet multiplier. A real bifurcation (µ= 1) has the same period as the base
flow, a subharmonic bifurcation (µ=−1) has a period of twice that of the base flow.
Such a period-doubling bifurcation can be detected by investigating the perturbation
field, which will alternate between opposite values from one period to the next.
Complex-conjugate Floquet multipliers correspond to perturbation fields in the form
of standing or travelling waves. A complex-conjugate bifurcation can be identified
from the evolution of the absolute value of the Floquet multiplier. An oscillation
around a mean value signifies that the Floquet multiplier is complex (Robichaux,
Balachandar & Vanka 1999; Sheard, Thompson & Hourigan 2005).

2.5. Numerical procedure
The flow problem given by the equations and boundary conditions mentioned in § 2.2
has been solved numerically by a finite-element method. The spatial discretization
is a mixed finite-element formulation using P2–P1 Taylor–Hood elements: six-node
quadratic triangular elements with quadratic interpolation for velocities (P2) and three-
node linear triangular elements for pressure (P1). The meshes, as well as the discrete
matrices resulting from the variational formulation of the problem, are generated with
the software FreeFem++ (http://www.freefem.org).

An inlet length of 10D units and an outlet length of 20D units have been used
in the simulations. At the start of the calculation, the velocity field is considered
to be given by the Womersley solution within the cylindrical domain corresponding
to a straight vessel of constant cross-section, and a zero velocity field within the
dilatation inflation. The flows are time-marched for a sufficient number of cycles for
the mean flow to pass through the computational domain. Time traces of the velocities
at various points within the domain are then checked at specific phases in the cycle,
to confirm that the flows have converged to a time-periodic state. For the parameter
conditions explored in the present study, the flow needed to be integrated in time for
10 cycles to attain periodicity. To these axisymmetric base flows, three-dimensional
disturbances were added of the form given by (2.6), and the linearized Navier–Stokes
equations (2.5) were time-marched for a sufficient number of pulse cycles to obtain
the Floquet multipliers. The mesh and the numerical procedure are the same as used
in the computation of the time-periodic basic flows.

Extensive validation tests have been performed, the details of which can be found
in Gopalakrishnan (2014). Here, we merely present the results of validation tests that
consisted of a computational study of pulsatile flow through model arterial stenoses,
to verify our results against those presented by Griffith (2007). Table 3 presents a
comparison between some of our results and those of Griffith (2007). The parameter
b is the stenosis degree, defined as

b= 1− (d/D)2 , (2.10)

with d the diameter of the vessel at the centre of the blockage; L0 denotes the length
of the vessel outlet in units of the vessel diameter and A is the amplitude of the
harmonic flow rate pulsation.
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L0 b A m |µ| |µ|g
30 0.50 1.25 1 1.0648 —
40 0.50 1.25 1 1.1741 1.1708
30 0.60 1.00 1 1.3495 —
50 0.60 1.00 1 1.3757 1.3761

TABLE 3. Comparison between the magnitude of the Floquet multiplier associated with
mode m= 1 of a perturbed pulsatile flow through a stenosis, as calculated by us, |µ|, and
by Griffith (2007), |µ|g.
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FIGURE 4. (Colour online) Evolution of the axial velocity profile in a straight vessel
during one cardiac cycle: (a) Q1 (rest); (b) Q2 (exercise).

3. The pulsatile flow
3.1. Flow through a vessel with constant cross-sectional area

Before discussing flow through aneurysms, we look at some details of the imposed
physiological waveforms.

As can be seen in figure 3(b), under resting conditions (Q1) the peak flow rate
during systole (t = 0.18T) goes up to five times the mean value. After peak systole
the flow rate is reduced and even becomes negative during peak diastole (t= 0.44T).
At the end of the diastole, the flow rate becomes positive again and relaxes to zero
during the resting period, before increasing once again at the beginning of the next
cardiac cycle. Under exercise conditions (Q2) the flow rate remains positive during the
entire cardiac cycle: already at the beginning of the cardiac cycle there is a significant
flow rate and the flow does not reverse during diastole. Interestingly, the instantaneous
velocity profiles during exercise are very similar to the instantaneous velocity profiles,
at the same phase within the cycle, during rest; the difference essentially consists
in the velocity distribution of a steady Poiseuille flow. This implies that the relative
magnitude of the oscillatory component during rest is larger than during exercise
conditions.

During the acceleration phase of the systole, the flow develops into a characteristic
top-hat velocity profile, as can be seen in figure 4. Thin boundary layers are observed
which scale as D/Wo. In line with what was said above, the velocity profiles observed
under exercise conditions are more parabolic. The axial velocity also remains positive
throughout the cardiac cycle except for a short duration during diastole, when negative
velocities are found close to the wall.

The wall shear stress is generally considered as the primary fluid mechanical
parameter with regard to the physiological response of the endothelial cells lining the
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FIGURE 5. Evolution of the wall shear stress during one cardiac cycle, as calculated from
the Womersley solution corresponding to the volume flow rate waveforms Q1 (during rest)
and Q2 (during exercise). (a) Physical values based on the data given in table 1, (b) non-
dimensionalized by multiplying by D/µŪ.

arterial wall (Ku 1997). The time variation of the wall shear stress can be determined
from the velocity profiles described above by evaluating

WSS(z, t)= −µ∂Uz

∂r

∣∣∣∣
r=wall

. (3.1)

Here, µ represents the dynamic viscosity of blood. The convention is to assign a
negative value to the function WSS in the case of reversed flow. Various quantities
have been introduced by different authors to investigate the response of endothelial
cells to wall shear stress variations. Examples are the cycle-averaged wall shear stress
and the cycle-averaged magnitude of that stress, quantities that are defined as in Salsac
et al. (2006),

WSS= 1
T

∫ T

0
WSS dt, |WSS| = 1

T

∫ T

0
|WSS| dt, (3.2a,b)

respectively. For later comparison, the temporal evolution of the wall shear stress
under rest and exercise conditions in a healthy vessel is shown in figure 5; it simply
follows the evolution of the flow rate. The peak wall shear stress under exercise
conditions is almost twice that during rest conditions. The minimum value of the
wall shear stress, however, does not change drastically under varying conditions. The
time-averaged wall shear stress is roughly seven times higher during exercise than
during rest, but the peak-to-mean ratio is almost four times higher under resting
conditions than during exercise.

3.2. Flow in abdominal aneurysms during rest
3.2.1. Phenomenology

We consider a model aneurysm with W = 0.5 and H = 0.5 for a discussion of the
typical flow features; the flow conditions are given by Re= 264 and Wo= 12. Figure 6
shows the azimuthal vorticity component at various time instants during a pulse cycle.
As can be seen in frame (iii), by the time the flow rate reaches peak systole a layer
of (positive) vorticity has been formed. Subsequently, as the flow rate decreases, this
layer of vorticity detaches from the wall and rolls up into a ring-like vortex structure
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FIGURE 6. (Colour online) Evolution of the azimuthal vorticity distribution during one
pulse cycle of the flow rate waveform Q1 (rest conditions). The dimensionless vorticity
values range from −20 (blue) to +20 (red). The axial range is −3< z< 7 and the flow
parameters and geometrical parameters have values Re= 264,Wo= 12,W = 0.5,H = 0.5.

in the centre of the aneurysm, frames (iv) and (v), which moves towards the distal end
of the dilatation, frames (vi)–(x). As a consequence, vorticity of opposite (negative)
sign is produced at the wall, frames (v) and (vi). As this vorticity is torn off the
wall it rolls up in a second ring-like vortex structure, frames (vii)–(x). The two ring-
like vortex structures of opposite sign persist for a short period at the end of the
cycle, frames (x) and (i), but as the flow rate increases again at the beginning of a
new cycle, the primary (positively signed) vortex is washed away downstream, while
the second (negatively signed) vortex is annihilated by the newly produced positively
signed vorticity at the wall, frames (ii) and (iii). The process then repeats.

Differences between the wall shear stress distribution of a healthy artery and that of
an artery with a local dilatation can be deduced by comparing figure 5 with figure 7.
In the latter figure, the axial variation of the cycle-averaged wall shear stress and the
cycle-averaged magnitude of the wall shear are plotted. It will be seen that significant
deviations from the values found for a healthy artery are limited to the central part of
the dilatation, roughly in the range −1< z< 1. The minimum and maximum values
of the cycle-averaged wall shear stress magnitude in the dilated artery are 36 % and
197 %, respectively, of the values found for the healthy artery. However, with regard to
the cycle-averaged wall shear stress itself, it has a positive peak value for the inflated
vessel that is 2.8 times the cycle-averaged shear stress in a healthy vessel, and, at
another location, a negative peak with a level 4.8 times the mean shear stress in a
healthy vessel. It should be noted that these oppositely signed peak values of the mean
stress are located within a short distance of each other.

3.2.2. Variations of the geometry
The effect of varying the geometry, as represented by the dilatation ratio

DR = 1 + 2H/D, the ratio of the maximum diameter to the inlet diameter, is
investigated by varying the non-dimensional bulge height H for a fixed value of
W. As a first example we take W = 0.5. Figure 8 presents the vorticity distribution
of the flow in the model aneuryrsm at various time instants during a cycle for the
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FIGURE 7. Axial variation of the cycle-averaged wall shear stress (WSS; solid line)
and cycle-averaged magnitude of the wall shear stress (|WSS|; dotted line) in the model
aneurysm, calculated for the flow rate waveform Q1 (rest conditions) and with values of
the flow parameters and geometrical parameters as in figure 6: Re= 264,Wo= 12,W =
0.5,H = 0.5.

values H = 0.3 and H = 1.0; the waveform and values of the Reynolds number and
Womersley parameter are the same as in figure 6. It should be noted that the flow
phenomenology described in the previous section for H = 0.5 is also found for a
value of the dilatation ratio as low as DR = 1.6 (H = 0.3). However, in this shallow
dilatation the primary vortex occupies a relatively larger volume and is more readily
washed away and convected downstream. As a consequence, the secondary oppositely
signed vortex structure occupies less volume and its formation is delayed. In a more
developed dilatation, as characterized by H = 1.0, the vortices remain trapped during
a longer phase of the cycle and the secondary vortex persists throughout the whole
cycle.

As a second example, we consider W = 1, which is representative of a longer
aneurysm than in the first example (W = 0.5), for the same value of H. Figure 9
presents the vorticity distribution in the dilatation, again for H = 0.3 and H = 1.0,
and for the same waveform Q1, Reynolds number and Womersley parameter as in
figure 6. The differences are remarkable: the layer of vorticity at the wall remains
attached for a much larger part of the cycle, and, as a result, the primary ring-like
vortex structure forms much later during the deceleration phase after peak systole
and remains much weaker. The interaction with the wall is so weak that the primary
vortex does not move towards the distal wall and no secondary oppositely signed
vortex structure is formed during diastole.

The distributions of the cycle-averaged wall shear stress associated with the
examples just given are summarized in figure 10, where results for H = 0.7 have
also been added. A first conclusion from these plots is that the peak value of the
cycle-averaged wall shear stress does not seem to be a significant quantity to monitor
to decide on the growth of an aneurysm, as it varies very little with changes of H.
A similar conclusion could be drawn regarding the distribution itself, since that also
remains qualitatively similar as H increases while W is kept fixed. It should be noted,
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(a) (b)

FIGURE 8. (Colour online) Evolution of the azimuthal vorticity distribution during one
pulse cycle of the flow rate waveform Q1 (rest conditions). The dimensionless vorticity
values range from −20 (blue) to +20 (red). The axial range is −3< z< 7 and the flow
parameters and geometrical parameters have values Re= 264,Wo= 12,W = 0.5; H = 0.3
in (a) and H = 1.0 in (b).

(a) (b)

FIGURE 9. (Colour online) Evolution of the azimuthal vorticity distribution during one
pulse cycle of the flow rate waveform Q1 (rest conditions). The dimensionless vorticity
values range from −20 (blue) to +20 (red). The axial range is −3 < z < 7. The
flow parameters and geometrical parameters have the same values as in figure 8: Re =
264,Wo= 12, H = 0.3 in (a) and H = 1.0 in (b), but here W = 1.0.

however, that much stronger spatial gradients of the cycle-averaged wall shear stress
are found for W = 0.5 than for W = 1.0.

3.2.3. Variations of the flow parameters
In this section we consider the effects of varying the Reynolds number and

Womersley number. The geometry is characterized by W = 0.5 and H = 0.5, values
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FIGURE 10. Axial variation of the cycle-averaged wall shear stress (WSS) in the model
aneurysm, as calculated for the flow rate waveform Q1 (rest conditions) and with values
of the flow parameters as in figure 7: Re = 264, Wo = 12, but here W = 0.5 in (a) and
W = 1.0 in (b), while the values of H vary between 0.3 and 1.0.

for which the vorticity distribution and cycle-averaged wall shear stress have already
been shown in figures 6 and 7, for Re= 264 and Wo= 12.

In the first example the value of the Reynolds number is kept fixed at 264,
but the Womersley number has the values 10 and 15. Figure 11 presents the
vorticity distribution at various instants during the pulse cycle. It shows that the
flow characteristics for Wo= 12 are very different from those for Wo= 15. It should
be noted, however, that with all other parameters kept fixed, an increase in the
Womersley number corresponds to an increase of the square of the frequency of
pulsation (ω∝Wo2), so that a change from Wo= 10 to Wo= 15 means that the pulse
frequency increases by more than a factor of two. The phenomenology for Wo= 10
is similar to that for Wo= 12, with a layer of vorticity that separates from the wall
and rolls up to form a ring-like vortex structure. For Wo = 15 the wall shear layer
remains attached for a longer part of the cycle and the rolling up of the vorticity is
less prominent. Moreover, the vorticity in the structure that is formed is weaker and
the structure does not move towards the distal wall of the inflation; as a result also
no oppositely signed vortex structure is formed.

In the second example, the values of the Reynolds number are 200 and 500, while
the value of the Womersley number is kept at 12. Figure 12 indicates that the principal
effect of increasing the Reynolds number is that the magnitude of the vorticity is
larger in the primary vortex structure that forms during the deceleration phase after
peak systole. Flow separation occurs at an earlier moment in the cycle, the vortex
impinges at the distal wall and induces the formation of various vortices of alternating
sign everywhere in the dilatation.

These observations are reflected in figure 13, where the corresponding cycle-
averaged wall shear stress distributions are presented. Figure 13(a,b) show that the
peak values of the cycle-averaged wall shear stress are reduced as the Womersley
number is increased, and figure 13(c,d) show that an increase of the Reynolds number
results in stronger spatial variations in the cycle-averaged stress.

3.3. Flow in abdominal aneurysms during exercise
To follow up on the remark just made, this section presents a few results for the
waveform Q2 (figure 3). The geometry is characterized by H= 0.5 and W = 0.5, and
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(a) (b)

FIGURE 11. (Colour online) Evolution of the azimuthal vorticity distribution during one
pulse cycle of the flow rate waveform Q1 (rest conditions). The dimensionless vorticity
values range from −20 (blue) to +20 (red). The axial range is −3 < z < 7. The flow
parameters and geometrical parameters have the same values as in figure 6: Re = 264,
W = 0.5, H = 0.5, but here Wo= 10 in (a) and Wo= 15 in (b).

(a) (b)

FIGURE 12. (Colour online) Evolution of the azimuthal vorticity distribution during one
pulse cycle of the flow rate waveform Q1 (rest conditions). The dimensionless vorticity
values range from −20 (blue) to +20 (red). The axial range is −3 < z < 7. The flow
parameters and geometrical parameters have the same values as in figure 6: Wo = 12,
W = 0.5, H = 0.5, but here Re= 200 in (a) and Re= 500 in (b).

the flow by Wo=13.8 and Re=1700. Figure 14 shows the vorticity distribution during
various instants in a pulse cycle. At this high Reynolds number an intense separated
shear layer is formed at the proximal end of the aneurysm during flow deceleration
after peak systole. This shear layer rolls up and impinges at the distal end, where
subsequently an oppositely signed secondary vortex structure is formed. This is similar
to what was observed earlier for the waveform Q1, typical of rest conditions, but in



Dynamics of pulsatile flow through model abdominal aortic aneurysms 165

−4 –2 0 2 4 6

−4 –2 0 2 4 6

−4 –2 0 2 4 6
–75

–50

–25

0

50

25

0

25

50

100

75

−75

−50

−25

0

50

25

z z
−4 −2 0 2 4 6

0

25

50

125

100

75

(a) (b)

(c) (d)

FIGURE 13. (a,c) Axial variation of the cycle-averaged wall shear stress (WSS) and
(b,d) cycle-averaged magnitude of the wall shear stress (|WSS|) in the model aneurysm,
as calculated for the flow rate waveform Q1 (rest conditions) and with values of the
geometrical parameters as in figure 7: W = 0.5, H = 0.5. The flow parameters have the
values (a,b) Re= 264, Wo= 10 or Wo= 15; (c,d) Re= 200 or Re= 500, Wo= 12.

the present case, because the vortices are much stronger, a tertiary vortex with the
same sign as the primary vortex is induced inside the dilatation during the diastolic
phase. This can be seen clearly in frame (vi), where the (negatively signed) secondary
vortex pulls (positively signed) vorticity out of the shear layer, which then rolls up to
become a positively signed tertiary vortex. The secondary and tertiary vortices then
move together and collide with the proximal wall of the dilatation. The vortices are
found to persist during most of the pulse cycle, but gradually weaken by diffusive
effects.

Similar flows are observed for other values of H and W. The features of the flows
are reflected in the cycle-averaged wall shear stress distributions presented in figure 15.
The height H appears to have a relatively weak influence, except for with regard to
the minimum value of the averaged wall shear stress. As the aneurysms grow in size,
as represented by larger values of H, the secondary vorticity structure persists longer
inside the dilatation; this appears to correlate with higher absolute values of the wall
shear stress. Variations of the length of aneurysms, as represented by variations in the
width W, correspond to shifts in the locations of the maximum and minimum values
of the cycle-averaged wall shear stress.

Perhaps the most significant result from these observations is that at elevated
Reynolds numbers the flow fields are highly complex, with vortices of alternating
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FIGURE 14. (Colour online) Evolution of the azimuthal vorticity distribution during
one pulse cycle of the flow rate waveform Q2 (exercise conditions). The dimensionless
vorticity values range from −20 (blue) to +20 (red). The axial range is −3< z< 7. The
flow parameters and geometrical parameters have values Re= 1700, Wo= 13.8, W = 0.5,
H = 0.5.

sign present throughout the aneurysm. As mentioned in § 1, we believe that if such
flow conditions persist, this may have a detrimental effect on the vessel wall.

4. Stability characteristics
4.1. Flow in abdominal aneurysms during rest

4.1.1. Variations of the flow parameters
We begin this discussion of the stability of pulsatile flows in a model aneurysm

by looking at the flow associated with the pulse waveform Q1. The parameters have
values H = 0.5, W = 0.5, Wo= 15, while three values of the Reynolds number have
been investigated: Re= 200, Re= 250 and Re= 300. The results are summarized in
figure 16. The pulsatile flow is stable at Re = 200 and Re = 250, but at Re = 300
it is unstable to perturbations with mode numbers m = 2, m = 3 and m = 4. The
most unstable mode is that with m = 3. In figure 16 the modes that are classified
as subharmonic (period-doubling) are indicated by filled circles. The unstable modes
can be seen to arise from two different sets of eigenmodes: the subharmonic modes
dominate at small mode numbers, the harmonic modes at higher values of the mode
number. It may be noted that something similar was observed for stenotic flows
(Sherwin & Blackburn 2005; Griffith et al. 2009), where the mode m= 1 was found
to correspond to a period-doubling bifurcation.

The vorticity distributions of the perturbations associated with modes m = 1 and
m= 3 at various instants in a pulse cycle are shown in figure 17 for Re= 300. They
are arranged in bands and, although the modes are dominant inside the dilatation, they
extend far downstream. This is especially the case for mode m = 1, but appears to
be a characteristic feature of all subharmonic modes. Such structures of the vorticity
perturbations are very different from those that have been found for steady flows
through similarly shaped model aneurysms (Gopalakrishnan, Pier & Biesheuvel 2014);
in that case these vorticity perturbations are confined to the dilatation.
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FIGURE 15. (a,c) Axial variation of the cycle-averaged wall shear stress (WSS) and (b,d)
cycle-averaged magnitude of the wall shear stress (|WSS|) in the model aneurysm, as
calculated for the flow rate waveform Q2 (exercise conditions). The values of the flow
parameters and geometrical parameters are Re = 1700, Wo = 13.8, H = 0.3 or H = 1.0,
W = 0.5 (a,b) and W = 1.0 (c,d).

These observations imply that the presence of an abdominal aortic aneurysm may
create, for certain flow conditions, disturbed flows which extend far downstream into
healthy sections of the arterial system. The result is that healthy vessel walls become
exposed to sustained abnormal flow velocity conditions, which eventually may damage
these vessel walls. This, in turn, may lead to atherosclerosis (Barakat 2013), or to the
formation of a secondary aortic aneurysm. This might explain why about one-fifth of
large abdominal aortic aneurysms are accompanied by aneurysms of the common iliac
arteries.

Figure 18 summarizes the results of a stability analysis of the pulsatile flow at the
same values of the parameters as in figure 16, except that now Wo= 10 (a) and Wo=
12 (b). The most significant observation seems to be that as the Womersley number
is reduced, the flows become unstable at lower values of the Reynolds number. As
already mentioned, the flows at Wo= 10 and Wo= 12 are rather different from that at
Wo=15. The most unstable mode appears to be the mode m=2, which in the majority
of cases can be classified as period-doubling. The absolute values |µ| of the Floquet
multipliers are much higher for Wo= 10 and Wo= 12 than for Wo= 15. It should be
noted, however, that the time periods T ∝Wo−2 are longer too at Womersley numbers
10 and 12, in comparison with 15. Since the temporal growth rate σ (= ln µ/T) is
inversely proportional to the time period T , the growth rates at Wo= 10, 12 are not
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FIGURE 16. Variation of the absolute value of the Floquet multiplier µ with azimuthal
mode number m for pulsatile flow through a model aneurysm, for three different values
of the Reynolds number. The flow rate waveform is Q1 (rest) and the other parameters
have the values Wo= 15, H= 0.5 and W= 0.5. Subharmonic modes are indicated by filled
circles. The dotted line for |µ| = 1 is the stability boundary.

(a) (b)

FIGURE 17. (Colour online) Evolution during one pulse cycle of the azimuthal vorticity
distributions of the perturbed flows associated with the azimuthal modes m = 1 (a) and
m= 3 (b). The basic flow is that of the pulse waveform Q1 (rest) and the values of the
flow parameters and geometrical parameters are Re= 300, Wo= 15, H = 0.5, W = 0.5.

significantly higher than at Wo = 15, as the amplification of the perturbations takes
place over a longer time.

4.1.2. Response to harmonic forcing
The presence of vorticity perturbations downstream of the aneurysm, examples of

which are shown in figure 17, suggests that an abdominal aortic aneurysm can be
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FIGURE 18. Variation of the absolute value of the Floquet multiplier µ with azimuthal
mode number m for pulsatile flow through a model aneurysm, for three different values of
the Reynolds number. The flow rate waveform is Q1 (rest) and the geometrical parameters
have the same values as in figure 16, H = 0.5 and W = 0.5, but here Wo = 12 (a) and
Wo = 10 (b). Subharmonic modes are indicated by filled circles and the dotted line for
|µ| = 1 is the stability boundary.

viewed as acting as a wavemaker which forces the flow in the vessels downstream.
To verify this, we consider a straight circular vessel of sufficient length, and apply a
harmonic forcing and observe the linear response. The unperturbed flow in the circular
vessel is the Womersley solution. The external forcing is modelled as a body force
f (x, t) added to the linearized Navier–Stokes equations (2.5),

∂u′

∂t
+ (U · ∇)u′ + (u′ · ∇)U=−∇p′ + 1

Re
1u′ + f (x, t), (4.1a)

∇ · u′ = 0, (4.1b)

where
f (x, t)=ψ(x) exp(−iσit). (4.2)

Here, the weight function ψ(x) is chosen such that the forcing is restricted to a
small region of space. The forcing frequency σi is taken as the imaginary part of the
complex growth rate obtained from the linear stability analysis of the flow through
the model aneurysm.

Figure 19(b,d) shows the response of pulsatile flow in a straight circular vessel to
harmonic forcing in comparison with the associated aneurysm flow (figure 19a,c) at
two different flow conditions: (a,b) Re = 200, Wo = 15, m = 1 and (c,d) Re = 300,
Wo = 15, m = 3 (H = 0.5, W = 0.5). The region of application of the forcing is the
black circular spot. The perturbed flow downstream of the aneurysm (figure 19a,c)
compares very well with the forced flow in (b,d).

4.1.3. Variations of the geometry
Figure 20 summarizes the results of a stability analysis of the pulsatile flow at Re=

264 and Wo = 12, for various values of H, while the value of W is kept fixed at
W= 0.5 in (a) and at W= 1.0 in (b). The radial extent of the dilatation, as represented
by the value of H, is found to be of significance for the stability of the flow. For
W = 0.5, the flow is unstable for H > 0.4, the dominant mode in all cases being a
subharmonic mode of azimuthal mode number 2. An additional calculation at H= 0.4
was carried out because of the substantial variation that was observed of the values of
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FIGURE 19. (Colour online) (a,c) Energy distribution of the axial velocity component
of the leading critical mode for pulsatile flow through a model aneurysm; (b,d) energy
distribution of the axial velocity component of the perturbation flow set up by a harmonic
forcing at the same frequency applied in the domain shown by a black circle of the
pulsatile flow through a straight vessel at the same values of the Reynolds number and
Womersley number. Parameter settings: W = 0.5, H= 0.5, (a,b) Re= 200, Wo= 15, m= 1,
(c,d) Re= 300, Wo= 15, m= 3.
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FIGURE 20. Variation of the absolute value of the Floquet multiplier µ with azimuthal
mode number m for pulsatile flow through a model aneurysm, for various values of the
depth of the aneurysm, as represented by H. The flow rate waveform is Q1 (rest) and
the other parameters have the values Re = 264, Wo = 12, W = 0.5 (a) and W = 1.0 (b).
Subharmonic modes are indicated by filled circles and the dotted line for |µ| = 1 is the
stability boundary.

the Floquet multipliers as H was changed from 0.3 to 0.5. As expected, and confirmed
in figure 20(b), the flow in a long aneurysm, as represented by the value of W, is less
prone to becoming unstable than that in a short aneurysm.

The azimuthal vorticity distributions associated with the least stable modes of the
flows in figure 20(a) are presented in figure 21. It is remarkable that already at the
small value of H = 0.3, the dominant mode extends downstream of the dilatation.
Similar features are observed for W = 1 in figure 22. We have already mentioned
the observation that an aneurysm may initiate disturbed flow conditions in healthy
segments of the arteries downstream of the aneurysm; the results shown in figures 21
and 22 now suggest that this will already occur in the incipient stages of an aneurysm.
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FIGURE 21. (Colour online) Azimuthal vorticity distributions of the perturbed flows
associated with the least stable mode m for pulsatile flow through a model aneurysm. The
axial range shown is −1.5D6 z6 7D and the flow parameters and geometrical parameters
have the values Re = 264, Wo = 12, W = 0.5 and from top to bottom H = 0.3, 0.5, 1.0.
The flow rate waveform is Q1 (rest).

FIGURE 22. (Colour online) Azimuthal vorticity distributions of the perturbed flows
associated with the least stable mode m for pulsatile flow through a model aneurysm. The
axial range shown is −1.5D6 z610D and the flow parameters and geometrical parameters
have the values Re= 264, Wo= 12, W = 1.0 and from top to bottom H= 0.3, 0.4, 0.5, 1.0.
The flow rate waveform is Q1 (rest).

Clearly, this study is not conclusive, since the presence of the iliac artery bifurcation
downstream of an abdominal aortic aneurysm can be expected to interact with the
flow inside the aneurysm. Yet, what it does show is that the iliac bifurcation and
segment of the common iliac arteries needs to be included in the computational
domain when carrying out realistic, patient-specific simulations of flows in abdominal
aortic aneurysms.

4.2. Flow in abdominal aneurysms during exercise
To conclude, we briefly consider the stability of pulsatile flow in the model aneurysm
under exercise conditions. The waveform Q2, recorded by Suh et al. (2011) and
shown in figure 3(b), corresponds to a Reynolds number of 1700 and a Womersley
number of 13.8, if the vessel diameter at the location of the recording is 1.7 cm.
However, to simplify the computations and to focus on the influence of the waveform,
we have chosen the lower value Re= 500 and kept the value Wo= 13.8. Nevertheless,
we believe that the results provide a qualitative picture of the flow perturbations



172 S. S. Gopalakrishnan, B. Pier and A. Biesheuvel

2.5

2.0

1.5

1.0

0.5
6 842

FIGURE 23. Variation of the absolute value of the Floquet multiplier µ with the azimuthal
mode number m for pulsatile flow through a model aneurysm. The flow parameters and
geometrical parameters have the values Re = 500, Wo = 13.8, W = 0.5, H = 0.5. The
Womersley number corresponds to the flow rate waveform Q2 (exercise), but the Reynolds
number is reduced from 1700 to 500. Subharmonic modes are indicated by filled circles
and the dotted line for |µ| = 1 is the stability boundary.

prevailing for exercise waveforms at larger Reynolds numbers. In all calculations, the
geometrical parameters have the values W = 0.5 and H = 0.5.

The absolute values of the Floquet multipliers associated with the first eight
azimuthal modes of the flow perturbations are given in figure 23. All Floquet
multipliers are real; the most dominant mode is m = 5. Moreover, all modes with
m > 2 can be classified as period-doubling, as indicated by the filled circles.

The azimuthal vorticity distributions of the perturbations are shown in figure 24 for
various mode numbers. Here, the modes m= 1 and m= 2 are stable, and the modes
m= 3, m= 4 and m= 5 are unstable. The vorticity distributions associated with m= 6,
m= 7 and m= 8 are not shown, because they resemble closely that associated with
mode m = 5. It will be observed that in this case the perturbation fields associated
with the stable modes m = 1 and m = 2 and the marginally unstable mode m = 3
extend downstream of the dilatation, but that the perturbation fields associated with
the higher-valued unstable modes are much more localized inside the dilatation; these
more localized modes have the largest growth rate.

5. Sensitivity to geometrical details
During the tests that were conducted to validate our numerical tools we noticed a

remarkable sensitivity of the results to details of the model geometry. Here, we take
the opportunity to report these observations. We compare the results of numerical
computations using the Gaussian shaped vessel of the present paper with results
obtained for a sinusoidally shaped vessel wall, the model aneurysm studied in the
recent work of Sheard & Ryan (2008) and Sheard (2009). For this comparison the
same value of H is taken, while W is chosen such that the areas traced out in an axial
plane by the vessel walls are the same. The two geometries, with the ‘wavelength’
of the sinusoidally shaped wall denoted L, are shown in figure 25.

The pulsatile flow rate waveform in this comparison is that used by Salsac et al.
(2006) and Sheard (2009), which is called Q3 here and is shown in figure 26.
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FIGURE 24. (Colour online) Azimuthal vorticity distributions of the perturbed flows
associated with modes m = 1, . . . , 5 for pulsatile flow through a model aneurysm. The
axial range shown is −2.5D 6 z 6 10D and the flow parameters and geometrical
parameters have the values Re=500, Wo=13.8, W=0.5, H=0.5. The Womersley number
corresponds to the flow rate waveform Q2 (exercise), but the Reynolds number is reduced
from 1700 to 500.
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FIGURE 25. The sinusoidal geometry used in the studies by Sheard & Ryan (2008) and
Sheard (2009) is shown by the dotted curves and the Gaussian shaped geometry used in
the present study is shown by the solid curves. Both model aneurysms have the same area
in a plane through the symmetry axis. Parameter values: H = 0.45, W = 0.58, L= 2.9.

The flow parameters have the values Re= 330 and Wo= 10.7. An important difference
between waveforms Q1 and Q3 is that much larger negative flow rates occur for Q3.

Figure 27 presents the evolution of the azimuthal vorticity distribution during one
pulse cycle of the pulsatile flow of Q3 through a model aneurysm with sinusoidal
shape (a) and with Gaussian shape (b). Qualitatively, the flow phenomena in the two
geometries are similar, but closer inspection reveals that there is a slight time delay
in the evolution of the vorticity distribution in the Gaussian shaped aneurysm with
respect to that in the sinusoidally shaped aneurysm. This may be attributed to the
fact that the sinusoidal wall, where it connects to the straight vessel, is not as well
rounded-off as the vessel with the Gaussian shaped wall. As a result, flow separation
occurs at a slightly earlier stage during systole. This phenomenon can be seen best
by comparing the frames (ii) which correspond (roughly) to peak systole.
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FIGURE 26. The waveform considered in the study by Salsac et al. (2006) and
Sheard (2009).
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FIGURE 27. (Colour online) Evolution of the azimuthal vorticity distribution during one
pulse cycle of the flow rate waveform Q3 in aneurysms modelled by a sinusoidal (a) and
a Gaussian (b) wall function. The dimensionless vorticity values range from −20 (blue)
to +20 (red). The axial range is −3D 6 z 6 5D. The values of the flow parameters and
geometrical parameters are Re= 330,Wo= 10.7,H = 0.45,W = 0.58, L= 2.9.

The wall shear stress distribution has been found to be rather sensitive to the details
of the vorticity distribution in an aneurysm, cf. § 3.2, so that one would expect that
the slight time delay just mentioned would be visible in plots of the wall shear stress.
This is indeed the case. As figure 28 shows, the most prominent differences are found
at the proximal and distal ends of the dilatation, i.e. close to the location where there
is a difference in differentiability of the functions that describe the vessel wall shapes.

It will now not come as a surprise that the slight differences in the vorticity
distributions of the pulsatile flows are also reflected in the stability characteristics
of these flows. Figure 29 compares the absolute value of the Floquet multiplier
associated with the azimuthal modes m = 1, . . . , 5 in the two geometries; here the
flow parameters are Re = 330 and Wo = 10.7. Qualitatively, the characteristics are
the same: all Floquet multipliers are complex and in both cases the mode m = 3 is
the least stable mode; this was found also by Sheard & Ryan (2008). The absolute
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FIGURE 28. Axial variation of the cycle-averaged wall shear stress WSS (a) and
cycle-averaged magnitude of the wall shear stress |WSS| (b) in aneurysms modelled by
a sinusoidal (dotted curves) and a Gaussian (solid curves) wall function. The flow rate
waveform is Q3 and the values of the flow parameters and geometrical parameters are
Re= 330, Wo= 10.7, H = 0.45, W = 0.58, L= 2.9.
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FIGURE 29. Variation of the absolute value of the Floquet multiplier µ with the azimuthal
mode number m for pulsatile flow through a model aneurysm with the wall described
by a sinusoidal function (dotted curve) and a Gaussian function (solid curve). The flow
parameters and geometrical parameters have the values Re = 330, Wo = 10.7, H = 0.45,
W = 0.58, L= 2.9.

values of the Floquet multipliers, though, are significantly larger for pulsatile flow
through the sinusoidally shaped aneurysm, the mode m= 1 even being unstable while
it is stable for the Gaussian shaped wall.

The azimuthal vorticity distributions of the perturbed flows associated with the
various modes are shown in figure 30, for the sinusoidally shaped wall in (a) and
for the Gaussian shaped wall in (b). Again, these vorticity distributions may seem
similar; however, they are not indistinguishable. As found earlier, the higher mode
numbers m= 2, 3, 4, 5 are localized within the dilatation, but the (most stable) mode
m= 1 extends far downstream.

This example shows that the details of pulsatile flow through aneurysms, the
wall shear stress distribution in particular, can be extremely sensitive to geometrical
details. The conclusion is that care must be taken when interpreting results from
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FIGURE 30. (Colour online) Azimuthal vorticity distributions of the perturbed flows
associated with modes m = 1, . . . , 5 for pulsatile flow through a model aneurysm of
sinusoidal shape (a) and Gaussian shape (b). The axial range shown is −2.5D6 z6 10D.
The flow rate waveform is Q3, and the flow parameters and geometrical parameters have
the values Re= 330, Wo= 10.7, H = 0.45, W = 0.58, L= 2.9.

(‘patient-specific’) computations of the flow in an aneurysm geometry that is
constructed from medical imaging data.

6. Conclusions

In this paper we have presented the results of numerical computations of pulsatile
flow through a model abdominal aortic aneurysm, and of an analysis of the
hydrodynamic stability of this flow. The aneurysm is modelled as a circular cylindrical
vessel with a radius described by a Gaussian function. The flow at the inlet of the
calculational domain is the Womersley solution for pulsatile flow in a cylindrical
vessel. This solution is a Fourier–Bessel series; the coefficients of the series were
deduced from measurements by Suh et al. (2011) of the blood flow rate waveform
at the inlet of the infrarenal aorta, during rest and exercise conditions, of patients
suffering from an abdominal aortic aneurysm.

For a given flow rate waveform, the problem is characterized by four dimensionless
quantities: the Reynolds number Re and Womersley number Wo of the fluid flow, and
the ‘height’ H and ‘width’ W which specify the Gaussian geometry of the dilatation.
In the present study, the Reynolds number was varied between 200 and 500 and
the Womersley number between 10 and 15, for the flow rate waveform of the rest
condition. The flow structure corresponding to an exercise condition was studied for
Re= 1700 and Wo= 13.8, but it turned out to be easier to use the value Re= 500 in
the stability analysis. To learn about the influence of the aneurysm geometry on the
flow characteristics, the geometrical dimensionless quantities were varied in the ranges
0.3 6 H 6 1.0 and 0.5 6 W 6 1.0.

Typical flow phenomena that can be observed in pulsatile flow through an aneurysm
are the creation of vorticity at the vessel wall during the acceleration phase of systole,
followed by detachment of this wall-bounded shear layer at the proximal end of the
dilation during the deceleration phase of systole; this leads to the formation of a
cylindrical layer of concentrated vorticity with a radius comparable with that of the
vessel upstream of the dilatation. For ‘sufficiently localized’ aneurysms, for Reynolds
numbers and Womersley numbers in the physiological range, the shear layer rolls up
and forms a ring-like vortex structure which interacts with the vessel wall and collides
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with it near the distal end of the dilatation. During this vortex–wall interaction, new
vorticity of opposite sign is produced at the vessel wall; this eventually detaches
and forms a secondary vortex ring with vorticity of opposite sign to that of the
primary vortex ring. During the final stages of diastole, the primary vortex is washed
downstream with the flow, while the secondary opposite signed vortex decays. This
process then repeats in a new cardiac cycle. An increase of the Reynolds number
and/or an increase in the height of the dilatation yields more vigorous vortex
dynamics, in the sense that the vortices are more intense and approach the distal
vessel wall at higher speed, and that further ring-like vortex structures are formed.
The computations with the flow rate waveform corresponding to exercise conditions
show that at high Reynolds number a highly complex vorticity distribution emerges.

This description of the flow phenomena in pulsatile flow through a Gaussian shaped
model aneurysm agrees very well with what was found in experiments by Salsac
et al. (2006). These authors also observed that the vortex motions within the dilatation
induce strong spatial and temporal variations of the wall shear stress, especially near
the distal end. Again, this agrees with what was found by us. Our computational
approach allowed us to investigate a somewhat larger range of parameter values than
Salsac et al. (2006). Our results support the conclusion of Salsac et al. (2006) that
longer aneurysms are less pathological than short ones. Moreover, our results suggest
that physical activity is harmful for a patient with an abdominal aortic aneurysm; the
more-localized or well-developed aneurysms again being the most pathological.

Yip & Yu (2001) and Salsac et al. (2006) mention that during part of the
cardiac cycle the flow in an aneurysm may become weakly turbulent. Since this
repetitive occurrence of disturbed flow conditions seems especially harmful, we have
investigated the hydrodynamic stability of pulsatile flows through a model aneurysm. It
appears that such flows are unstable to small-amplitude three-dimensional disturbances
for flow conditions within the physiological range, flows through well-developed
aneurysms being the most susceptible. Our findings support the idea that patients
suffering from abdominal aortic aneurysms might want to avoid physical exercise.
A second important observation is that the vorticity structures associated with the
flow disturbances are not confined to the dilatation, but rather extend far downstream.
The abdominal aortic aneurysm acts as a ‘wavemaker’ which generates disturbed
flow conditions in the healthy section of the arterial system downstream of the aortic
aneurysm. This may be related to the fact that one-fifth of larger abdominal aortic
aneurysms are accompanied by an aneurysm in one or both of the common iliac
arteries (Armon et al. 1998). It also leads to the conclusion that patient-specific
computational studies of the biomechanics of abdominal aortic aneurysms should
include the iliac bifurcation and the common iliac arteries as part of the computational
domain.

Finally, during various numerical tests we observed a remarkable sensitivity of the
flow to geometrical details of the model aneurysm. This became clear by carrying out
the calculations of Sheard (2009), who modelled the aneurysm wall by a sinusoidal
function, using a Gaussian function with the same maximal vessel radius and which
encloses the same area in a plane through the axis of symmetry. The volume flow rate
waveform was that used by Salsac et al. (2006) and Sheard (2009), obtained from a
healthy male subject at rest, and so were the dimensionless flow quantities: Re= 330
and Wo= 10.7. What was observed was that the exceedingly small difference in the
differentiability of the shape functions, where the sinusoidal dilatation connects to the
inlet vessel, leads to small, but still significant, differences in the wall shear stress
distribution and the growth rate of three-dimensional flow perturbations. If the aim is
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to make a quantitative analysis through a patient-specific computational study it seems
wise to carry out a sensitivity analysis to assess the influence of unavoidable minor
errors that occur when transforming medical images into a computational domain.
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a b s t r a c t

Significant progress has beenmade towards understanding the global stability of slowly-developing shear
flows. The WKBJ theory developed by Patrick Huerre and his co-authors has proved absolutely central,
with the result that both the linear and the nonlinear stability of a wide range of flows can now be
understood in terms of their local absolute/convective instability properties. In many situations, the local
absolute frequency possesses a single dominant saddle point in complex X-space (where X is the slow
streamwise coordinate of the base flow), which then acts as a single wavemaker driving the entire global
linear dynamics. In this paper we consider the more complicated case in which multiple saddles may
act as the wavemaker for different values of some control parameter. We derive a frequency selection
criterion in the general case, which is then validated against numerical results for the linearized third-
order Ginzburg–Landau equation (which possesses two saddle points). We believe that this theory may
be relevant to a number of flows, including the boundary layer on a rotating disk and the eccentric
Taylor–Couette–Poiseuille flow.

© 2014 Elsevier Masson SAS. All rights reserved.

1. Introduction

Over the last twenty to thirty years, the investigation of the
long-time response of a shear flow to impulsive forcing has become
one of the most active areas of fluid mechanics research. In these
developments Patrick Huerre has played a huge and seminal role.

In the parallel-flow case, the theory of [1,2] leads to the
distinction between convective instability, in which disturbances
grow at the same time as being swept out of the system, and
absolute instability, in which an unstable Fourier mode with zero
group velocity grows in situ and eventually dominates the whole
fluid domain. This theory has been successfully applied to a wide
range of flows which exhibit a transition from convective to
absolute instability as some control parameter is varied, including
plane mixing layers [3], heated jets [4], and the boundary layer on
a rotating disk [5,6].

For non-parallel flow, much attention has focused on the case
in which the base flow evolves only slowly in space, allowing
the separation of scales between slow, X , and fast, x, streamwise
coordinates. We then have the concept of local convective and

∗ Corresponding author.
E-mail address: benoit.pier@ec-lyon.fr (B. Pier).

absolute instability, in which the base flow at a given value of X is
used to compute a local absolute frequency as if for parallel flow,
ω0(X) say. Many flows contain regions of local absolute instability,
where1 ω0,i > 0, and adjacent regions of local convective
instability or local stability, where ω0,i < 0. An example of
such a flow is the wake of a bluff body, as noted by [7], with a
pocket of local absolute instability close to the body and a region
of local convective instability downstream. The key question here,
however, is how the local stability properties can be connected to
the behaviour of the whole system, and in particular how one can
construct from the local data a global mode, in which the whole
system oscillates with the same frequency, ωG say. A significant
step forward in this regard was made by [8], who showed how ωG
is given by the saddle point of ω0(X) in the complex X-plane: the
saddle point is then the effective location of a wavemaker which
drives the global oscillation of the whole flow. These ideas are
presented in detail in [9,10], while applications to thewake flow in
particular are given in [11,12]. Situations with more complicated
branch structures have been investigated by [13]. At this point
we should also mention that while the above analysis has been

1 Throughout this paper, subscripts i and r denote imaginary and real parts of a
complex quantity.

http://dx.doi.org/10.1016/j.euromechflu.2014.03.006
0997-7546/© 2014 Elsevier Masson SAS. All rights reserved.
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concerned with linearized unsteady flow, the same ideas also
pertain in nonlinear systems. In particular, [14] shows that the
global nonlinear dynamics are again driven by a wavemaker, now
located close to the transition station from local convective to local
absolute instability, with solutions in the two regions connected
across a relatively sharp front region.

To date much of the work on the global stability of weakly non-
parallel flow has concentrated on the case in which there exists
just a single saddle point ω0(X) which controls the dynamics. In
terms of a simplemodel, this behaviour is replicated by the second-
order linearized Ginzburg–Landau equation. However, there are
other flows in which several saddle points are present, with
the possibility of the dynamics being driven by different saddles
depending on the value of some control parameter. We mention
two cases here. First, [15] shows that the rotating-disk boundary
layer possesses two separate branches of saddle points, which
for a particular Reynolds number (equivalently a particular disk
radius) collide at what is termed as a ‘super branch point’. The
role of these two saddle points in determining the linear global
behaviour of the rotating disk remains an open question. Second,
it has recently been shown [16] that the dispersion relation of the
eccentric Taylor–Couette–Poiseuille flow displays several saddle
points and that the absolute instability may switch between these
saddles when control parameters are varied. In typical oil-drilling
applications the eccentricity slowly changes with axial distance: a
global stability analysis of such a configuration is thus expected to
involve multiple saddle points.

In the light of the issues described in the previous paragraph,
our aim in this paper is to develop a linear global mode selection
criterion for problems containing multiple saddle points, and to
test this criterion on the simple model problem of the linearized
third-order Ginzburg–Landau equation (which possesses two
saddle points). The paper is set out as follows. The problem
formulation and basic theory is given in Section 2. In Section 3
we present our global frequency selection criterion, which is
then applied in Section 4 to the third-order Ginzburg–Landau
equation. Comparisons between our criterion and the results of a
full numerical integration are presented in Section 5, and excellent
agreement is found.

2. Problem formulation

Consider a system governed by a one-dimensional linear partial
differential equation that is first-order in time of the form

∂tψ = L(∂x; X)ψ, (1)

where x and t represent space and time coordinates, respectively.
The differential operator L depends on the space through a slow
coordinate X to be defined shortly. The basic state is assumed to
be ψ = 0, and the complex-valued function ψ(x, t) represents
fluctuations riding on this basic state. Solutions to the linear
governing equation (1) may be sought as a superposition of global
modes of the form

ψ(x, t) = φ(x;ω) exp (−iωt) , (2)

where the spatial functions φ and the complex frequenciesω obey
the eigenvalue problem

− iωφ = L(∂x; X)φ, (3)

derived from (1). Many global modes are in general possible, and
themedium governed by (1) is stable ifωi < 0 for all global modes
or unstable if ωi > 0 for at least one global mode.

A crucial assumption of the present investigation is the slow
spatial development as exemplified by the introduction of the slow
spatial variable X in the operator L. The weak non-uniformity
hypothesis is fulfilled if the ratio ϵ = λ/L between the typical

instability length scale λ and the inhomogeneity length scale L
is small. As a result of this scale separation, the weak spatial
variations of the medium properties are described through the
slow variable

X = ϵx with ϵ ≪ 1, (4)

and the time-periodic global-mode solutions may be sought as
WKBJ approximations.

Such a line of thought has been successfully implemented in
situations where the entire medium is governed by a single local
absolute frequency ω0(X), with a dominant saddle point in the
complex X-plane [9,10]. The purpose of the present investigation
is to address more complex situations involving higher-order
dispersion relations and a competition between several saddle
points.

3. Theoretical analysis

3.1. Local characteristics

Under the assumption that the governing equation only
depends on space through the slow variable X , local characteristics
may be derived from (1) by freezing X to some arbitrary value
and studying the corresponding strictly uniform system. At this
local level of analysis, X and x may then be considered to
be independent: the fast x is involved in spatial differentiation
whereas the slow X plays the role of an independent control
parameter.

Any perturbation can then be sought as a superposition of
elementary waves ei(kx−ωt) where the wavenumber k and the
frequency ω satisfy the local linear dispersion relation

ω = Ω(k; X) ≡ iL(ik; X). (5)

This dispersion relation is assumed to be an analytic function of the
complex wavenumber k and it may be thought of as a polynomial
in k. (It is also assumed analytic in slow space X , but the parametric
dependence in X will be ignored in this section for simplicity.)
Solving (5) for a given frequency ω yields a set of spatial branches
kn(ω) indexed by n; with n = 1, 2, . . . ,N in the situation where
Ω(k) is an N-order polynomial in k.

By invoking causality and assuming that the temporal growth
rates are bounded, the spatial branches may be labelled as either
kn+ or kn− branches according to whether they are confined to the
upper or lower complex k-planes for sufficiently large imaginary
parts ofω. Whenωi is lowered, branch switching occurs when two
spatial branches meet at k = k0 for a frequency ω = ω0. Such a
wavenumber–frequency pair is defined by the saddle criterion

∂Ω

∂k
(k0) = 0 and ω0 = Ω(k0). (6)

In the situation where the dispersion relation (5) is an N-th order
polynomial in k, the criterion (6) yields a set of N − 1 solutions
k = kn0 (1 ≤ n ≤ N − 1) each associated with the corresponding
frequency ωn

0 ≡ Ω(kn0).
Let us assume here that the frequencies ωn

0 are sorted by
decreasing imaginary part:ω1

0,i > ω2
0,i > · · ·. Then, when lowering

ωi, the first branch switching occurs for ω = ω1
0 where two spatial

branches, say kn1(ω) and kn2(ω), meet at k10. If this collision is
between a + and a − branch, e.g. between kn1+(ω) and kn2−(ω),
it corresponds to the absolute instability of the system: absolute
frequency ωabs and absolute wavenumber kabs are then given by

ωabs = ω1
0 and kabs = k10. (7)

However, the branch switching at ω1
0 may be between two

branches of the same label, i.e., between kn1+(ω) and kn2+(ω)
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or between kn1−(ω) and kn2−(ω). In that situation, the (k10, ω
1
0)-

saddle of the dispersion relation is not a genuine pinch point and
lowering of the imaginary part of ω may be continued until, at
one of the frequencies ωn

0 , say ω
n0
0 , pinching between a k+ and a

k− eventually occurs. In any case, this procedure unambiguously
yields the absolute frequency and wave number as

ωabs = ω
n0
0 and kabs = kn00 , (8)

associated with one of the saddle points of the dispersion relation
defined by (6).

The above analysis can be carried out for eachX . Thus the spatial
branches kn±(X, ω) are obtained by solving the local dispersion
relation (5) for a given frequency ω, while the saddle-point
wavenumbers kn0(X) and frequencies ωn

0(X) are derived from the
condition

∂Ω

∂k
(k0; X) = 0 and ω0(X) = Ω(k0; X). (9)

Among the frequenciesωn
0(X), the local absolute frequencyωabs(X)

equals the one with largest imaginary part that corresponds to
pinching between downstream and upstream spatial branches.
Note that the frequencies ωn

0(X) are analytic functions of the
complex X-variable, while the local absolute frequency ωabs(X) is
not necessarily an analytic function of X since it may jump from
one ωn

0 branch to another as X is varied.

3.2. Global modes

The long-time response of (1) can be sought as a linear
superposition of global modes which are time-harmonic solutions
of the form (2) of complex global frequency ωG. Under the
assumption of weak spatial inhomogeneity (4) and resorting to
classical WKBJ approximations [17] such a global mode may be
obtained as

ψ(x, t) ∼ A(X) exp


i
ϵ

 X

k(u;ωG)du − iωGt

, (10)

where the slowly-varying local wavenumber k(X;ωG) is governed
by the local dispersion relation (5), and the slowly-varying
amplitude A(X) can be obtained by higher-order expansions.

The boundary conditions for this eigenproblem are that the
mode (10) follows an upstream k−-branch for X → −∞ and a
downstream k+-branch for X → +∞. This corresponds to the fact
that the modes are self-sustained and not triggered by boundary
conditions, i.e. their selection takes place in the central region and
the waves that propagate towards X = ±∞ are the consequences
of this self-sustained process. As shown by [9,10] in the context of
the spatially inhomogeneous complex Ginzburg–Landau equation,
the necessary connection of a k−-branch prevailing near X = −∞

to a k+-branch prevailing near X = +∞ can be achieved at a
saddle point of the absolute frequency in the complexX-plane. This
necessarily involves a dispersion relation which is second-order in
the spatial wavenumber. Wewill now show how to generalize this
theory to the case of a higher-order dispersion relation.

In the previous section we described how the saddle point
frequencies ωn

0(X) may be defined via a local analysis of the
dispersion relation for each value of X in the complex plane. Each
mapping X → ωn

0(X) is analytic and may be thought of as a
polynomial of order Nn. Then there are Nn pre-images, say ω →

X (n,p)(ω) for 1 ≤ p ≤ Nn, in the complex X-plane, obtained as
the inverse mapping


ωn

0

−1 of a given contour in the complex ω-
plane. We assume, as is standard, that the medium is stable, or
at most convectively unstable, towards X → ±∞, which means
that maxn Imωn

0(X) for X on the real axis exists. Now consider a
horizontal L-contour in the complex ω-plane (see Fig. 1b), above

allωn
0(X) for X along the real axis (M-contour). Then the associated

contours X (n,p)(ω) do not cross the real axis (the M-contour) for
ω along the L-contour and may therefore be labelled as X (n,p)+ or
X (n,p)− depending on whether they are confined to the upper or
lower half X-planes respectively (see Fig. 1a). When the L-contour
is lowered, it approaches the ωn

0(X) curves in the ω-plane, and the
X (n,p)±-curves move in closer to the M-contour in the X-plane. As
the L-contour is lowered further, it may be necessary to deform
theM-contour to avoid a collision with one of the X-branches, and
the ωn

0(X)-curves in the ω-plane are then deformed accordingly.
Eventually, however, this process cannot be continued as the M-
contour gets pinched between an X+-branch and an X−-branch
(Fig. 1c); this pinching in the X-plane corresponds, in the ω-plane,
to the L-contour passing through a cusp of one of the ωn

0-curves
(Fig. 1d).

The arrangement of theωn
0(X) and X (n,p)±(ω) curves for X along

the M-contour and ω along the L-contour is then as follows. In
the complex ω-plane (Fig. 1d), the horizontal L-contour lies above
all ωn

0(X)-curves and passes through a cusp at, say, ω1
s of the ω1

0-
curve. In the complex X-plane (Fig. 1c), the deformed M-contour
is pinched at, say, X1

s between the curves X (1,1)+ and X (1,2)−. All
other ωn

0(X)-curves (for n ≠ 1) are below the L-contour in the
ω-plane, and all other X (n,p)+-curves (respectively X (n,p)−-curves)
are above (respectively below) theM-contour in the X-plane. This
saddle point is characterized by X1

s andω1
s and obeys the condition

dω1
0

dX
(X1

s ) = 0 and ω1
s = ω1

0(X
1
s ), (11)

or equivalently

∂Ω

∂X
(k1s , X

1
s ) =

∂Ω

∂k
(k1s , X

1
s ) = 0 and ω1

s = Ω(k1s , X
1
s ), (12)

where k1s is the wavenumber value at which two spatial branches
k(X;ω1

s ) pinch when X = X1
s along the M-contour, and no other

connection between spatial branches is possible along the M-
contour.

If this connection at X1
s is between a k+- and a k−-branch, then

a global mode of the form (10) and frequency ωG = ω1
s has been

found. This is the classical result. It may, however, happen that
this connection is between two k+- or between two k−-branches,
which does not lead to a globalmode solution. Therefore, the above
saddle-point criterion in the complex X-plane yields a globalmode
solution only if the associated ω1

0(X) indeed corresponds to the
absolute frequency of the system for X = X1

s , i.e., if

ωabs(X1
s ) = ω1

0(X
1
s ). (13)

When condition (13) is not fulfilled, another saddle point must
be sought to connect a k−-branch to a k+-branch. Then, the process
is continued by lowering the L-contour further in the ω-plane
(except in a small region around ω1

s ). Via a similar scenario to
previously, this eventually leads to a newpinching of the deformed
M-contour at, say, X2

s between the curves X (2,1)+ and X (2,2)−, while
the L-contour passes through a cusp at, say, ω2

s of the ω2
0(X)-

curve (see Fig. 1e,f). This new saddle point obeys a criterion similar
to (12). Again, a connection between k+- and k−-branches has been
found if the additional condition similar to (13) is met. If not, the
process goes on by lowering the L-contour even further in the ω
plane (except in small regions aroundω1

s andω
2
s ) until, eventually,

a saddle point associated with the local absolute frequency is
found.

A systematic implementation of this strategy leads to the
following criterion for the global mode frequency ωG:

ωG = ωabs(Xs), (14)
∂Ω

∂X
(ks, Xs) =

∂Ω

∂k
(ks, Xs) = 0 and Ω(ks, Xs) = ωabs(Xs).
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a b

c d

e f

Fig. 1. (b,d,f) Loci of ωn
0(X) in the complex ω-plane for X along corresponding M-contour in the complex X-plane. (a,c,e) Loci of X (n,p)±(ω) in the complex X-plane for ω

along corresponding L-contour in the complex ω-plane.

The subtle difference between our new criterion (14) and the
classic result

ωG = ωabs(Xs) and
dωabs

dX
(Xs) (15)

lies in the fact that, in this more general case, there is no guarantee
that the local absolute frequency ωabs(X) is an analytic function
over the entire complex plane, even if the dispersion relation
Ω(k, X) is analytic in both k and X .

In the next section we will illustrate our general result
by designing the simplest possible partial differential equation
exhibiting a local dispersion relation with two saddle points.

4. Toy model

The requirement of more than one saddle point in the
dispersion relation leads us to consider a partial differential
equation with third-order spatial derivatives

∂ψ

∂t
= a0(X)ψ + a1(X)

∂ψ

∂x
+ a2(X)

∂2ψ

∂x2
+ a3(X)

∂3ψ

∂x3
, (16)

which corresponds to the dispersion relation

Ω(k, X) ≡ ia0(X)− a1(X)k − ia2(X)k2 + a3(X)k3. (17)
In the following subsections we will identify the possible choices
of the complex coefficients a0(X), . . . , a3(X), and discuss a range
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of interesting possible behaviours. Our theorywill be confirmed by
comparison with direct numerical simulation of (16).

4.1. Local dispersion relation

Let us first consider the local situation, by assuming a spatially
homogeneous configuration where the coefficients a0, . . . , a3 do
not depend on X .

Causality requires that temporal growth rates are bounded
above, i.e.Ωi(k) is bounded above when k → ±∞. This condition
is met when a3 is real and a2,r > 0. Without loss of generality, we
will use a3 = 1 from now on, which corresponds to a rescaling
of the temporal coordinate. Thus the dispersion relation is entirely
determined by the three complex parameters a0, a1 and a2 (with
a2,r > 0).

Since the dispersion relation is a third-order polynomial in k,
there are two saddle points that satisfy ∂kΩ = 0. The frequencies
and wavenumbers of these saddle points may be written as

ω1
0 = ω0 + δω0 and k10 = k0 + δk0, (18)

ω2
0 = ω0 − δω0 and k20 = k0 − δk0. (19)

Since only three of these four parameters are independent, the
local dispersion relation may be entirely specified by the three
complex parameters ω0, k0 and δk0 as

ω − ω0 = (k − k0)3 − 3(δk0)2(k − k0), (20)

which corresponds to

a0 = i

k30 − 3(δk0)2k0 − ω0


, (21)

a1 = 3

(δk0)2 − k20


, (22)

a2 = −3ik0, (23)
a3 = 1. (24)

The fourth (dependent) parameter follows as δω0 = −2(δk0)3, and
the causality condition a2,r > 0 is fulfilled for k0,i > 0.

In this sectionwewill not consider the detailed local behaviour,
in terms of local absolute/convective instability, which depends in
a complicated way on the local values of the complex coefficients
a0, . . . , a3. However, in the Appendix we will derive the Green’s
function for the constant-coefficient third-order equation with
general complex a0, . . . , a3, which we will then use to find
implicit conditions for local stability in the simplified case of real
coefficients.

4.2. Local absolute frequency

The dispersion relation (20) is characterized by the two saddle
pointsω0 ± δω0 at k0 ± δk0 (18) and (19), with δω0 = −2(δk0)3. In
order to work out which one of these saddle points yields the local
absolute frequency, the method outlined in the previous section
may be used.

The asymptotic behaviour of the dispersion relation (20) is that
ω ∼ k3 as |k| → ∞. Hence, for sufficiently large ωi > 0,
frequencies along a horizontal line ωi = const in the complex ω-
plane are associated with two spatial k+-branches and one spatial
k−-branch in the complex k-plane: say k1+, k2+ and k3− with
Arg(kn) → (n − 1)2π/3 for ωr → ∞.

We will now show that the choice of the local absolute
frequency, i.e. ωabs = ω1

0 or ωabs = ω2
0 , only depends on the value

of δk0. Wewrite δk0 = κeiφ with κ > 0, so that δω0 = 2κ3ei(3φ+π),
and consider the different ranges of values of φ as follows:

(i) First consider the case 0 < φ < π/3, which gives ω1
0,i < ω2

0,i.
When lowering the horizontal line ωi = const in the complex
ω-plane, the first saddle-point frequency to be crossed isω2

0 ≡

ω0 − δω0 (see Fig. 2a). For ω = ω2
0 , two spatial branches meet

at k20 ≡ k0 − δk0. Since π < Arg(−δk0) < 4π/3, the pinch
at k20 is between the k3− and the k2+ branches (see Fig. 2b).
Therefore, ωabs = ω2

0 and kabs = k20, in this case.
(ii) Next consider the case π/3 < φ < 2π/3, which corresponds

to ω2
0,i < ω1

0,i. When lowering the horizontal line ωi = const
in the complexω-plane, the first saddle-point frequency to be
crossed is ω1

0 (see Fig. 2c). For ω = ω1
0 , two spatial branches

meet at k10 ≡ k0 + δk0. Since π/3 < Arg(+δk0) < 2π/3,
the saddle at k10 is between the k1+ and k2+ branches (see
Fig. 2d). Thus, the (k10, ω

1
0)-saddle does not yield the absolute

frequency of the system, and the lowering of the contourωi =

const may be continued until ω2
0 is reached. For ω = ω2

0 ,
two spatial branches meet at k20 ≡ k0 − δk0. The pinch at
k20 is between the k3−-branch and a branch that results from
the recombination of the two k+-branches. Therefore, one has
again that ωabs = ω2

0 and kabs = k20.
(iii) The case 2π/3 < φ < π is similar to the case 0 < φ < π/3,

and yieldsωabs = ω2
0 and kabs = k20 by pinching of k

1+ and k3−.
(iv) Analysing in turn the three remaining cases π < φ < 4π/3,

4π/3 < φ < 5π/3 and 5π/3 < φ < 2π , it can be shown
that they all yield ωabs = ω1

0 and kabs = k10.

In summary, for dispersion relation (20) the absolute frequency
is obtained by the following criterion:

ωabs = ω1
0 when δk0,i < 0, (25)

ωabs = ω2
0 when δk0,i > 0. (26)

Note also that the absolute frequency is the saddle-point frequency
of larger imaginary part, unless π/3 < Arg(δk0) < 2π/3 or
4π/3 < Arg(δk0) < 5π/3 (in which cases the saddle point
corresponding to the saddle-point frequencywith larger imaginary
part is not a pinch point).

4.3. Global modes

For weakly inhomogeneous systems, the coefficients of the
governing Eq. (16) depend on the slow spatial variable X . As
shown in the previous section, the selection criterion of self-
sustained global-mode solutions is based on the double saddle-
point criterion (14) in the complex k- and X-planes for the
local dispersion relation. We will now further specify the spatial
variation of the coefficients (21)–(24) so as to check this criterion
for different situations.

For the application of the spatial saddle-point criterion it is
convenient to use

ω1
0(X) = ω1

s +
1
2
ω1

s,XX


X − X1

s

2
, (27)

ω2
0(X) = ω2

s +
1
2
ω2

s,XX


X − X2

s

2
, (28)

so that each of ω1,2
0 (X) displays exactly one saddle point at X1,2

s
with frequency ω1,2

s . The use of second-order polynomials in X for
ω

1,2
0 (X) guarantees that the associated ω0(X) and δω0(X) are also

second-order polynomials.
After specifying the frequencies (27) and (28), the spatial

distribution of δk0(X) follows from δω0(X) = −2[δk0(X)]3, and
so evaluation of δk0(X) involves a third-order root. Since δω0(X)
is a second-order polynomial in X , it displays two zeroes in the
complex X-plane, which correspond to two branch points for
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Fig. 2. Temporal branches in complex frequency plane (a,c) and spatial branches in complex wavenumber plane (b,d) for local third-order dispersion relation.
(a,b) Configuration with 0 < Arg(δk0) < π/3, (c,d) with π/3 < Arg(δk0) < 2π/3.

δk0(X). After choosing the associated branch cuts to lie away from
the real X-axis, Eqs. (27) and (28) completely specify the three
possible analytic distributions of δk0(X) along the real X-axis, and,
for simplicity, the remaining unspecified parameter k0(X) will be
chosen to be a constant in this study.

Tackling the problem the other way round, i.e., by specifying
an analytic distribution of δk0(X), would have led to complicated
expressions forω1,2

0 (X), preventing the closed-formdetermination
of saddle points in the complex X-plane. Thus the introduction
of a third-order root for δk0(X) seems a small price to pay to
retain the simplest possible model. It would have been even more
complicated to have started by writing down analytic expressions
for the coefficients a0(X), . . . , a3(X), and we therefore assert that
our approach of starting with quadratic expressions for ω1,2

0 (X) is
the best way to understand the behaviour of our system.

So in summary, we have ended up with a particular class of
spatially inhomogeneous system (16) that is entirely determined
by the seven complex parameters

ω1
s , ω

2
s , X

1
s , X

2
s , ω

1
s,XX , ω

2
s,XX and k0, (29)

and by the additional choice of one among the three possible
δk0(X)-branches. Causality requires that k0,i > 0, and the
conditions Imω1,2

s,XX < 0 prevent the medium from being locally
absolutely unstable when Xr → ±∞. The method outlined in
the previous subsection and based on Arg(δk0(X)) is then used
to determine the different regions of the complex X-plane where

the local absolute frequency ωabs(X) equals either ω1
0(X) or ω

2
0(X).

Then, according to the theoretical result (14), the frequencies ω1
s

and ω2
s are possible global mode frequencies if ω1

s = ωabs(X1
s ) or

ω2
s = ωabs(X2

s ). If both are possible, the mode of larger growth
rate is expected to dominate in the long term. In the next section
wewill confirm these results by comparison with direct numerical
simulation.

5. Numerical confirmation

In order to confirm the theoretical results of Section 3,
direct numerical simulations of the third-order partial differential
equation discussed in Section 4 were carried out for a variety of
parameter settings.

The simulations presented below were performed with saddle
point frequencies ω1,2

0 (X) determined by

ω1
s = 1 + i, X1

s = −i, ω1
s,XX = −0.02 − 0.10i, (30)

and

ω2
s = 2, X2

s = −2 + i, ω2
s,XX = −0.05i. (31)

Using k0 = i, each of the three possible δk0(X)-branches was
investigated.

Fig. 3 shows isolines of ω1,2
0,i (X) in the complex X-plane. For

this configuration, the branch points of δk0(X) (where ω1
0(X) =
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Fig. 3. Isolines of (a) ω1
0,i and (b) ω2

0,i in the complex X-plane. Thick line: ω0,i = 0, thin solid lines: ω0,i = 1, 2, . . . , thin dashed lines: ω0,i = −1,−2, . . ..

Fig. 4. Isolines of ωabs,i(X) for (a) branch A, (b) branch B and (c) branch C. Thick line: ω0,i = 0, thin solid lines: ω0,i = 2, 4, . . . , thin dashed lines: ω0,i = −2,−4, . . . . Thick
dotted curve represents boundary where the local absolute frequency ωabs(X) switches between ω1

0(X) and ω
2
0(X).

ω2
0(X)) are located at X ≃ 8.51 + 0.95i and X ≃ −3.68 − 5.02i.

Upon choosing the associated branch cuts away from the real X-
axis, there are three possible choices for δk0(X) along the real axis
(hereafter called branches A, B and C). For each case, the resulting
local absolute frequency ωabs(X) is illustrated by isolines of its
imaginary part in the complex X-plane in Fig. 4.

For branch A, it is seen in Fig. 4(a) that ωabs(X) = ω1
0(X)

in the entire domain although ω1
0 is the dominant saddle only

in the central region. In this situation, the expected global mode
frequency is therefore ω1

s .
For branch B (Fig. 4b), the local absolute frequency ωabs(X) is

seen to follow ω2
0(X) over a large domain including the real X-

axis and both saddles X1
s and X2

s . It is only in the two wedge-shape
regions, starting at the two branch points, that the local absolute
frequency equals ω1

0(X). The expected global mode frequency is
therefore ω2

s .
For branch C (Fig. 4c), it is seen that the complex X-plane is

partitioned into three regions:ωabs(X) followsω1
0(X) in the central

region andω2
0(X) in the regions extending towardsX = ±∞. Since

ωabs(X1
s ) = ω1

s , the expected global mode frequency is ω1
s in this

configuration.
A numerical simulation of (16) performed with coefficient

settings corresponding to branch A leads to the globalmode shown
in Fig. 5(a). Here, the inhomogeneity parameter (4) was chosen
as ϵ = 0.1; therefore the interval −100 < x < 50 corresponds
to −10 < X < 5. The numerically determined global frequency
ωG = 0.98 + 0.97i is very close to the expected ω1

s = 1 + i.
Numerically, the local wavenumber is computed as −i∂xψ/ψ , and
its real and imaginary parts are plotted as thick dashed lines in
Fig. 5(b) and (c) respectively. The three analytical spatial branches
associated with the frequency ω1

s are shown by thin lines in the
same plots. It is seen that the local wavenumber obtained by direct
numerical simulation very closely follows the expected analytical

branches. The imaginary parts of ωabs(X), ω1
0(X) and ω

2
0(X) along

the real X-axis are plotted in Fig. 5(d).
Numerical results corresponding to branchB are shown in Fig. 6.

The mode plotted in Fig. 6(a) is synchronized to a global frequency
ωG = 2.01 − 0.02i, in close agreement with the expected ω2

s = 2.
Its numerically derived local wavenumber follows the associated
analytical branches, as shown in Fig. 6(b,c). For this configuration,
the local absolute frequency follows ω2

0(X) over the entire real X-
axis, see Fig. 6(d).

Numerical results corresponding to branchC are shown in Fig. 7.
The mode plotted in Fig. 7(a) is synchronized to a global frequency
ωG = 1.01 + 0.98i, again in close agreement with the expected
ω1

s = 1 + i. Its numerically derived local wavenumber follows
the associated analytical branches, as shown in Fig. 7(b,c). For
this configuration, the local absolute frequency switches between
ω1

0(X) and ω
2
0(X) along the real X-axis, as shown in Fig. 7(d).

In order to study the influence of the inhomogeneity parameter,
simulations were carried out for a range of ϵ-values, while keeping
the samedependence of the complex coefficients an(X) on the slow
spatial variable X = ϵx. Reducing ϵ while keeping the same X-
interval thus corresponds to simulations over larger x-intervals.
For all three configurations, Table 1 indicates the numerically
obtained global mode frequencies ωG as a function of ϵ and
demonstrates that they nicely converge to the theoretical value as
ϵ → 0.

Finally, results are presented for a configuration where the
global frequency is determined by ω2

s , while the local absolute
frequency is largely dominated byω1

0(X). Usingω
1
s = 0.5+ i, X1

s =

10 − 8i, ω1
s,XX = −0.02 − 0.10i, ω2

s = 1 + 2i, X2
s = −5, ω2

s,XX =

0.02 − 0.05i and k0 = i, the absolute frequency distribution
shown in Fig. 8 is obtained. The saddle X1

s lies within the region
where ωabs(X) = ω1

0(X) and the X2
s lies within the region where

ωabs(X) = ω2
0(X). Since ω

2
s,i > ω1

s,i, the theory predicts a dominant
global mode of frequency ωG ≃ ω2

s = 1 + 2i. Plotting the local
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Fig. 5. Structure of global mode obtained by direct numerical simulations for
configuration A. (a) Envelope |ψ | and real part ψr as functions of streamwise
distance. (b) Real part of analytically computed spatial branches (thin lines)
together with local wavenumber of simulation (thick dashed line). (c) Imaginary
part of analytically computed spatial branches together with local wavenumber of
simulation. (d) Imaginary parts ofωabs(X) (thick dashed line), togetherwithω1,2

0 (X)
(thin lines).

Table 1
Dependence of numerically obtained global mode frequency ωG on inhomogeneity
parameter ϵ.

ϵ Branch A Branch B Branch C

1.0 0.818 + 0.683i 2.133 − 0.217i 1.125 + 0.754i
0.5 0.924 + 0.833i 2.064 − 0.108i 1.059 + 0.878i
0.2 0.969 + 0.934i 2.026 − 0.042i 1.025 + 0.952i
0.1 0.984 + 0.967i 2.013 − 0.021i 1.013 + 0.977i
0.05 0.992 + 0.984i 2.007 − 0.011i 1.007 + 0.990i
0.02 0.997 + 0.994i 2.003 − 0.004i 1.003 + 0.998i

ωs 1 + i 2 1 + i

absolute growth rate along the real X-axis (Fig. 8b) shows that the
absolute instability of this system is largely dominated by the ω1

0-
branch. Nevertheless, a direct numerical simulation confirms that
a global mode of frequency ωG ≃ 0.92 + 1.97i is indeed selected
in this configuration (with ϵ = 0.2).

Fig. 6. Same as Fig. 5, using coefficient settings corresponding to branch B.

6. Concluding remarks

In this paper we have developed a global frequency selection
criterion, Eq. (14), for weakly non-parallel systems whose local
dynamics are controlled by more than one pinch point. Our
result differs from the classical condition (e.g. [8]) in that when
more than one pinch point must be considered the local absolute
frequency, ωabs(X), is no longer necessarily an analytic function.
Of course, our condition has been derived within the context of
asymptotically slow variation of the base flow (ϵ → 0), whereas in
practice ϵ will be small, but nonzero. For the third-order linearized
Ginzburg–Landau equation we have therefore compared our
criterion with a full numerical solution, and excellent agreement
has been obtained for small ϵ (and qualitative agreement even for
ϵ = 1).

There are a number of possibilities for further investigation.
First, our criterion can be applied to a range of fluid flows, in-
cluding the rotating-disk boundary layer and the eccentric Tay-
lor–Couette–Poiseuille, as mentioned in the introduction. Second,
interesting questions arise about the behaviour of the equivalent
signalling problem, in which waves emitted by a fixed-frequency
source propagate through the spatially-developing medium. [18]
has shown that for the case of a single X-saddle (second-order
Ginzburg–Landau) the system response depends on the size of the
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Fig. 7. Same as Fig. 5, using coefficient settings corresponding to branch C.

forcing frequency relative to the marginal frequencies at either
end of the single region (if it exists) of local absolute instability.
As soon as more than one saddle is present, even richer dynamics
are presumably possible. Third, nonlinear analysis in the style of
[19] could also be considered. In the nonlinear case, the dynamics
are controlled by the local absolute frequency on the real X-axis,
but again richer behaviour is presumably possible when multiple
regions of local absolute instability are present, especially when
those regions become closely spaced relative to the spatial extent
of the nonlinear global modes.

It is a great pleasure to dedicate this article to Professor Patrick
Huerre. Patrick’s contribution to fluid mechanics and to the fluid
mechanics community has been, and continues to be, enormous. In
particular, hiswork onhydrodynamic instability theory has shaped
the development of the subject for a generation. We also wish to
record our gratitude to Patrick for his great personal kindness to
us, stretching over many years.

Fig. 8. (a) Isolines of local absolute growth rates in complex X-plane. Thick line:
ωabs,i = 0, thin solid lines: ωabs,i = 2, 4, . . . , thin dashed lines: ωabs,i =

−2,−4, . . . . Thick dotted curve represents boundary where the local absolute
frequencyωabs(X) switches betweenω1

0(X) andω
2
0(X). (b) Cut along the real X-axis.

(c) Structure of numerically selected global mode, for ϵ = 0.2.

Appendix. Green’s function

In this Appendix we will derive the Green’s function of the
forced constant-coefficient third-order equation

∂ψ

∂t
= a0ψ + a1

∂ψ

∂x
+ a2

∂2ψ

∂x2
+ a3

∂3ψ

∂x3
+ δ(x)δ(t). (A.1)

We will then use the Green’s function to investigate the local
stability of the system.

By taking the Fourier transformof Eq. (A.1) in x, which is defined
by

ψ(k, t) =


∞

−∞

ψ(x, t) exp(−ikx)dx, (A.2)

and noting that ψ(k,+0) = 1, thanks to the presence of the δ(t)
term in Eq. (A.1), it is easy to show that theGreen’s function is given
as a Fourier inversion integral in the form

ψ(x, t)

=
exp(a0t)

2π


∞

−∞

exp

ika1 − k2a2 − ik3a3


t + ikx


dk. (A.3)



344 B. Pier, N. Peake / European Journal of Mechanics B/Fluids 49 (2015) 335–344

In order for this integral to converge, we note that we require a3 to
be real and the real part of a2 to be positive — these are exactly the
necessary causality conditions already set out in Section 4.1.

The trick now is to complete the cube within the exponential.
This is done by making the substitution k = z + c , for some
constant c , and then choosing c so that the coefficient of z2 within
the exponential is zero. This leads to

ψ(x, t) =
exp(a0t + At)

2π

×


C
exp


iz


x + a1t −

a22t
3a3


− ia3tz3


dz, (A.4)

where

A =


2a32
27a23

−
a1a2
3a3


−

a2x
3a3t

, (A.5)

and the contour C runs parallel to the z axis. Finally, deforming the
contour back to the real axis, we can write the Green’s function in
terms of thewell-knownAiry function (see [20] page 447, 10.4.32),

ψ(x, t) =
exp(a0t + At)
(3|a3|t)1/3

Ai

×

−

sgn(a3)

x +


a1 −

a22
3a3


t


(3|a3|t)1/3

 . (A.6)

This is our closed-form expression for the Green’s function—note
that herewehave taken a3 to be real, but the remaining coefficients
may be complex. Inwhat followswe set a3 = 1, aswas done earlier
in the paper.

The limiting behaviour of the Green’s function follows from the
well-known asymptotic behaviour of Ai(s) for large |s| (see [20]
page 448, 10.4.59, 60):

Ai(s) ∼
exp(−2s3/2/3)

2
√
πs1/4

as s → ∞ with | arg(s)| < π,

Ai(−s) ∼

sin


2s3/2
3 +

π
4


√
πs1/4

as s → ∞ with | arg(s)| < 2π/3. (A.7)

For fixed t the Green’s function decays exponentially as x →

∞ and oscillates and decays algebraically (like |x|−1/4) as x →

−∞. The behaviour for large t is more complicated, but can be
determined by setting x = Vt and sending t → ∞ with V fixed
(for simplicity we now consider the special case of the coefficients
a0, a1, a2 being real). We define

χ =
a22
3

− a1 − V . (A.8)

There are then two separate cases to be considered:

1. If χ < 0 then the Airy function oscillates as t → ∞ (i.e. the
second asymptotic behaviour in (A.7)), and the stability of the
Green’s function is determined only by the exponential term
exp(a0t + At) in (A.6). It then follows that the Green’s function
grows exponentially in time if

a2χ >
a32
9

− 3a0. (A.9)

2. If χ > 0 then the Airy function decays exponentially as t → ∞

(i.e. the first asymptotic behaviour in (A.7)), and the growth or
otherwise of the Green’s function is then determined by the
behaviour of the product of the exponential term exp(a0t +At)

and the Airy function in (A.6). After some algebra it follows that
the Green’s function grows exponentially in time if

a2χ −
2χ3/2

√
3
>

a32
9

− 3a0. (A.10)

This provides a sufficient condition for instability when χ >
0, but a necessary condition can be found by noting that the
maximum value of the left hand side of (A.10) over all χ is a32/9,
which occurs when χ = a22/3. This then leads to the necessary
condition

a0 > 0 (A.11)

for instability.

To summarize, the condition for the Green’s function to grow
exponentially as t → ∞ for a given value of observer velocity
V is given by the combination of conditions (A.9) and (A.10). In
order to detect the occurrence of absolute instability, we simply
need to use conditions (A.9) and (A.10) in the case V = 0; when
this is done, the results are identical to what is obtained using the
standard Briggs–Bers procedure of locating the k pinch point and
requiring the imaginary part of the corresponding pinch frequency
to be positive.

Finally, we note that the Green’s function we have derived is
only valid in the case of constant coefficients, and is therefore
only relevant to the local properties of a spatially inhomogeneous
system. Ideally, one would like to be able to determine the
Green’s function in a spatially-varying case so as to analyse
global behaviour, as was done by [21] for the usual second-order
linearized Ginzburg Landau equation with linear and quadratic
spatial variation of the criticality parameter. Unfortunately, this
has not proved possible to date for our third-order equation.
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a b s t r a c t

The structural sensitivity shows where an instability of a fluid flow is most sensitive to changes in
internal feedbackmechanisms. It is formed from the overlap of the flow’s direct and adjoint global modes.
These global modes are usually calculated with 2D or 3D global stability analyses, which can be very
computationally expensive. For weakly non-parallel flows the direct global mode can also be calculated
with a local stability analysis, which is orders of magnitude cheaper. In this theoretical paper we show
that, if the direct global mode has been calculated with a local analysis, then the adjoint global mode
follows at little extra cost. We also show that the maximum of the structural sensitivity is the location at
which the local k+ and k− branches have the same imaginary value. Finally, we use the local analysis to
derive the structural sensitivity of two flows: a confined co-flow wake at Re = 400, for which it works
very well, and the flow behind a cylinder at Re = 50, for which it works reasonably well. As expected, we
find that the local analysis becomes less accurate when the flow becomes less parallel.

© 2014 Elsevier Masson SAS. All rights reserved.

1. Introduction

Many open flows have a steady solution to the Navier–Stokes
equations that becomes unstable above a critical Reynolds number.
Usually this instability is driven by one region of the flow, which
is called the wavemaker region. The rest of the flow merely re-
sponds to forcing from this region. The shape, linear growth rate,
and frequency of the instability can be calculated by considering
the evolution of small perturbations about the steady solution.
This is known as the direct global mode. The direct global mode
emanates from the wavemaker region and grows spatially down-
stream, reaching amaximumat the streamwise locationwhere the
spatial growth rate is zero. For example, in the case of the flow be-
hind a cylinder, this direct global mode is a sinuous flapping mo-
tion, whose nonlinear development is the familiar Kármán vortex
street [1].

The receptivity of the direct globalmode to harmonic open loop
forcing is given by the last term in Eq. (9) of Ref. [2] and Eq. (7)
of Ref. [3]. This term is proportional to the adjoint global mode,
which is calculated in the same way as the direct global mode,

∗ Corresponding author. Tel.: +44 1223 332 585.
E-mail address:mpj1001@cam.ac.uk (M.P. Juniper).

but from the adjoint (rather than direct) linearized Navier–Stokes
equations. If the perturbation magnitude is measured by the per-
turbation kinetic energy, which is the conventional approach, then
there are only two significant differences between the direct and
adjoint equations [2,4]. The first is the sign of the convection term,
Vj∂vi/∂xj, and is called convective non-normality. The second is the
appearance of a transconjugate operator, vj∂Vj/∂xi, and is called
component-type non-normality, For the flows in this paper, the
non-normality is almost entirely convective [4]. In a manner anal-
ogous to the direct global mode, the adjoint global mode emanates
from the wavemaker region but grows spatially upstream, reach-
ing a maximum at the streamwise location where the adjoint spa-
tial growth rate is zero, or when it meets the upstream boundary.
Physically, this reflects the fact that an open loop forcing signal will
have most influence on the flow if it impinges on the wavemaker
region, and if it is amplified by the flow before it does so.

The sensitivity of the direct global mode to changes in the lin-
earized Navier–Stokes (LNS) equations is given by the penultimate
term in Eq. (9) of Ref. [2]. This term is proportional to the over-
lap between the direct and adjoint global modes and is known as
the structural sensitivity. It is equivalent to the sensitivity of the
direct global mode to closed-loop feedback between the pertur-
bation and the governing equations in the special case where the
sensor and actuator are co-located. For example, in the case of the

http://dx.doi.org/10.1016/j.euromechflu.2014.05.011
0997-7546/© 2014 Elsevier Masson SAS. All rights reserved.
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flow behind a cylinder, it can quantify the sensitivity of the flow
to the presence of a small control cylinder that produces a small
force on the flow in the opposite direction to the velocity pertur-
bation [5,6]. Given that the direct global mode grows downstream
of the wavemaker region and that the adjoint global mode grows
upstream, the structural sensitivity is clearlymaximal in thewave-
maker region itself. Indeed, the wavemaker region is often defined
as the position of maximum structural sensitivity, although alter-
native definitions exist [4, Section 4.2.1]. Physically, this reflects
the fact that, for a closed loop feedback mechanism to be effective,
it requires firstly that the perturbation has significant amplitude at
that point, which is quantified by the direct global mode, and sec-
ondly that the flow has significant receptivity at that point, which
is quantified by the adjoint global mode.

The above concepts were first introduced for the flow behind a
cylinder at Re = 50 by Hill [5] and Giannetti and Luchini [6,7] and
have been extended to include the sensitivity to steady forcing and
modifications to the base flow [8–10]. They have also been applied
to recirculation bubbles [11] bluff bodies, both incompressible [12]
and compressible [13], backward-facing steps [14], forward-facing
steps [15], confined wakes [16,17], and a recirculation bubble in a
swirling flow [18].

The direct global mode is usually found with a global stabil-
ity analysis. This typically proceeds in three steps: (i) the Navier–
Stokes (N–S) equations are linearized around a steady laminar
flow, which is called the base flow and which is usually unstable;
(ii) the equations are discretized and expressed as a 2D or 3D ma-
trix eigenvalue problem; (iii) the most unstable eigenmodes are
calculated with an iterative technique, such as an Arnoldi algo-
rithm or power iteration. Each eigenmode consists of a complex
eigenvalue, which describes the frequency and growth rate, and
an eigenfunction, which describes the 2D or 3D shape that grows
on top of the base flow until nonlinear effects become significant.
As more elaborate configurations are examined, the number of de-
grees of freedom rapidly approaches millions, so global stability
analyses can be extremely computationally expensive [4].

If the base flow varies slowly in the streamwise direction then
the global stability analysis can be replaced with a local stability
analysis [19]. The WKBJ approximation reduces the LNS equations
over the entire domain into a series of local LNS orOrr–Sommerfeld
(O–S) equations at each streamwise location. Each local equation
can be discretized and expressed as a small matrix eigenvalue
problem, which represents the dispersion relation between the
complex frequency, ω, and the complex wavenumber, k. At each
streamwise location, the value of ω is found for which the disper-
sion relation is satisfied and for which dω/dk = 0. This is known
as the absolute complex frequency, ω0 and its imaginary part, ω0i,
is the absolute growth rate. The flow is absolutely unstable in re-
gions in which ω0i is positive. These regions exist in every flow
that is globally unstable due to hydrodynamic feedback. The fre-
quency and growth rate of the linear global mode can be derived
from the streamwise distribution of ω0. This also gives a specific
spatial position for the region of the flow that, in the context of
the local analysis, is known as the wavemaker [20]. Local stability
analyses are much quicker and require much less computer mem-
ory than global stability analyses because they convert one large
matrix eigenvalue problem into several small independent matrix
eigenvalue problems. This is why they have been used so widely in
the past and why they are still used for flows that are beyond the
range of global analyses [21–23].

In all existing papers, the adjoint global mode is calculatedwith
a global stability analysis. The purpose of this paper is to show
that, if a local stability analysis is used to calculate the direct global
mode, then the adjoint globalmode follows at almost no extra cost.
Thismeans that, forweakly nonparallel flows, adjoint globalmodes
and structural sensitivities can be estimated quickly and cheaply,

without deriving the adjoint equations. After defining the form of
the direct and adjoint equations in Section 2, we derive this result
rigorously in Section 3 for the Ginzburg–Landau equation (G–L),
which is often used as a simplemodel for slowly-developing flows.
We then apply this to the linearized N–S equations in Section 4 and
demonstrate this on two flows in Section 5: a slowly-developing
confined wake, and the flow behind a cylinder at Re = 50.

2. General form of the direct and adjoint equations

Many different conventions are used to describe direct and ad-
joint globalmodes. The convention used here is similar to that used
for local stability analysis, so that it is easy to compare the local and
global approaches. It differs from that used in Hill [5,24] and Gian-
netti and Luchini [6] in three ways. The direct and adjoint govern-
ing equations (1) and (2) have the same form so that their k+ and
k− branches in the local analysis have the same physical meaning.
The adjoint variables are denoted with Ď, rather than + or ∗, so
that they are not confused with the k+ branch or with the complex
conjugate. The inner product contains a complex conjugate so that
the inner product of a complex state variable with itself is a real
number.

The linearized governing equations are expressed in terms of
the direct state variable,ψ(x, t), the adjoint state variable,ψĎ(x, t),
the direct linear spatial operator L, and the adjoint linear spatial
operator LĎ:

∂ψ

∂t
− Lψ = 0, (1)

∂ψĎ

∂t
− LĎψĎ

= 0. (2)

(The relationship between the direct and adjoint quantities will be
specified in (8), after the inner product (7) has been defined.) So-
lutions to the initial value problems defined by (1) and (2) can be
expressed for t ∈ [0,∞) as the sumof the direct and adjoint global
modes:

ψ(x, t) =


m

ψ̂m(x) exp(−iωmt), (3)

ψĎ(x, t) =


n

ψ̂Ď
n (x) exp(−iωnt). (4)

Substituting (3) into (1) and (4) into (2) gives, for each mode,

−iωmψ̂m − Lψ̂m = 0, (5)

−iωnψ̂
Ď
n − LĎψ̂Ď

n = 0. (6)
An inner product between state variables f and g is defined as

⟨f , g⟩ ≡


+∞

−∞

f ∗g dx. (7)

If boundary terms are assumed to be zero, as in Giannetti and Lu-
chini [6], Hill [5], then the relationship between the direct operator,
L, and its adjoint, LĎ, is given by

⟨Lψ̂m, ψ̂
Ď
n ⟩ = ⟨ψ̂m, LĎψ̂Ď

n ⟩. (8)
These definitions determine the relationship between ωm and ωn:

⟨Lψ̂m, ψ̂
Ď
n ⟩ = ⟨ψ̂m, LĎψ̂Ď

n ⟩, (9)

⟨−iωmψ̂m, ψ̂
Ď
n ⟩ = ⟨ψ̂m,−iωnψ̂

Ď
n ⟩, (10)

iω∗

m⟨ψ̂m, ψ̂
Ď
n ⟩ = −iωn⟨ψ̂m, ψ̂

Ď
n ⟩, (11)

(ω∗

m + ωn)⟨ψ̂m, ψ̂
Ď
n ⟩ = 0. (12)

This is the bi-orthogonality condition: every adjoint mode is or-
thogonal to every direct mode, except for the pairs that satisfy
ωn = −ω∗

m.
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2.1. Structural sensitivity

Wewould like to find the change in the direct eigenvalue, δωm,
when there is a small change, δL, in the direct linear operator, L:

δωm =
lim
ϵ → 0


ωm(L + ϵδL)− ωm(L)

ϵ


. (13)

This perturbation causes perturbed eigenvalues, ωm + ϵδωm, per-
turbed direct eigenmodes, ψ̂m + ϵδψ̂m, and perturbed adjoint
eigenmodes, ψ̂Ď

n + ϵδψ̂
Ď
n . We premultiply (5) by ψ̂Ď

n and substitute
in the perturbed variables:

⟨(ψ̂Ď
n + ϵδψ̂Ď

n ), (iωm + iϵδωm)(ψ̂m + ϵδψ̂m)⟩

+ ⟨(ψ̂Ď
n + ϵδψ̂Ď

n ), (L + ϵδL)(ψ̂m + ϵδψ̂m)⟩ = 0. (14)

Retaining terms at order ϵ and making use of (5), (6), and the bi-
orthogonality condition (12) leads to

δωm = i
⟨ψ̂

Ď
m, δLψ̂m⟩

⟨ψ̂
Ď
m, ψ̂m⟩

. (15)

This is the penultimate term in Eq. (9) of [2], but expressed in the
notation of this paper. The operator δL describes a generic pertur-
bation to the operator, L. If one considers a perturbation that is
localized in space then the structural sensitivity [6, Section 8] is
defined as:

∇Lωm ≡ i
ψ̂∗

mψ̂
Ď
m

⟨ψ̂
Ď
m, ψ̂m⟩

, (16)

where the numerator is a function of x and the eigenfunctions are
usually normalized such that the denominator is 1. This is shown
graphically in [2, Fig 5 a,b].

3. Local analysis of the direct and adjoint Ginzburg–Landau
equations

For the Ginzburg–Landau (G–L) equation, the operator L acting
on ψ(x, t) in (1) is:

∂ψ

∂t
= Lψ ≡ a0(x)ψ + a1(x)

∂ψ

∂x
+ a2(x)

∂2ψ

∂x2
, (17)

where a0, a1 and a2 are complex coefficients that depend on the
spatial coordinate, x. The aim of this section is to perform WKBJ
analysis on the direct and adjoint G–L equations in order to de-
termine ωĎ

n in terms of ωm and kĎn in terms of km, and to confirm
that higher-order terms in the WKBJ analysis do not need to be
considered. In this section, the subscriptsm and nwill be dropped
because the adjoint mode constructed in Section 3.6 is always the
bi-orthogonal counterpart of the direct mode constructed in Sec-
tion 3.5.

3.1. Local dispersion relation of the direct G–L equation

In slowly-evolving flows, the coefficients a0, a1 and a2 in (17)
depend only on a slow spatial coordinate X = ϵx. The small
parameter ϵ ≪ 1 measures the ratio between typical instability
and typical inhomogeneity length scales. Implementing a WKBJ
analysis, a global-mode solution of (17) is sought in the form

ψ ∼ A(X) exp


i
ϵ

 X

k(u)du − iωt

, (18)

where the local complexwavenumber k(X) is a solution of the local
dispersion relation:

ω = Ω(k, X) ≡ ia0(X)− a1(X)k − ia2(X)k2. (19)

The dispersion relation can also be written in terms of the local
absolute frequency, ω0(X), the local absolute wavenumber, k0(X),
and the local curvature, ωkk(X):

Ω(k, X) = ω0(X)+
1
2
ωkk(X)


k − k0(X)

2
, (20)

whereω0 = ia0− ia21/4a2, k0 = ia1/2a2, andωkk = −2ia2. (Equiv-
alently, a0 = −iω0 − iωkkk20/2, a1 = ωkkk0, and a2 = iωkk/2.) This
showshow the coefficients of theG–L equation canbederived from
the dispersion relation associated with a given weakly developing
shear flow by taking a Taylor expansion around the saddle point,
which is at (ω0, k0) and by definition has dω/dk = 0. Eq. (20) can
be rearranged to give k as an explicit function of ω:

k±(X, ω) = k0(X)±


2
ω − ω0(X)
ωkk(X)

. (21)

Here, branch cuts of (21) are taken along positive real values of the
argument of the square root. This choice of branch cut ensures that,
in stable or convectively unstable regions of the complex X-plane,
the above definition coincides with the usual labelling of spatial
branches based on causality considerations, for which a k+-branch
corresponds to a downstream response to localized harmonic
forcing, and a k−-branch corresponds to an upstream response.

3.2. Calculation of the adjoint of the G–L equation

For the G–L equation, the adjoint operator, LĎ, is found by ex-
panding ⟨ψ̂Ď, Lψ̂⟩, using (7), and then integrating by parts:

⟨ψ̂Ď, Lψ̂⟩ =


+∞

−∞

ψ̂Ď∗


a0ψ̂ + a1

∂ψ̂

∂x
+ a2

∂2ψ̂

∂x2


dx (22)

=


+∞

−∞


a0ψ̂Ď∗

−
∂

∂x
(a1ψ̂Ď∗)+

∂2

∂x2
(a2ψ̂Ď∗)


× ψ̂ dx, (23)

in which the boundary terms have been set to zero with appropri-
ate boundary conditions. The adjoint operator is found by noting
that, from (8), ⟨ψ̂Ď, Lψ̂⟩ = ⟨LĎψ̂Ď, ψ̂⟩, and therefore that

LĎψ̂Ď
= a∗

0ψ̂
Ď
−
∂

∂x
(a∗

1ψ̂
Ď)+

∂2

∂x2
(a∗

2ψ̂
Ď) (24)

= aĎ0ψ̂
Ď
+ aĎ1

∂ψ̂Ď

∂x
+ aĎ2

∂2ψ̂Ď

∂x2
, (25)

where aĎ0 ≡ a∗

0 − ∂a∗

1/∂x + ∂2a∗

2/∂x
2, aĎ1 ≡ −a∗

1 + 2∂a∗

2/∂x, and
aĎ2 ≡ a∗

2 . These expressions are general and do not necessarily as-
sume weak spatial inhomogeneities.

3.3. Local dispersion relation of the adjoint problem

Under the quasi-parallel-flow assumption, the coefficients of
the direct G–L equations depend only on the slow spatial coordi-
nate X = ϵx. Eq. (24) becomes:

LĎψ̂Ď
= a∗

0ψ̂
Ď
− a∗

1
∂ψ̂Ď

∂x
− ψ̂Ďϵ

∂a∗

1

∂X

+ a∗

2
∂2ψ̂Ď

∂x2
+ 2ϵ

∂a∗

2

∂X
∂ψ̂Ď

∂x
+ ψ̂Ďϵ2

∂2a∗

2

∂X2
. (26)

When performing a WKBJ analysis of the adjoint G–L equation (2),
the adjoint operator (24) must be expanded in powers of ϵ as

LĎ

∂

∂X
; X


= LĎ0


∂

∂X
; X


+ ϵLĎ1


∂

∂X
; X


+ ϵ2LĎ2


∂

∂X
; X

, (27)
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By inspection of (26), LĎ0, L
Ď
1, and LĎ2 are:

LĎ0


∂

∂X
; X


= a∗

0(X)− a∗

1(X)
∂

∂x
+ a∗

2(X)
∂2

∂x2
, (28)

LĎ1


∂

∂X
; X


= −
∂a∗

1(X)
∂X

+ 2
∂a∗

2(X)
∂X

∂

∂x
, (29)

LĎ2


∂

∂X
; X


=
∂2a∗

2(X)
∂X2

. (30)

A solution of the adjoint problem is then sought in the form

ψĎ
∼


AĎ0(X)+ ϵAĎ1(X)+ ϵ2AĎ2(X)+ · · ·


× exp


i
ϵ

 X

k(u)du − iωĎt

. (31)

Substituting (28)–(31) into the governing adjoint equation (2)
gives, at leading-order,

− iωĎ
= a∗

0(X)− a∗

1(X)ik(X)− a∗

2(X)k
2(X) = LĎ0(ik; X). (32)

In a manner similar to the direct problem, the adjoint dispersion
relation can be rewritten as

ωĎ
= Ω

Ď
0 (k, X) ≡ ia∗

0(X)+ a∗

1(X)k(X)− ia∗

2(X)k
2(X) (33)

= ω
Ď
0(X)+

1
2
ω
Ď
kk(X)


k − kĎ0(X)

2
, (34)

where

ω
Ď
0(X) = ia∗

0(X)−
i
4
a∗2
1 (X)/a

∗

2(X) = −ω∗

0(X), (35)

kĎ0(X) = −
i
2
a∗

1(X)/a
∗

2(X) = k∗

0(X), (36)

ω
Ď
kk(X) = −2ia∗

2(X) = −ω∗

kk(X). (37)

The higher-order terms LĎ1 and LĎ2 do not appear in this adjoint
dispersion relation, because it is obtained at leading order in the
WKBJ analysis. The LĎ1 component enters only when working out,
at O(ϵ1), the solvability condition that governs the leading-order
amplitude term AĎ0(X) in (31). This amplitude equation is

Ω
Ď
0,k


k(X), X

dAĎ0
dX

+
1
2
Ω

Ď
0,kk


k(X), X

 dk
dX

AĎ0(X)

+ iΩĎ
1


k(X), X


AĎ0(X) = 0, (38)

where ΩĎ
1 (k, X) ≡ iLĎ1(ik, X). Higher-order expansions will not

be derived further, however, because the results of this paper re-
quire only the local dispersion relations. Turning points, where
∂Ω

Ď
0/∂k = 0, are not affected by the higher-order expansions.
The key point of this section is that, at leading order, the disper-

sion relation of the adjoint G–L equation is the same as that of the
direct G–L equation but with the substitutions (35)–(37).

3.4. Adjoint of a generic polynomial PDE

The development in Sections 3.1–3.3 is for a parabolic PDE but
holds for any polynomial PDE in one spatial dimension, as shown
in this section. For a generic polynomial PDE, the direct operator
(17) can be written as

∂ψ

∂t
= Lψ ≡


j

aj(x)
∂ jψ

∂xj
, (39)

and, after integration by parts, the adjoint operator can be written
as

∂ψĎ

∂t
= LĎψĎ

≡


j

(−1)j
∂ j

∂xj

a∗

j (x)ψ
Ď

. (40)

If the coefficients a∗

j do not depend on x then LĎψĎ
=


j(−1)ja∗

j

∂
j
xψ

Ď and (35)–(37) follow immediately. If the coefficients a∗

j de-
pend on x, then the x-derivatives of a∗

j (x)ψ
Ď produce extra terms:

LĎψĎ
=


a∗

0(x)−
∂a∗

1(x)
∂x

+
∂2a∗

2(x)
∂x2

−
∂3a∗

3(x)
∂x3

+ · · ·


ψĎ (41)

+


−a∗

1(x)+ 2
∂a∗

2(x)
∂x

− 3
∂2a∗

3(x)
∂x2

+ · · ·


∂ψĎ

∂x
(42)

+


a∗

2(x)− 3
∂a∗

3(x)
∂x

+ · · ·


∂2ψĎ

∂x2
(43)

+

−a∗

3(x)+ · · ·
 ∂3ψĎ

∂x3
+ · · · (44)

However, under the assumption of slow spatial development, the
nth derivatives of the coefficients aj are of order ϵn, so the local dis-
persion relation that is obtained at leading order is the same as
that obtained for constant coefficients. This proves that the rela-
tions ωĎ

0(X) = −ω⋆0(X), k
Ď
0(X) = k⋆0(X) and ω

Ď
kk(X) = −ω⋆kk(X)

in (35)–(37) hold for systems governed by any dispersion relation
that is polynomial in k. We therefore expect this result to remain
generally valid in the case of dispersion relations that are analytic
in k over large parts of the complex k-plane. We assume that dis-
persion relations derived from the linearized Navier–Stokes equa-
tions in slowly-varying flows fall into this category.

3.5. Global mode of the direct G–L equation with a local analysis

A linear global mode is a global solution of the governing equa-
tion (1) with the form ψ(x, t) ∼ exp(−iωg t) for a complex
global frequencyωg . Assuming that the slowly-varying coefficients
ω0(X), k0(X) and ωkk(X) are known along the real X-axis, a WKBJ
approximation of the global mode can be sought as in (18) with
ω = ωg . This integral is most easily evaluated in the complex
X-plane, as shown in the top half of Fig. 1a. (The bottom half is
for the adjoint mode.) The point Xs is a saddle point of ω0(X)
and the diagonal lines have the same value of ω0i as the saddle
point. Huerre and Monkewitz [19] have shown that the frequency
of the dominant global mode, ωg , is equal to ωs + O(ϵ), where
ωs = ω0(Xs).

At a givenωg , there are two valid solutions to k, known as the k+

and k− spatial branches, and there are therefore two independent
WKBJ approximations

ψ+
∼ A+(X) exp


i
ϵ

 X

Xs
k+(u, ωg)du − iωg t


(45)

and

ψ−
∼ A−(X) exp


i
ϵ

 X

Xs
k−(u, ωg)du − iωg t


. (46)

These two WKBJ approximations are singular at the saddle point
Xs, which is a double turning point of the dispersion relation. From
this double turning point, four Stokes lines emerge, defined by

Im
 X

Xs
[k+(u, ωs)− k−(u, ωs)]du = 0. (47)

Along these Stokes lines both WKBJ approximations remain of the
same order of magnitude, while inside the sectors delimited by
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Fig. 1. (a) Left frame: integration paths in the complex X-plane for the direct (top) and adjoint (bottom) cases. The diagonal lines represent the boundaries between valleys
(left and right of the lines) and hills (above and below the lines). The integration paths must pass through the valleys in order to obey causality. (b) Right frame: branch cuts
(dashed lines) in the complex X-plane.

the Stokes lines one approximation is exponentially larger than
the other. Following classical WKBJ theory [25] the global mode
must be sought as a linear combination of the two independent
solutions, ψ = C+ψ+

+ C−ψ−, within each sector delimited by
these Stokes lines.

When X → +∞, the solution must be dominated by a k+

branch and is therefore made up of the subdominant ψ+ approxi-
mation. The global mode is therefore of the formψ = C+ψ+ (with
C−

= 0) in the region starting from the Stokes lines issuing from Xs
and extending to X = +∞. (See Pier [26] for a detailed analysis of
a similar case.) For similar reasons, the global mode is of the form
ψ = C−ψ− (with C+

= 0) in the region starting from the Stokes
lines issuing from Xs and extending to X = −∞.

Consequently, the global mode is approximated by the WKBJ
approximation C−ψ− along the semi-infinite path from Xs to−∞,
and by C+ψ+ along the semi-infinite path from Xs to +∞. Since
the global mode must be continuous at Xs, the coefficient C+ on
the path from Xs to+∞must equal C− on the path from Xs to−∞

(this includes higher-order terms; asymptotic matching of the two
WKBJ-expansions prevailing on each side of the saddle point can be
rigorously carried out via an inner layer). After rescaling the solu-
tion so that C+

= C−
= 1, the direct global mode is approximated

byψ+ along the semi-infinite path from Xs to X = +∞ and byψ−

along the semi-infinite path from Xs to X = −∞.
Finally, the approximations of the direct global mode obtained

along the path from X = −∞ to X = +∞, passing through
the saddle point Xs, must be continued onto the real X-axis. When
crossing a Stokes line, a subdominant WKBJ solution becomes
dominant but remains a valid asymptotic approximation. There-
fore the global mode is approximated by ψ− in the sectors adja-
cent to the sector extending to X = −∞, and byψ+ in the sectors
adjacent to the sector extending to X = +∞. Since there are four
Stokes lines and two branch cuts emanating from the saddle point,
Xs, one may safely assume that one branch cut crosses the real axis
at Xc and that nomore than one Stokes line crosses the real axis on
either side of Xc . It follows that the global mode is approximated
by ψ− for X < Xc along the real axis and by ψ+ for X > Xc . At
Xc there is a smooth relabelling of the k-branches, but otherwise
nothing special happens across the branch cut. This division of the
integration path becomes important in Section 3.7.

3.6. Global mode of the adjoint G–L equation with a local analysis

Following the same development as Section 3.5, the adjoint
global mode is sought as

ψĎ
∼ AĎ(X) exp


i
ϵ

 X

kĎ(u;ωĎ
g)du − iωĎ

g t

. (48)

We again assume that the coefficients ω0(X), k0(X) and ωkk(X)
can be continued analytically into the complex plane and use the
relationships (35)–(37). This is represented in the bottom half of
Fig. 1(a). We obtain the result that ωĎ

g = ω
Ď
s + O(ϵ), where ωĎ

s =

ω
Ď
0(X

Ď
s )with dωĎ

0/dX |XĎs
= 0. The localwavenumber in (48) follows

the kĎ− branch for X → −∞ and the kĎ+ branch for X → +∞.
Here, these branches are obtained from the local adjoint dispersion
relation (36) as

kĎ±
(X, ωĎ

g) = kĎ0(X)±


2
ω
Ď
g − ω

Ď
0(X)

ω
Ď
kk(X)

. (49)

For real values of X , substituting (35)–(37) into (49) leads to the
following relationship between the local branches of the adjoint
and the direct global modes:

kĎ±
(X;ωĎ

g) =

k∓(X;ωg)

∗
. (50)

This relationship guarantees that a branch cut of the adjoint kĎ±

crosses the real X-axis at the same location, Xc , as a branch cut of
the direct k±.

The two adjoint spatial branches kĎ± lead to two independent
WKBJ approximations

ψĎ+
∼ AĎ+

(X) exp


i
ϵ

 X

XĎs

kĎ+
(u, ωĎ

g)du − iωĎ
g t


(51)

and

ψĎ−
∼ AĎ−

(X) exp


i
ϵ

 X

XĎs

kĎ−
(u, ωĎ

g)du − iωĎ
g t

. (52)

Following similar arguments to those in the previous section, it can
be shown that the adjoint global mode is approximated along the
real axis byψĎ− for X < Xc and byψĎ+ for X > Xc . For X < Xc , the
direct global mode follows k− and the adjoint global mode follows
kĎ−, which is (k+)∗. For X > Xc , the direct global mode follows
k+ and the adjoint global mode follows kĎ+, which is (k−)∗. At Xc ,
there is a smooth re-labelling of the k-branches.

The final result, that the adjoint mode follows (k+)∗ upstream
of the wavemaker and (k−)∗ downstream, is simple andmay seem
trivial. However, we are not aware of this result being stated or
used before in stability analysis, despite its potential usefulness.

3.7. Calculating the structural sensitivity of the G–L equation with a
local analysis

The structural sensitivity (16) is the product of the direct and
adjoint global modes. For X along the real axis, the direct global
mode found from the local analysis takes the form

ψ ∼


A+(X) exp


i
ϵ

 X

Xs
k+du


for X > Xc,

A−(X) exp

i
ϵ

 X

Xs
k−du


for X < Xc .

(53)

After splitting the integrals from Xs to X into two integrals from Xs
to Xc and from Xc to X , and using the fact that the k+-branch on the
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right of the branch cut is identical to the k−-branch on the left of
the branch cut, the linear global mode may be renormalized as

ψ ∼


A+(X) exp


i
ϵ

 X

Xc
k+du


for X > Xc,

A−(X) exp

i
ϵ

 X

Xc
k−du


for X < Xc .

(54)

Similarly, the adjoint global mode found from the local analysis
takes the following form along the real axis

ψĎ
∼


AĎ+

(X) exp

i
ϵ

 X

Xc
kĎ+du


for X > Xc,

AĎ−
(X) exp


i
ϵ

 X

Xc
kĎ−du


for X < Xc .

(55)

With the identity (50), it follows that

ψĎ
∼


AĎ+

(X) exp

i
ϵ

 X

Xc
k−∗du


for X > Xc,

AĎ−
(X) exp


i
ϵ

 X

Xc
k+∗du


for X < Xc .

(56)

The structural sensitivity∇Lωm from (16) may now be obtained
by computing the product ψ∗ψĎ. Noting that


exp(iz)

∗
=

exp(−iz∗) yields

∇Lωm ∝


AĎ+

(X)

A+(X)

∗ exp  i
ϵ

 X

Xc


k−

− k+
∗ du

for X > Xc,

AĎ−
(X)


A−(X)

∗ exp  i
ϵ

 X

Xc


k+

− k−
∗ du

for X < Xc .

(57)

Themagnitude of the structural sensitivity is therefore obtained as

|∇Lωm| ∝



B(X) exp

1
ϵ

 X

Xc
Im

k−

− k+

du


for X > Xc,

B(X) exp

1
ϵ

 X

Xc
Im

k+

− k−

du


for X < Xc,

(58)

where B(X) is a slowly varying coefficient.
The wavenumbers k+ and k− are given by (21) with ω = ωs. In

a configuration that, when X → ±∞, is stable or at most convec-
tively unstable, Im(k+

− k−) > 0 for sufficiently large |X | on the
real axis. Therefore the structural sensitivity necessarily decays for
X → ±∞ and the maximum structural sensitivity corresponds to
the locationwhere Im(k+

−k−) = 0. For theG–L equation, Im(k+
−

k−) is always positive, due to our definition of the branch cut, and
vanishes only at Xc . This means that |∇Lωm| is a maximum at Xc . In
general, it is true that the maximum structural sensitivity is found
where Im(k+

− k−) = 0. However, it is not necessarily located on
the branch cut, because the location where Im(k+

− k−) = 0 does
not necessarily coincide with the (arbitrary) choice of branch cut.

This result, which is for flows with infinite streamwise extent,
should not be confused with the Kulikovskii criterion [27, Sec-
tion 65], which is for flows with finite streamwise extent. In those
flows, the downstream travelling waves, k+, reflect off the down-
stream boundary and the upstream travelling waves, k−, reflect off
the upstream boundary. The function describing the wave must
be singly-valued between the boundaries, which means that only
certain combinations of k+ and k− are permitted. For long (but
streamwise-confined) systems, this constraint reduces to Im(k+

−

k−) = 0. In those flows, the permitted global mode frequen-

cies are then calculated by combining this constraint with the
local dispersion relation. For flows with finite extent, the relation
Im(k+

− k−) = 0 therefore serves as an additional constraint on
the global complex frequency, ωg , of the flow. For flows with infi-
nite extent, on the other hand, there is no corresponding restriction
on ωg and the point where Im(k+

− k−) = 0 merely indicates the
centre of the structural sensitivity.

The wavemaker in a local analysis and the structural sensitivity
in a global analysis differ both in concept and in outcome. Never-
theless, the two regions lie close to each other and there is a link
between the two, which can be summarized as follows. The com-
plex frequency of the global mode, ωg , is the absolute frequency
at the saddle point Xs of ω0(Xs) in the complex X-plane. The re-
gion around the saddle point in the complex X-plane is the wave-
maker region in the local sense given by Huerre and Monkewitz
[19]. It could be tempting to assume that the real component of
Xs has physical significance. However, this is only an approxima-
tion to the position of the maximum of the structural sensitivity
(i.e. the global concept) in cases where Im(Xs) is small. Instead, to
work out the position of maximum structural sensitivity from a lo-
cal analysis, the spatial branches, k+ and k−, must be calculated at
the global mode frequency, ωg . Because Im(ωg) < Im(ω0) along
the real X axis, the point of maximum structural sensitivity, in the
global sense given by [6], is the point at which Im(k+

− k−) = 0.

4. Local analysis of the direct and adjoint Linearized Navier–
Stokes equations

The planar linearized Navier–Stokes (LNS) equations for a per-
turbation q̃(x, z, t) ≡ [ṽ1(x, z, t), ṽ2(x, z, t), p̃(x, z, t)]T are ex-
pressed as three PDEs in the three primitive variables, (ṽ1, ṽ2, p̃).
TheWKBJ analysis is performed, reducing these three PDEs to three
ODEs for the Fourier/Laplacemodes q̂m(z) exp{i(kmx−ωmt)}. These
ODEs are then expressed as the generalized eigenvalue problem:

− iωmBq̂m − Aq̂m = 0. (59)

The problem is discretized by replacing the operators A(km) and
B(km), which act on the continuous field q̂m(z), withmatricesA(km)
and B(km), which act on a state vector ϕm. This state vector holds
the values of q̂m at N gridpoints at zj, j ∈ [1,N]. The local direct
LNS equations (59) are thereby expressed as the generalized ma-
trix eigenvalue problem

− iωmBϕm − Aϕm = 0, (60)

which serves as the dispersion relation for the calculation of
ω0(X), (ωs, Xs), ωg , k+(X) and k−(X). Computing the dispersion
relation for the Navier–Stokes problem is technically more diffi-
cult than for the Ginzburg–Landau problem, for which it is explicit.
However, once the dispersion relation is expressed numerically,
the subsequent calculations and derivations of quantities such as
spatial branches and local absolute frequencies are carried out in a
similar manner.

The direct global mode is constructed with the technique de-
scribed in Section 3.5 and [28]. In summary, the absolute complex
frequency, ω0(X), is calculated by finding the valid saddle point
of ω(k) at each streamwise location, X . An 8th order Padé polyno-
mial is fitted to ω0(X) and then extrapolated into the complex X-
plane, as will be described in Section 5.1. The saddle point ofω0(X)
is identified in the complex X-plane and its value of ω0 gives the
global mode complex frequency, ωg . Then, at the streamwise lo-
cation of the saddle point in the X-plane, two values of k(ωg) are
found on either side of the saddle point ω0 in the k-plane. These
are labelled k+ and k− and they are followed upstream and down-
stream from this point. The local values of k+(X) and k−(X) are
then integrated according to (54) in order to obtain the amplitude
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and phase of the global mode in the X-direction. The eigenfunc-
tions of k+(X) and k−(X) are required in order to obtain the z-
dependence of the global mode. At this point there is an apparent
contradiction: the local eigenfunctions can bemultiplied by any ar-
bitrary constant, yet the amplitude and phase of the global mode
in the X-direction should be dictated by (54). To avoid this contra-
diction, the eigenfunctionsmust be normalized consistently. This is
analogous to the normalization requiredwhen handling the Parab-
olized Stability Equation [29, Eq. (9a,b)]. In this paper, the eigen-
functions are normalized such that the v2-eigenfunctions have the
same amplitude and phase at z = 0. This is chosen because, for
the sinuous perturbations considered here, the v2-eigenfunction
always has a large absolute value at z = 0. In principle, any value
of z could be chosen, and for flows that are nearly parallel, such as
that in Section 5.1, the choice of z has only a small effect on the
predicted shapes of the direct and adjoint global modes.

The adjoint global mode is calculated using the substitution
derived in Section 3.3 for a parabolic dispersion relation and in
Section 3.4 for a generic polynomial PDE: ωĎ

g = −ω∗
g , k

Ď+
= (k−)∗

and kĎ−
= (k+)∗. This substitution requires the base flow to

vary slowly in the streamwise direction. In this paper, this result
has been shown for a generic PDE with one spatial dimension
and it can be generalized (after lengthy developments) to a PDE
with two spatial dimensions. For the z-dependence, however, the
eigenfunctions of kĎ+ and kĎ− are not the same as those of k−

and k+, and need to be calculated from the discrete adjoint of
the LNS equations. To do this, the generalized matrix eigenvalue
problem (60) is post-multiplied by the adjoint eigenfunction ϕĎ

n
and re-arranged using the discretized version of the inner product:
⟨ϕm, ϕ

Ď
n⟩ ≡ ϕH

mMϕ
Ď
n , where H denotes the Hermitian transpose and

M is the mass matrix, whose diagonal elements are the volume of
space attributed to each gridpoint:

−iωmBϕm − Aϕm = 0,
⟨−iωmBϕm, ϕ

Ď
n⟩ − ⟨Aϕm, ϕ

Ď
n⟩ = 0,

⟨ϕm,M−1(iω∗

m)B
HMϕĎ

n⟩ − ⟨ϕm,M−1AHMϕĎ
n⟩ = 0,

iω∗

m(M
−1BHM)ϕĎ

n − (M−1AHM)ϕĎ
n = 0. (61)

The local adjoint LNS equations are written as

− iωnBĎϕĎ
n − AĎϕĎ

n = 0, (62)

so, by comparing (61) and (62),

ωn = −ω∗

m, (63)

AĎ = M−1AHM, (64)

BĎ = M−1BHM, (65)

and it can be shown that the bi-orthogonality condition becomes
(ωn − ω∗

m)ϕ
H
mB

HMϕĎ
n = 0. The adjoint eigenvalue, ωn, is known

from (63), so there is no need to solve (62) as a generalized
eigenvalue problem. The fastest method is to calculate the adjoint
matrices of the discretized problemwith (64)–(65) and then to find
the null space of −iωnBĎ − AĎ with a QR decomposition.

5. Demonstrations

5.1. Slowly-developing confined wake flow

We test the procedure described in Section 4 on a slowly-
developing flow, using the planar linearized Navier–Stokes equa-
tions. Fig. 2(a) shows the streamlines and vorticity of a confined
co-flow wake at Re = 400, with perfect slip at the top and bot-
tom boundaries. The flow is identical to that in [28], except that it

has a sharper inlet velocity profile, which makes it slightly more
unstable. It is similar to the flows studied by Tammisola [17].

Fig. 2(b) shows the absolute growth rate ω0i(X). This is calcu-
lated at each axial station, X , by finding saddle points of ω(k) in
the complex k-plane, using the dispersion relation formed from the
matrix eigenvalue problem (60). This flow has a recirculation bub-
ble between 2.26 < X < 22.42 and is absolutely unstable over the
slightly wider range of 0.05 < X < 28.70.

In order to find the complex frequency of the linear globalmode,
ωg , the saddle point of ω0(X) must be found in the complex X-
plane. Its position is labelled (ωs, Xs). For the G–L equation (17),
the coefficients were expressed in terms of this saddle point posi-
tion via (20), but for the LNS equation there is no such analytical
solution. Instead, 8th order Padé polynomials are fitted to ω0(X)
using the procedure described in [28]. Saddle points of this poly-
nomial are then found in the complex plane, as shown in Fig. 2(c).
There are several saddle points but the main one is easy to iden-
tify because it lies close to the real X-axis and moves very little as
the order of the polynomials increases. The range of ω0(X) over
which the points are fitted must encompass the peak of ω0(X) but
is otherwise arbitrary. We performed eight calculations, fitting be-
tween all points that satisfiedω0i > 0.15, 0.10, 0.05, 0.00,−0.05,
−0.10,−0.25,−0.20 and found that ωs varied by less than 1% be-
tween all these calculations.

For this flow, the polynomial is fitted through all points that
have ω0i > 0.00; i.e. the absolutely unstable region. The saddle
point is at ωs = 0.6570 + 0.1409i, Xs = 11.05 + 4.251i. As ex-
plained in Section 3.5, ωs equals ωg to within order ϵ, which is the
degree of non-parallelism in the flow. For this flow, a global anal-
ysis gives ωg = 0.6631 + 0.1239i. The local analysis is seen to
over-predict the growth rate of the linear global mode, which is a
common feature of local analyses of wake flows [6,28]. In order to
investigate the influence of this discrepancy on the direct and ad-
joint global modes, we calculate the k+ and k− branches at both
values of ωg . These branches are shown in Fig. 2(d,e) for forc-
ing at ωg (loc) and ωg (glob). They can be compared with the lo-
cal wavenumbers, k and kĎ, extracted from the direct and adjoint
global modes from the global analysis. These were extracted from
the v1-eigenfunction at z = 0.79, where the global mode has the
highest absolute value. There are four important points.

Firstly, we confirm that the wavenumber of the direct global
mode, k (solid black line), follows k− upstream of Xc and k+

downstream, as already known, and that the wavenumber of the
adjoint global mode, kĎ (dashed black line), follows k+ upstream of
Xc and k− downstream, as predicted in Section 3.6.

Secondly, the match is closest where the flow is more parallel.
For example, when the flow is forced atωg (glob), k+ and k− follow
k and kĎ very closely for X > 22.4,where the flow is nearly parallel,
but follow k and kĎ less closely for X < 22.4, where the flow is less
parallel. Also, the local analysis predicts that the crossing point of
the k+ and k− branches is slightly further upstream than that given
by the global analysis. This is the case whether or not the flow is
forced atωg (loc) orωg (glob) so is due to the flow’s non-parallelism,
or to the effect describednext, andnot due to the discrepancy inωg .

Thirdly, k− and k+ diverge from k and kĎ around the upstream
boundary. This is not a defect in the local analysis. It is because
the global analysis has a Dirichlet boundary condition at X = 0,
while the local analysis assumes that the flow is homogeneous to
X = −∞.

Fourthly, the position ofmaximum structural sensitivity, where
k+

i − k−

i = 0, is at X = 10.50 when using ωg (loc) and X = 10.30
when using ωg (glob). These values differ from 11.05, which is the
streamwise position of the saddle point in the complex X-plane.
This small difference is to be expected, for the reasons given in
Section 3.7.

The direct global modes obtained from the local analysis at
ωg (loc) are compared with those obtained from the global analysis
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b

c

d

e

Fig. 2. (Colour online) (a) Streamlines (black lines) and vorticity (colour) of a confined co-flow wake at Re = 400 with perfect slip at the top and bottom boundaries. (b)
Absolute growth rate, ω0i . (c) Contours of ω0i in the complex X-plane, formed by fitting an 8th order Padé polynomial to the points in (b) for which ω0i > 0.0. The saddle
point (black dot) is at ωs = 0.6570 + 0.1409i, Xs = 11.05 + 4.251i. (d) The imaginary component of the local wavenumber (i) calculated from the local analysis performed
with ωg equal to the saddle point position ωs , labelled k+

i (loc) and k−

i (loc); (ii) calculated from the local analysis performed with ωg taken from the global analysis, labelled
k+

i (glob) and k−

i (glob); (iii) extracted from the direct global mode, labelled ki and from the adjoint global mode, labelled kĎi . (e) The real component of the local wavenumber
with the same nomenclature as (d).

in Fig. 3(a)–(c). Their structure is identical but the local analysis
predicts that the maximum amplitude is reached slightly further
upstream than it is in the global analysis. This is due to the over-
prediction of the growth rate,ωg , as noted by [28]. This can be seen
in Fig. 2(d) by the fact that the k+ branch from the local analysis
at ωg (loc) crosses the ki axis before the k branch from the global
analysis, while that at ωg (glob) crosses at the same place.

The adjoint global modes obtained from the local analysis
are compared with those obtained from the global analysis in
Fig. 3(d)–(f). They have a similar structure to each other but there
are some clear differences around X = 0, which are due to the
different boundary condition there.

The structural sensitivity, as defined by [6] is shown in 3(g).
From the global analysis, themaximumof the structural sensitivity
is at the position where Im(k − kĎ) = 0, which is at X = 11.00.
From the local analysis, the maximum of the structural sensitivity
is at the position where Im(k+

− k−) = 0, which is at X =

10.50. The local analysis predicts the maximum of the structural
sensitivity to be slightly further upstream than is predicted by the
global analysis. This is the case for both ωg (loc) and ωg (glob) and
is therefore due to the non-parallelism of the flow or the effect of
the upstream boundary condition, and not due to the discrepancy

between ωg (loc) and ωg (glob). Apart from this small difference,
the structural sensitivities are almost indistinguishable. This shows
that, for this slowly-developing flow, the structural sensitivity can
be estimated easily and accurately with a local stability analysis. If
the direct global mode has been calculated with the local analysis,
then, apart from a quick calculation to find the eigenfunction in the
cross-stream direction, the adjoint has already been calculated.

5.2. The flow behind a cylinder at Re = 50

Hill [5] and Giannetti and Luchini [6] calculated the direct and
adjoint global modes of the two-dimensional flow around a circu-
lar cylinder at Re = 50, based on the cylinder diameter. This is an-
other good test case for the local analysis because there are several
published results and it is less parallel than the previous test case.

Fig. 4(a) shows the streamlines and vorticity of this flow and
Fig. 4(b) shows the absolute growth rateω0i as a function of down-
stream distance. Fig. 4(c) shows the position of the saddle point ωs
in the complex X-plane, whichwas calculated by fitting Padé poly-
nomials through all points downstream of the cylinder with ω0i >
0.03. The saddle point is at ωs = 0.791 + 0.083i, Xs = 1.297 +
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Fig. 3. (Colour online) Direct and adjoint global modes calculated from the global analysis (left) and the local analysis (right). The top halves of frames (a–f) show
the real component. The bottom halves show the imaginary component. (a) Direct streamwise velocity component, v1 . (b) Direct cross-stream velocity component, v2 .
(c) Direct pressure, p. (d) Adjoint streamwise velocity component, vĎ1 . (e) Adjoint cross-stream velocity component, vĎ2 . (f) Adjoint pressure, p

Ď . (g) Structural Sensitivity

∇Lωm =


(v21 + v22)× (v

Ď2
1 + v

Ď2
2 )
1/2

.

0.699i. The threshold of 0.03 was chosen because a threshold
of 0.00 gave rise to too many nearby saddle points. For compari-
son, the global analysis of [6] gives ωg = 0.750 + 0.013i and the
local analysis of [30] gives ωg = 0.785 + 0.091i. The k+ and k−

branches are shown in Fig. 4(d)–(e) usingωg (local) andωg (global).
Fig. 5(a)–(b) shows the vorticity of the direct global mode

obtained from the local analysis and can be compared directlywith
Fig. 2 of [5], which is obtained from the global analysis. Fig. 5(c)–(d)
shows the vorticity of the adjoint global mode obtained from the
local analysis and can be compared directly with Fig. 3 of [5]. The
local results are close to the global results in the region behind the
cylinder but differ in the region around the cylinder. This is not
surprising because the flow is strongly non-parallel there.

The structural sensitivity is shown in Fig. 6, and can be com-
pared directly with Fig. 17 of [6]. Both frames are calculated from
the local analysis but the left frame is calculated atωg (local), while
the right frame is calculated at ωg (global). The local analysis pre-
dicts the same features as the global analysis but there are some
noticeable differences. Firstly, the centre of the structural sensitiv-
ity is too far upstreamwhenωg (local) is used. Thiswas also seen for

the wake flow in Section 5.1 and is because the local analysis over-
predicts the growth rate. Secondly, the z-dependence of the global
mode is poorly predicted in regionswhere the flow is strongly non-
parallel, such as at the end of the recirculation zone. Nevertheless,
this shows that the local analysis can estimate the structural sen-
sitivity in this type of flow, at very little computational cost.

It is worth mentioning that we also attempted to use this
method to compute the globalmodes for the swirling vortex break-
down bubble in [31], which is very non-parallel around the vor-
tex breakdown bubble. It was impossible to identify the k+ and
k− branches in the non-parallel region and therefore impossible
to generate direct and adjoint global modes.

6. Conclusions

In an unstable open flow, it is useful to know which regions
are most receptive to forcing and which regions are most sensitive
to changes in internal feedback. These regions can be found
easily if the direct and adjoint global modes have been calculated.
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Fig. 4. As for Fig. 2 but for the flow around a cylinder at Re = 50.

a b

c d

Fig. 5. Direct (top) and adjoint (bottom) global modes calculated from the local analysis at ωg (local): (a, c) real component, (b, d) imaginary component. These frames can
be compared with Figs. 2 and 3 of [5].
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a b

Fig. 6. The structural sensitivity calculated from the local analysis at (a) ωg (local) and (b) ωg (global). These frames can be compared with Fig. 17 of [6].

These modes are usually calculated with a global linear stability
analysis, meaning that small perturbations on top of a base flow
are discretized on a 2D or 3D grid. This creates a generalizedmatrix
eigenvalue problem, which is then solved numerically. These
matrices can havemillions of degrees of freedom, so this procedure
is computationally expensive and is impractical for many flows.

An alternative approach, which is applicable to weakly non-
parallel open flows, is to calculate the direct global mode with a
local stability analysis. This is orders of magnitude cheaper than a
global analysis. The main result of this paper is to show that the
adjoint global mode then follows at almost no extra cost. We show
this formally for the Ginzburg–Landau equation and find that the
direct globalmode is formed from the k−-branch upstream and the
k+-branch downstream, while the adjoint global mode is formed
from the k+-branch upstream and the k−-branch downstream.We
include higher order terms of the WKBJ analysis in order to show
that these analytical relationships are valid up to order ϵ, which
measures the non-parallelism of the flow. Furthermore, we show
that the maximum of the structural sensitivity, as defined by [6], is
the point at which the spatial branches, k+ and k−, have identical
imaginary components.

We apply this to the linearized Navier–Stokes (LNS) equations
and show that, if the direct global mode has already been calcu-
lated, the only extra cost in calculating the adjoint mode is in cal-
culating the adjoint eigenfunction at each point in the flow. This
cost is small because the adjoint eigenvalue is already known.

We compare the local and global results for two flows: a con-
fined wake flow at Re = 400, and the flow behind a cylinder at
Re = 50. The procedure works very well for the confined wake
flow: the localwavenumbers of the direct and adjoint globalmodes
closely follow the k+ and k− branches of the local analysis, as
expected, and the structural sensitivity calculated with the local
analysis is almost indistinguishable from that calculated with the
global analysis. The procedure works less well for the cylinder: al-
though the local and global results are qualitatively similar, the lo-
cal analysis over-predicts the growth rate and therefore predicts
that thewavemaker region lies too far upstream.We conclude that
the procedure works less well for the cylinder because the wave-
maker sits in a region that is less parallel.

Some flows, such as those in a gas turbine fuel injector [23],
contain more than one unstable global mode. Each of these global
modes has, in a local analysis, an associated saddle point of ω(k)
in the k-plane and an associated saddle point of ω0(X) in the X-
plane. Therefore the technique in this paper can be applied to each
of these saddle points individually and can identify multiple global
modes in a flow, if they exist.

In many real flows, the assumptions underlying the WKBJ ap-
proach are notmet very closely. Nevertheless, the techniques of lo-
cal stability analysis haveproved to be remarkably robust, probably

because the wavemaker region often lies in a region of nearly par-
allel flow. In such cases, a local stability analysis will give reason-
able estimates of the direct and adjoint global modes at much less
computational cost than a global analysis. For example, the global
modes of a 3D flow that evolves slowly in the streamwise direction
could be calculated by combining the results of several 2D calcula-
tions. This opens the door to the application of sensitivity analysis
to flows that are currently beyond the reach of global analysis.
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This paper concerns steady, high-Reynolds-number
flow around a semi-infinite, rotating cylinder placed
in an axial stream and uses boundary-layer type of
equations which apply even when the boundary-layer
thickness is comparable to the cylinder radius, as
indeed it is at large enough downstream distances.
At large rotation rates, it is found that a wall
jet appears over a certain range of downstream
locations. This jet strengthens with increasing rotation,
but first strengthens then weakens as downstream
distance increases, eventually disappearing, so the
flow recovers a profile qualitatively similar to a
classical boundary layer. The asymptotic solution at
large streamwise distances is obtained as an expansion
in inverse powers of the logarithm of the distance.
It is found that the asymptotic radial and axial
velocity components are the same as for a non-rotating
cylinder, to all orders in this expansion.

1. Introduction
When a semi-infinite rotating cylindrical body is
placed in a high-Reynolds-number axial flow (figure 1),
an axisymmetric boundary layer develops along the
cylinder. Initially thin, this layer becomes of thickness
comparable with, then larger than the cylinder radius at
sufficiently large axial distances. Our original motivation
for studying this flow was to undertake a stability
analysis. However, it soon became clear that there
are very few existing studies of the underlying flow,
despite its interesting features, e.g. the appearance of

2016 The Author(s) Published by the Royal Society. All rights reserved.
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Figure 1. Schematic diagram of the problem.

an axial wall jet beyond a certain threshold value of the rotation rate. The presence of curvature
and rotation means that the classical Prandtl equations need to be generalized to allow for
these effects. In particular, rotation leads to a centrifugal term which couples all three velocity
components. This results in significant qualitative changes in the flow structure, e.g. the wall jet,
compared with Blasius flow on a flat plate.

The non-rotating version of this problem was studied analytically by Seban & Bond [1] using
a series solution in powers of z1/2, where z is the axial coordinate, non-dimensionalized using
the cylinder radius. This series solution was limited to order 3, and thus only applicable close
to the inlet. Kelly [2] showed that the series solution for the displacement thickness provided
by Seban & Bond [1] was erroneous, and obtained the correct result. Glauert & Lighthill [3]
extended this work to obtain a solution at all z using the Pohlhausen approximation. At large
z, Glauert & Lighthill [3] also showed that the velocity profile had an asymptotic expansion in
inverse powers of log(z). Jaffe & Okamura [4] were the first to solve the boundary-layer equations
for this problem numerically, thus covering the entire range of z, from small to large values.
Boundary-layer velocity profiles have also been numerically determined by Tutty et al. [5] and
Vinod & Govindarajan [6] in the context of stability analysis.

Petrov [7] appears to be the first to have studied the rotating case. Axial velocity profiles
were obtained in the limit of small z and show the existence of a wall jet for sufficiently strong
rotation, though this interesting feature was not explained in the paper. Motivated as we were by
stability analysis of the flow, Kao & Chow [8] and Herrada et al. [9] solved the present problem
numerically. However, both papers limit themselves to a range of rotation rates insufficiently
large to produce a wall jet. Furthermore, the centrifugal term is missing in the boundary-layer
equations of Kao & Chow [8], and so they are incapable of yielding a wall jet even at large
rotation rates.

In §2, we define the two non-dimensional control parameters of the problem, Re and S, the
Reynolds number and non-dimensional rotation rate. The boundary-layer equations, valid for
large Re, and allowing for boundary-layer thickness to be comparable with the cylinder radius are
given. These equations generalize the Prandtl equations and apply for arbitrary (not necessarily
small) ratios of boundary-layer thickness to cylinder radius. Suitable rescaling of the variables
renders the problem independent of Re, leaving only S as control parameter. Section 3 describes
the numerical scheme and its verification, while §4 gives results and discussion, in particular
focusing on the wall jet. Finally, §5 gives asymptotic analyses of the limits of large Z = z/Re and
large S. The boundary layer on the nose is discussed in the appendices. It is found that the precise
shape of the nose is unimportant: the input to the boundary-layer equations of §2 being the Blasius
flat-plate flow (generalized to include the azimuthal component due to rotation), independent of
the nose shape.

2. Boundary-layer equations
A semi-infinite cylinder of radius a rotates about its axis with angular velocity Ω and is placed in
an axial stream of incompressible fluid of velocity U∞ and viscosity ν (figure 1). Assuming large
Reynolds number, an initially thin boundary layer develops along the cylinder. If the cylinder
were sharply truncated at the nose, flow separation would occur as is usually the case at a salient
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edge [10]. To avoid this scenario, we assume that there is a smooth nose, as shown in figure 1.
Another way to avoid flow separation would be to consider a thin hollow cylinder. The boundary-
layer equations formulated in this section hold good for both these cases. A detailed analysis of
the nose region is given in appendix B.

The natural length and velocity scales are a and U∞. These scales are used to non-
dimensionalize the axisymmetric, steady Navier–Stokes equations in cylindrical coordinates,
z, r, θ . There are two non-dimensional parameters, namely the Reynolds number

Re = U∞a
ν

, (2.1)

and the rotation rate

S = Ωa
U∞

. (2.2)

Assuming a large Reynolds number, the length scale for axial variation of the flow is much
longer than that for radial variation. This separation of scales leads to the boundary-layer
approximation. Thus,

uz
∂uz

∂z
+ ur

∂uz

∂r
= −∂p

∂z
+ 1

Re

(
∂2uz

∂r2 + 1
r
∂uz

∂r

)
, (2.3)

u2
θ

r
= ∂p
∂r

, (2.4)

uz
∂uθ
∂z

+ ur
∂uθ
∂r

+ uθur

r
= 1

Re

(
∂2uθ
∂r2 + 1

r
∂uθ
∂r

− uθ
r2

)
(2.5)

and
∂uz

∂z
+ 1

r
∂rur

∂r
= 0 (2.6)

are obtained by dropping terms of higher order from the Navier–Stokes equations in the usual
manner. Note that we have not assumed the boundary layer to be thin compared with the radius.
The boundary conditions are

uz = 0, ur = 0, uθ = S z> 0, r = 1 (2.7)

and

uz → 1, uθ → 0, p → 0 z> 0, r → ∞. (2.8)

The above equations contain the azimuthal component, uθ , of the velocity. This is due to
rotation of the cylinder, which induces the centrifugal term on the left-hand side of equation (2.4),
leading to a significant radial pressure gradient. Such an effect is not present in classical
boundary-layer theory, which predicts near constancy of the pressure across the layer. Compared
to the Prandtl equations of a classical boundary layer, equations (2.3)–(2.6) allow for the additional
effects of both rotation and curvature. Near the nose the boundary layer is thin compared with
the cylinder radius and curvature effects are negligible. But at large z, boundary-thickening
eventually makes the thickness comparable to, then larger compared with the radius, and the
full set of equations is required.

The above problem needs to be completed by inlet conditions. At distances from the nose of
O(a), the boundary layer is thin compared with the radius and is described by the axisymmetric
Prandtl equations given in appendix B. On the cylinder (after leaving the nose), these equations
become the flat-plate Prandtl equations, and as z increases, we expect the flow to forget the
precise initial conditions and to approach the Blasius solution, independent of the nose shape
(here, we implicitly suppose the nose length to be of the same order as its diameter). There are, in
fact, two asymptotic regions, z = O(1), where the equations of appendix B apply, and z = O(Re),
where the boundary-layer thickness is comparable to the cylinder radius and equations (2.3)–(2.8)
hold. Matching between these regions requires that the inlet condition be the Blasius solution
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(generalized to include the azimuthal component due to rotation). The same is true for the case
of the hollow cylinder. In either case, equations (2.3)–(2.8) are supplemented by Blasius initial
conditions as z → 0.

Introducing the scaled variables

R = r, Z = z
Re

, (2.9)

and
Uz = uz, Ur = Rur Re, Uθ = Ruθ , P = R2p, (2.10)

equations (2.3)–(2.8) become

Uz
∂Uz

∂Z
+ Ur

R
∂Uz

∂R
= − 1

R2
∂P
∂Z

+ ∂2Uz

∂R2 + 1
R
∂Uz

∂R
, (2.11)

U2
θ = R

∂P
∂R

− 2P, (2.12)

Uz
∂Uθ

∂Z
+ Ur

R
∂Uθ

∂R
= ∂2Uθ

∂R2 − 1
R
∂Uθ

∂R
, (2.13)

∂Uz

∂Z
+ 1

R
∂Ur

∂R
= 0, (2.14)

Uz = Ur = 0, Uθ = S R = 1 (2.15)

and Uz → 1, Uθ = 0, P = 0 R → ∞. (2.16)

It is apparent that, using these scalings, Re has disappeared from the problem, leaving S as
the only non-dimensional parameter. This result indicates, among other things, that the natural
scaling of the axial coordinate is z = O(Re). Thus, as noted earlier, the distance needed for the
boundary-layer thickness to become comparable with the radius is Re times the radius. The factors
of R appearing in equation (2.10) have been introduced to improve numerical convergence.

3. Numerical scheme and validation
The boundary-layer thickness goes to zero like Z1/2 and Ur → ∞ like Z−1/2 as Z = 0 is
approached. To maintain numerical accuracy in the presence of such singular behaviour, we
introduce the variables

ζ = (2Z)1/2, σ = R − 1
ζ

, Vr = ζUr, Vz = Uz, Vθ = Uθ . (3.1)

Here, the boundary-layer thickness is prevented from going to zero in the radial coordinate σ by
dividing R − 1 by ζ . Vr is kept finite by use of the factor ζ , and ζ is used in place of Z to make the
solution a smooth function of the axial coordinate. Using these variables in the boundary-layer
equations (2.11)–(2.16) results in

ζVz
∂Vz

∂ζ
+
(

Vr − ζ

R
− σVz

)
∂Vz

∂σ
= 1

R2

(
σ
∂P
∂σ

− ζ
∂P
∂ζ

)
+ ∂2Vz

∂σ 2 , (3.2)

ζ

R
(V2
θ + 2P) = ∂P

∂σ
, (3.3)

ζVz
∂Vθ
∂ζ

+
(

Vr + ζ

R
− σVz

)
∂Vθ
∂σ

= ∂2Vθ
∂σ 2 (3.4)

and ζ
∂Vz

∂ζ
− σ

∂Vz

∂σ
+ 1

R
∂Vr

∂σ
= 0, (3.5)

with the boundary conditions

Vz = Vr = 0, Vθ = S σ = 0 (3.6)

and
Vz → 1, Vθ = 0, P = 0 σ → ∞. (3.7)
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Figure 2. Comparison of Uz for S= 0 at two values of Z with [5] and comparison of skin friction τ for S= 1 with [9].

These equations govern the axial evolution of the flow. The inlet condition (Blasius solution) is
obtained by setting ζ = 0 and solving the resulting equations.

The radial coordinate σ is discretized using Chebyshev collocation points:

xn = cos
(

nπ
N − 1

)
0 ≤ n<N (3.8)

and

σn = σ̂ (1 + xn)
1 − xn

, x ∈ [−1, 1] → σ ∈ [0, ∞]. (3.9)

The parameter σ̂ controls the distribution of points such that half of them lie between 0 ≤ σ ≤ σ̂ .
The velocities Vz and Vθ are represented by their values at all collocation points. However, since
there is no boundary condition for the pressure at the surface, it is represented at all points except
σ = 0. Similarly, there is no boundary condition for Vr at σ = ∞ and so it is represented at all
points apart from σ = ∞. The Chebyshev derivative matrices for P and Vr are correspondingly
modified (e.g. appendix A in [11]).

The coordinate ζ is discretized using small, equally spaced steps, ζi = i
, and the variables
Vz, Vr, Vθ , P are represented by their values at ζi. Equations (3.2), (3.4) and (3.5) are evaluated at
mid-step, ζi+1/2, using an implicit scheme that employs centred finite differencing to represent the
ζ -derivatives. Equation (3.3) is evaluated at the step position ζi, rather than at the midstep. At each
step, the equations are solved using Newton–Raphson iteration, thus allowing forward marching.
The inlet solution is obtained from equations (3.2)–(3.7) using ζ = 0. Following discretization in σ
using the collocation points, the result is again obtained by Newton–Raphson iteration.

The code was first tested by changing the numerical parameters N, σ̂ ,
, and observing the
dependence of the solution on these parameters. Based on the convergence results, we decided to
use N = 128, σ̂ = 5, 
= 0.001 in our computations. These values gave convergence to better than
seven decimal places. The code was also tested using the volume-flux and momentum balance
equations. The results respect these equations to seven decimal places. Although use of the Blasius
solution at the inlet has earlier been justified by an asymptotic argument, it is interesting to see
the effect of a change in inlet profile on the solution. Thus, we modified the inlet profile to be
U∗

z = Uz + Aσ exp(−0.5σ ), where Uz is the Blasius profile. Taking A = 2, it was found that the
change in Uz at Z = 2 was in the sixth decimal place. This illustrates the fact that the flow forgets
the initial condition as Z increases and becomes insensitive to the precise inlet profile used.

We also validated the code by comparing our results with the existing literature. Tutty et al. [5]
studied the case without rotation. The axial (xt) and radial (σt) coordinates used by Tutty et al. [5]
are related to those used here via xt/Re = Z and σt = √

2σ . Figure 2 shows good agreement with
our results for Re = 104, xt = 0.01 and xt = 105. Herrada et al. [9] considered the problem of the
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Figure 3. Velocity profiles Vz(σ ), Vθ (σ ) and Vr(σ ) for different axial positions Z at S= 0.1.

rotating cylinder. They do not give velocity profiles, but rather the skin friction on the cylinder:

τ = ∂Uz(Z)
∂R

∣∣∣∣
R=1

= 1
ζ

∂Vz(ζ )
∂σ

∣∣∣∣
σ=0

. (3.10)

Figure 2 shows τ as a function of Z for S = 1 and good agreement is apparent.

4. Results
Flow profiles were obtained for different values of S and Z. Figure 3 shows velocity profiles for
S = 0.1 and different values of Z. For Z = 0, Vz(σ ) corresponds to the Blasius flat-plate solution.
As Z increases, Vz(σ ) deviates from the Blasius profile due to cylinder curvature and rotation.
It should be borne in mind that the boundary-layer thickness increases with Z, although this is
not apparent in the figure because the scaled radial coordinate σ = (R − 1)/ζ has been used. Note
that the azimuthal velocity at Z = 0 is Vθ (σ ) = S(1 − Vz(σ )). As Z increases, small departures from
this profile arise. Figures 4 and 5 show results for Z = 0.5 and different values of S. When S � 1,
Vz(σ ) is a modified Blasius profile. However, for S � 4, Vz(σ ) is no longer monotonic having a
maximum at finite σ . At large S, the maximum is large and the profile is better described as an
axial wall jet, rather than a boundary layer. At first sight, it is perhaps surprising that increasing
the rotation rate leads to a stronger and stronger axial flow. Increasing S causes Vθ to increase
(figure 4). This in turn produces an increasing radial pressure gradient due to the centrifugal force.
Since the pressure is constant outside the boundary layer, the pressure within the layer drops
(figure 5) with Z. The development of the flow means that the axial pressure gradient becomes
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larger and larger, thus driving a strong axial wall jet. Whereas for lower values of S, boundary-
layer thickening leads to positive Vr, at large S entrainment by the wall jet gives negative Vr

outside the layer (figure 4).
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The existence of a wall jet at large S is apparent in the axial velocity profiles given by Petrov [7].
However, that article only gives such profiles for the case of small Z (thin boundary layer) and no
explanation is provided. Petrov [7] also gives the maximum axial velocity Umax

z = maxR(Uz(R)) as
a function of Z. Figure 6 shows a comparison with our results. A small difference is apparent, the
origin of which is unclear.

Figure 7 shows contours of constant Umax
z in the (S, ζ )-plane as well as the boundary (solid

line) separating the region in which Umax
z = 1 from that in which Umax

z > 1 (which we interpret
as indicating a wall jet). It will be seen that there is a threshold, S = 4.15, below which Umax

z = 1.
Above this value, the wall jet exists for some range of axial position. Note that, whatever the
strength of rotation, the wall jet eventually disappears sufficiently far downstream.

The thickness of the boundary layer/wall jet can be measured using

δ = 1
Umax

z

∫∞

1
|1 − Uz| dR. (4.1)
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The absolute value is taken to make the integral always positive and the division by Umax
z allows

for the strong wall jets which arise at large S. Figure 8 shows δ(Z) for different values of S.
The layer thickness is seen to increase with Z in a roughly parabolic manner (recall that the
thickness behaves as Z1/2 for small Z). Thickening of the layer is due to viscous diffusion in
the usual manner. Increasing S causes the layer to become thinner. At large S, the wall jet is of
increasing strength. Viscous diffusion competes with axial convection, the latter being of growing
importance, hence the decrease of δ with increasing S.

5. Asymptotic analysis

(a) Large-Z asymptotics
Suitable coordinates are

η= R
ζ

, χ = ln(ζ ). (5.1)

Here, we have followed Glauert & Lighthill [3], who used a logarithmic axial coordinate for the
non-rotating cylinder problem. This coordinate reflects slower and slower evolution of the flow in
the streamwise direction as Z increases. Using these coordinates, equations (2.11)–(2.16) become

Uz

(
∂Uz

∂χ
− η

∂Uz

∂η

)
+ Ur

η

∂Uz

∂η
= e−2χ

η2

(
η
∂P
∂η

− ∂P
∂χ

)
+ ∂2Uz

∂η2 + 1
η

∂Uz

∂η
, (5.2)

U2
θ + 2P = η

∂P
∂η

, (5.3)

Uz

(
∂Uθ

∂χ
− η

∂Uθ

∂η

)
+ Ur

η

∂Uθ

∂η
= ∂2Uθ

∂η2 − 1
η

∂Uθ

∂η
, (5.4)

∂Uz

∂χ
− η

∂Uz

∂η
+ 1
η

∂Ur

∂η
= 0, (5.5)

Uz = Ur = 0, Uθ = S η= e−χ (5.6)

and Uz → 1, Uθ → 0, P → 0 η→ ∞. (5.7)
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It is shown in appendix A that Uz, Ur, Uθ and P have asymptotic expansions in powers of χ−1.
The factor of e−2χ in equation (5.2) is exponentially small and is hence negligible at all algebraic
orders. Without the corresponding term in equation (5.2), Uz and Ur decouple from Uθ and P,
though the latter depends on the former. Thus, we expect such decoupling to hold at all orders.
This is indeed what is found in appendix A, where the governing equations for the coefficients
of the expansions in powers of χ−1 are obtained for all orders. Given decoupling, rotation
does not enter into the asymptotics of Uz and Ur, which are consequently the same as for the
non-rotating case.

Glauert & Lighthill [3] studied the case without rotation and obtained the expansions of Uz and
Ur. Appendix A extends the analysis to include rotation and gives detailed results up to order 5.
At first order, the asymptotic solution can be obtained analytically and is given by

Uz ∼ 1 − χ−1
∫∞

η

e−ξ 2/2

ξ
dξ , (5.8)

Ur ∼ χ−1(1 − e−η2/2), (5.9)

Uθ ∼ Se−η2/2 (5.10)

and P ∼ −S2η2
∫∞

η

e−ξ 2

ξ3 dξ . (5.11)

In figure 9, the results for Uz show convergence to the asymptotic form (5.8), while those for
uθ = Uθ /R converge to uθ ∼ S/R, which is the flow due to a rotating cylinder, infinite in both axial
directions (rather than semi-infinite) and without axial flow.

(b) Large-S asymptotics
As we saw in the previous section, the numerical results show the existence of a wall jet at large S.
In this limit, appropriate scaled variables are

Z∗ = Z
S

, R∗ = R (5.12)

and

U∗
z = Uz

S
, U∗

r = Ur, U∗
θ = Uθ

S
, P∗ = P

S2 . (5.13)

The scaling of Z reflects the increasing distance required for flow development as the rotation
rate increases. The scaling of Uz and Uθ indicates the strengthening flow velocity as S increases.
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The large-S asymptotic expansions of U∗
z , U∗

r , U∗
θ and P∗ proceed as powers of S−1. At leading

order (S0), we find

U∗
z
∂U∗

z
∂Z∗ + U∗

r
R∗

∂U∗
z

∂R∗ = − 1
R∗2

∂P∗

∂Z∗ + ∂2U∗
z

∂R∗2 + 1
R∗
∂U∗

z
∂R∗ , (5.14)

U∗2
θ = R∗ ∂P∗

∂R∗ − 2P∗, (5.15)

U∗
z
∂U∗

θ

∂Z∗ + U∗
r

R∗
∂U∗

θ

∂R∗ = ∂2U∗
θ

∂R∗2 − 1
R∗
∂U∗

θ

∂R∗ (5.16)

and
∂U∗

z
∂Z∗ + 1

R∗
∂U∗

r
∂R∗ = 0, (5.17)

with the following inlet and boundary conditions:

U∗
z = 0, U∗

θ = 0 Z∗ = 0, (5.18)

U∗
z = 0, U∗

r = 0, U∗
θ = 1 R∗ = 1 (5.19)

and U∗
z = 0, U∗

θ = 0, P∗ = 0 R∗ → ∞. (5.20)

Figure 10 shows the solution of the above problem (solid line) compared with the numerical
results discussed before for Z∗ = 0.1 and different values of S. It is apparent that the asymptotics
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are indeed approached as S → ∞. Figure 11 shows the leading-order asymptotic solution for
different values of Z∗. We see that the large-Z limit (uθ ∼ SR−1) is approached by uθ as Z∗ → ∞.

Note that the limit S → ∞ can be reached in two ways: either by increasing the rotation rate, or
by decreasing the velocity U∞ to zero. Note also that uz/S and uθ /S are the velocity components
non-dimensionalized by Ωa, rather than U∞, and that Z∗ = z/ReΩ , where ReΩ =Ωa2/ν is the
Reynolds number based on the rotational velocity Ωa. Thus, figure 11 can be interpreted as
showing the flow due to a rotating, semi-infinite cylinder in a still fluid (U∞ = 0). It can be shown
that the separation of radial and axial length scales, which underlies the boundary-layer type
approximation we have used, is valid if either of the Reynolds numbers, Re or ReΩ , is large.

6. Conclusion
In this paper, we have presented a study of the flow around a rotating cylinder in an axial stream.
We have assumed a smooth nose to avoid flow separation. The two non-dimensional control
parameters of the problem are: Reynolds number (Re) and rotation rate (S). The flow equations are
formulated using a boundary-layer type approximation, appropriate at large Reynolds numbers
and in which the flow is assumed to evolve slowly in the streamwise direction in comparison to
the radial direction. The resulting equations are not limited to the case in which the boundary
layer is thin compared with the cylinder radius. By using appropriate scalings, we remove Re
from the problem.

The results show that the boundary-layer thickness increases with axial distance, becoming
comparable with the cylinder radius a at distances of O(Re a). Prior to this, the layer is thin
compared with the radius and the flow is close to the Blasius profile of a flat plate. However, it
differs from the Blasius solution due to the effects of curvature and rotation at larger downstream
distances. As S increases, the centrifugal force creates an increasing radial pressure gradient,
which combined with axial development, implies an increasing axial gradient of pressure. Above
S = 4.15, the maximum velocity exceeds the free-stream velocity for a range of Z and we say that
a wall jet exists. This jet becomes stronger and stronger as S → ∞.

In the limit of large Z, we find that the axial and radial components of velocity decouple from
the azimuthal velocity component and pressure. All these quantities are found to have asymptotic
expansions in inverse powers of ln(Z), a result already obtained for the non-rotating case by
Glauert & Lighthill [3], and here extended to include rotation. The leading-order term in the
uθ expansion is uθ ∼ SR−1, which is the flow expected for a rotating cylinder, infinite in both
directions. Because Uθ becomes independent of Z, the same is true of the pressure field resulting
from the centrifugal force, hence the absence of an axial pressure gradient to drive the axial/radial
flow. This is the reason for the decoupling.

When S is large, we introduce appropriate scalings for Z, Uz, Uθ and P. The asymptotic
expansions of the scaled velocity and pressure proceed as inverse powers of S, beginning with S0.
The leading-order term describes an axial wall jet due to a rotating cylinder in a fluid at rest.
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Appendix A. Large Z asymptotic expansions
The flow variables are expressed as asymptotic expansions in inverse powers of χ :

Uz ∼ 1 +
∞∑

n=1

χ−nU(n)
z (η), (A 1)
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Ur ∼
∞∑

n=1

χ−nU(n)
r (η), (A 2)

Uθ ∼ S
∞∑

n=1

χ−n+1U(n)
θ (η) (A 3)

and P ∼ S2
∞∑

n=1

χ−n+1P(n)(η). (A 4)

Introducing these expansions into equations (5.2)–(5.5) gives

1
η

d
dη

(
η

dU(n)
z

dη

)
+ η

dU(n)
z

dη
= φ

(n)
z , (A 5)

η3 d
dη

(
P(n)

η2

)
=ψ (n), (A 6)

η
d

dη

(
1
η

dU(n)
θ

dη

)
+ η

dU(n)
θ

dη
= φ

(n)
θ (A 7)

and
1
η

dU(n)
r

dη
− η

dU(n)
z

dη
= φ

(n)
r , (A 8)

where

φ
(n)
z = (1 − n)U(n−1)

z +
∑

m

((
U(m)

r

η
− ηU(m)

z

)
dU(n−m)

z

dη
− mU(m)

z U(n−m−1)
z

)
, (A 9)

φ
(n)
θ = (2 − n)U(n−1)

θ +
∑

m

((
U(m)

r

η
− ηU(m)

z

)
dU(n−m)

θ

dη
− (m − 1)U(m)

θ U(n−m−1)
z

)
(A 10)

and φ
(n)
r = (n − 1)U(n−1)

z , ψ (n) =
∑

m
U(m)
θ U(n−m+1)

θ . (A 11)

Equations (A 5)–(A 8) are to be solved, along with appropriate boundary conditions (which will
be derived shortly), for the nth-order coefficients of the expansions, U(n)

z , U(n)
r , U(n)

θ and P(n)

(n ≥ 1). It should be noted that, in equations (A 9)–(A 11), U(m)
z , U(m)

r and U(m)
θ are to be interpreted

as zero when m ≤ 0. The governing equations for U(n)
z and U(n)

r are independent of U(n)
θ and

P(n). Thus, the asymptotics of U(n)
z and U(n)

r are the same as for a non-rotating cylinder and are
governed by equations (A 5), (A 8), (A 9) and the first of the equations (A 11). U(n)

θ is determined
by equations (A 7) and (A 10), while P(n) follows from equation (A 6) and the second of the
equations (A 11). Note that φ(n)

z ,φ(n)
r and φ(n)

θ depend only on the solution at lower orders than n,
suggesting a method which proceeds from n = 1 to successively higher values of n.

The boundary conditions at η→ ∞ are

U(n)
z = U(n)

θ = P(n) = 0. (A 12)
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Application of the boundary conditions (2.15) at the cylinder surface requires the introduction
of an inner region, R = O(1), represented by the expansions

Uz ∼
∞∑

n=1

χ−nÛ(n)
z (R), (A 13)

Ur ∼
∞∑

n=1

χ−nÛ(n)
r (R), (A 14)

Uθ ∼ S
∞∑

n=1

χ−n+1Û(n)
θ (R) (A 15)

and P ∼ S2
∞∑

n=1

χ−n+1P̂(n)(R). (A 16)

Equations (2.11), (2.13) and (2.14) are rewritten using the axial coordinate χ in place of Z. Equation
(2.14) yields

∂Û(n)
r

∂R
= 0, (A 17)

which, together with the boundary conditions (2.15) gives Û(n)
r = 0. Equations (2.11) and (2.13)

imply

∂2Û(n)
z

∂R2 + 1
R
∂Û(n)

z

∂R
= 0 (A 18)

and
∂2Û(n)

θ

∂R2 − 1
R
∂Û(n)

θ

∂R
= 0, (A 19)

hence
Û(n)

z (R) = An ln R + Bn (A 20)

and
Û(n)
θ (R) = CnR2 + Dn. (A 21)

The boundary conditions (2.15) imply Bn = 0, C1 + D1 = 1, and Cn + Dn = 0 for n> 1.
Recalling that R = ζη= eχη, the inner expansions give

Uz ∼ A1 +
∞∑

n=1

χ−n(An ln η + An+1), (A 22)

Uθ ∼ S

(
1 +

∞∑
n=1

Cnχ
−n(e2χη2 − 1)

)
(A 23)

and Ur ∼ 0, (A 24)

when expressed in terms of the outer coordinate, η. Matching requires A1 = 1, Cn = 0 and

U(n)
z ∼ An ln η + An+1, (A 25)

U(1)
θ → 1 and U(n)

θ → 0 for n> 1 (A 26)

and
U(n)

r → 0, (A 27)

as η→ 0. It follows from (A 25) that

η
dU(n)

z

dη
→ An (A 28)
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Figure 12. First five coefficients of the large-Z asymptotic expansions of Uz , Uθ and Ur .

and

An+1 = lim
η→0

(U(n)
z − Anlnη). (A 29)

Assuming An is known, equations (A 5)–(A 11) and the boundary conditions (A 12) and
(A 26)–(A 28) can be solved for U(n)

z , U(n)
r , U(n)

θ and P(n). A1 = 1 gets the process started and
leads to the leading-order outer solution, (5.8)–(5.11), in agreement with [3]. Equation (A 29)
gives An at the next order, allowing solution at successively higher orders. It can be
shown that

U(n)
z = An lnη + An+1 + O(η2 lnpnη), U(n)

θ = 1 − qn + O(η2), U(n)
r = O(η2 lnqnη), (A 30)

as η→ 0, where qn = pn+1 − 1, p1 = 0, p2 = 1 and pn = 2 for n ≥ 3. The terms in (A 30) indicated by
the O() notation are exponentially small in the inner region, while the remaining ones reproduce
the inner solution. Thus, the outer expansions in fact apply in the inner region.

The above procedure has been implemented numerically and results up to n = 5 are presented
in figure 12. Figure 13 shows the comparison of numerical solution of Uz at Z = 5000 and S = 1
with the asymptotic solution obtained by truncating at different orders n. Although this result
shows good convergence, and therefore further confirms both numerical and analytical results, it
should be borne in mind that the expansions (A 1)–(A 4) are, in fact, asymptotic as Z → ∞, rather
than necessarily convergent at any finite Z.
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Appendix B. Flow over the nose
Large Reynolds number implies a thin boundary layer over the nose. Schlichting [12] gives
the axisymmetric boundary-layer equations in terms of curvilinear coordinates, x, y, θ , where
x is distance along the surface, and y is distance normal to the surface. Here, we use the
non-dimensional coordinates, velocity components and pressure:

ỹ = Re1/2y
a

, x̃ = x
a

(B 1)

and

ũy = Re1/2uy

U∞
, ũx = ux

U∞
, ũθ = uθ

U∞
, p̃ = p. (B 2)

The boundary-layer equations in these variables are

ũx
∂ũx

∂ x̃
+ ũy

∂ũx

∂ ỹ
− ũ2

θ

R̃

dR̃
dx̃

= −∂ p̃
∂ x̃

+ ∂2ũx

∂ ỹ2 , (B 3)

ũx
∂ũθ
∂ x̃

+ ũy
∂ũθ
∂ ỹ

+ ũθ ũx

R̃

dR̃
dx̃

= ∂2ũθ
∂ ỹ2 (B 4)

∂ p̃
∂ ỹ

= 0

and
∂ũx

∂ x̃
+ ũx

R̃

dR̃
dx̃

+ ∂ũy

∂ ỹ
= 0, (B 5)

with the boundary conditions

ũx = ũy = 0, ũθ = SR̃(x̃) ỹ = 0 (B 6)

and
ũx → Uext(x̃), ũθ → 0 ỹ → ∞, (B 7)

where the nose geometry is represented by r = R̃(x̃) and Uext(x̃) is the velocity just outside the
boundary layer. Equations (B 3)–(B 5) can, in principle, be solved to obtain the flow over the nose.
Note the centrifugal term in equation (B 3), which will no doubt produce a wall jet on the nose at
sufficiently large S. The terms containing dR̃/dx̃ vanish on the constant-radius cylinder (where x̃
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and z coincide to within an additive constant) and equations (B 3)–(B 5) then become those of a
flat-plate. Thus, we expect the flow to approach the Blasius solution as x̃ → ∞. There are, in fact,
two asymptotic regions, x̃ = O(1) and x̃ = O(Re), the former being described by equations (B 3)–
(B 5) and the latter by equations (2.11)–(2.14). Matching of the regions requires the Blasius flow
as inlet conditions to the latter equations, as noted in the main text. Thus, the flow in the region
Z = O(1), which is the subject of this paper, is insensitive to the geometry of the nose. Note that a
wall jet may appear on the nose, subsequently disappearing on the cylinder, later reappearing in
the region Z = O(1).
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Stability of flow around a rotating, semi-infinite cylinder placed in an axial stream is
investigated. Assuming large Reynolds number, the basic flow is computed numerically
as described by Derebail Muralidhar et al. [Proc. R. Soc. London, Ser. A 472, 20150850
(2016)], while numerical solution of the local stability equations allows calculation of the
modal growth rates and hence determination of flow stability or instability. The problem
has three nondimensional parameters: the Reynolds number Re, the rotation rate S, and the
axial location Z. Small amounts of rotation are found to strongly affect flow stability. This
is the result of a nearly neutral mode of the nonrotating cylinder which controls stability at
small S. Even small rotation can produce a sufficient perturbation that the mode goes from
decaying to growing, with obvious consequences for stability. Without rotation, the flow is
stable below a Reynolds number of about 1060 and also beyond a threshold Z. With rotation,
no matter how small, instability is no longer constrained by a minimum Re nor a maximum
Z. In particular, the critical Reynolds number goes to zero as Z → ∞, so the flow is always
unstable at large enough axial distances from the nose. As Z is increased, the flow goes from
stability at small Z to instability at large Z. If the critical Reynolds number is a monotonic
decreasing function of Z, as it is for S between about 0.0045 and 5, there is a single boundary
in Z, which separates the stable from the unstable part of the flow. On the other hand, when
the critical Reynolds number is nonmonotonic, there can, depending on the choice of Re,
be several such boundaries and flow stability switches more than once as Z is increased.
Detailed results showing the critical Reynolds number as a function of Z for different
rotation rates are given. We also obtain an asymptotic expansion of the critical Reynolds
number at large Z and use perturbation theory to further quantify the behavior at small S.

DOI: 10.1103/PhysRevFluids.1.053602

I. INTRODUCTION

The stability of three-dimensional boundary layers provides a rich subject of research (see Reed
and Saric [1], Saric et al. [2], and references therein). Such flows are often due to rotating bodies
as, for example, disks [3,4], cones [5,6], or spheres [7]. Here, we consider a semi-infinite cylinder,
rotating about its axis and placed in a high-Reynolds-number axial stream, thus inducing a steady,
axisymmetric, three-velocity-component boundary layer whose flow field depends on rotation and
curvature of the cylinder, as we have already described in an earlier paper [8], henceforth referred
to as I. In this paper, we study the stability of this flow for a wide range of parameters, to determine
the effects of rotation and curvature.

As noted above, the basic flow around a rotating cylinder in an axial stream (see Fig. 1) has
been extensively studied by the authors in preparation for the present stability analysis. To avoid
the flow separation typically induced by sharp corners, a smooth nose is assumed at the front
of the cylinder. The problem has two nondimensional control parameters: a Reynolds number
Re = U∞a/ν, constructed using the incident velocity U∞ and cylinder radius a, and a rotation rate
S = �a/U∞, where � is the angular velocity of the cylinder. Assuming large Reynolds number,
the basic flow comprises an axisymmetric boundary layer. Initially thin compared to the cylinder
radius, the boundary-layer thickness increases with axial distance, becoming comparable to the
cylinder radius at large axial distances of order a Re. The thickness nonetheless remains small
compared with the downstream distance, leading to a separation of length scales (asymptotic in
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a z

FIG. 1. Schematic diagram of the problem.

the assumed large Reynolds number) between the axial and radial directions and allowing use of a
boundary-layer approximation. However, once the thickness is comparable to a, effects of surface
curvature and the centrifugal force due to rotation become important and must be included in the
boundary-layer equations. The intervention of curvature and rotation at axial distances of order
a Re is the reason why we focus on this region. Although the basic flow depends on the nose
geometry at streamwise distances of order a, boundary-layer development forgets such details and
the flow becomes independent of the nose profile at larger distances, in particular those of order
a Re. Interested readers should refer to I for more details of the basic flow, including the appearance
of a wall jet for S above about 4 and asymptotic analyses of the limits of large rotation rate and large
streamwise distance.

Stability of the Blasius boundary layer on a flat plate has been extensively studied, the primary
instability being due to growth of Tollmien-Schlichting waves (see, for example, [9–11]). Stability
analysis of a nonrotating cylinder placed in an axial stream was conducted by Tutty [12]. They
found that nonaxisymmetric modes have a lower critical Reynolds number than axisymmetric modes
and that the flow is stable at all streamwise distances for Reynolds numbers below 1060. Above this
critical value, the flow is unstable only for a range of streamwise distance and reverts to being stable
at sufficiently large distances. Vinod and Govindarajan [13] studied the secondary instability and
also showed that the flow is stable according to inviscid theory.

There have been few studies of the stability of a rotating cylinder placed in an axial stream. Kao
and Chow [14] appear to be the first to consider the rotating case, but their basic flow is erroneous
because they do not include the centrifugal term in the radial momentum equation. They also studied
the nonrotating case, but the results are in disagreement with [12]. This disagreement was noted by
Herrada et al. [15], who were the first to formulate the correct basic-flow equations. Results were
obtained for a range of rotation rates between 0.1 and 1, and are in excellent agreement with our
results. They observed that the critical Reynolds numbers were much lower than for the nonrotating
case. This motivated us to study the rotating case in a more systematic manner, in particular
the range of small rotation rates. To our surprise, we found that the stability characteristics, in
particular the critical curves, were significantly dependent on the rotation rate for values of S much
lower than the ones covered in Ref. [15]. The elucidation of these differences between the nonrotating
case and the rotating case at very low S is one of the main topics of this paper.

To our knowledge, the only published experimental work on a rotating cylinder which matches
the geometry of the present study is by Kegelman et al. [16]. They give visualizations of different
instability modes developing on the cylinder. However, the cylindrical section in their experiments
is not long enough to reach distances at which the flow forgets the details of the nose profile (let
alone to reach distances at which curvature and rotation become important for the basic flow). Thus,
quantitative comparison between our results and [16] is inappropriate and is not attempted.

Formally, the basic-flow and stability equations for the rotating cylinder are the same as those
of a vortex core with axial flow (in the quasicylindrical approximation, see [17]). However, the two
flows are quite different and it would be rash to draw parallels in terms of stability. In particular,
vortex breakdown is associated with an adverse axial pressure gradient of the basic flow, whereas
the rotating cylinder has a favorable pressure gradient.

The local stability equations are derived in Sec. II. The numerical scheme is described in Sec. III,
along with results of validation. Section IV contains the main results. In Sec. IV C, the limit of low
rotation rate is examined in more detail and quantified using a perturbation method.
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II. PROBLEM FORMULATION

A semi-infinite cylinder of radius a, which rotates about its axis at angular velocity �, is placed
in an axial stream of velocity U∞ (see Fig. 1), the fluid being incompressible and of viscosity ν and
density ρ. Lengths, times, velocities, and pressures are nondimensionalized using a, a/U∞, U∞,
and ρU 2

∞. Adopting cylindrical coordinates (z,r,θ ), the basic (steady and axisymmetric) flow has
velocity components Uz,Ur , Uθ and associated pressure denoted by P . As noted in the Introduction,
there are two control parameters, namely, the Reynolds number Re and the rotation rate S, given by

Re = U∞a

ν
, (1)

S = �a

U∞
. (2)

To avoid possible confusion, we remark that Uz, Ur , Uθ , and P were denoted by uz, ur , uθ , and
p in I, whereas these lower-case quantities are used to represent the flow perturbation in this paper.

We assume large Reynolds number from here on and restrict attention to the flow over the constant-
radius part of the cylinder z > 0. As discussed in the Introduction, large Reynolds number leads to
a separation of length scales in which streamwise evolution of the basic flow is slow compared with
its radial variation. Not only does this allow use of the boundary-layer approximation to describe the
basic flow, but it is also a prerequisite for local stability analysis. Boundary-layer theory implies that
Ur is small compared with Uz and Uθ . Neglect of Ur is the second ingredient of local stability theory.

Under these assumptions, the steady and axisymmetric base-flow components are governed by a
generalization of the classical Prandtl boundary-layer equations that allow for the additional effects
of both curvature and rotation. Near the nose, the boundary layer is thin compared with the cylinder
radius. Thus, in that region, curvature effects are negligible and the flow is close to the Blasius profile
of a flat plate. Using a Blasius inlet condition, the entire base flow is then obtained by integrating
the boundary-layer equations along the z direction. See I for full theoretical and numerical details
about the basic flow.

The linear stability equations are obtained in the usual manner: by adding infinitesimal
perturbations (uz,ur ,uθ ,p) to the basic-flow quantities (Uz,Ur,Uθ ,P ), using the nondimensionalized
Navier-Stokes equations, and neglecting terms which are nonlinear in the perturbations. The local
approximation is then adopted: Ur is neglected, as are variations of Uz and Uθ with respect to z.
Invariance with respect to z, θ , and t allows modal solutions of the form

⎛
⎜⎝

uz

ur

uθ

p

⎞
⎟⎠ =

⎛
⎜⎝

vz(r)
vr (r)
vθ (r)
q(r)

⎞
⎟⎠ei(αz+mθ−ωt). (3)

Here, ω is the complex frequency, while α and m are the axial and azimuthal wave numbers, which
are, respectively, real and integer modal parameters. Note that modes occur in complex-conjugate
pairs, related by α ↔ −α, m ↔ −m, and ω ↔ −ω∗, where ∗ denotes complex conjugation. It is this
conjugation symmetry which allows the construction of physically meaningful (i.e., real) solutions
by combining a mode and its conjugate. Conjugation symmetry allows us to restrict attention to
α � 0, while m can take any integer value.

Substituting the modal form for the perturbation in the local stability equations gives

iαvz + v′
r + 1

r
vr + im

r
vθ = 0, (4)

i

(
αUz + mUθ

r
− ω

)
vz + U ′

zvr + iαq = 1

Re

[
v′′

z + 1

r
v′

z −
(

α2 + m2

r2

)
vz

]
, (5)
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i

(
αUz+ mUθ

r
− ω

)
vr − 2Uθ

r
vθ +q ′ = 1

Re

[
v′′

r + 1

r
v′

r −
(

α2+ m2+1

r2

)
vr − 2im

r2
vθ

]
, (6)

i

(
αUz+ mUθ

r
−ω

)
vθ +

(
U ′

θ + Uθ

r

)
vr + im

r
q = 1

Re

[
v′′

θ + 1

r
v′

θ−
(

α2+ m2+1

r2

)
vθ + 2im

r2
vr

]
, (7)

where the primes denote derivatives with respect to r . The boundary conditions are

vz(1) = vr (1) = vθ (1) = 0, (8)

vz(∞) = vr (∞) = vθ (∞) = 0. (9)

The modes are determined as nonzero solutions of the above boundary-value problem. The problem
contains the basic-flow velocity profiles Uz(r) and Uθ (r), which are determined by solving the
boundary-layer equations, as described in I. As noted in the Introduction, the basic flow becomes
independent of the nose geometry for streamwise distances much greater than a, i.e., large z, and we
focus on this region. As shown in I, Uz(r) and Uθ (r) then depend only on the parameters Z = z Re
and S, of which the former is a version of streamwise distance, scaled such that the boundary-layer
thickness is of order a when Z is of order 1. Thus, the physical parameters of the problem are Re,
Z, and S, while it also contains the modal parameters α and m. The set of differential equations and
boundary conditions given above form an eigenvalue problem for determination of possible values of
the complex frequency ω = ωr + iωi , whose imaginary part gives the modal growth rate. Expressing
the eigenvalues in terms of the other parameters of the problem yields the dispersion relation

ω = F (α,m,Re,Z,S). (10)

Numerical solution of the eigenvalue problem is described in the next section. The physical
parameters Re, Z, and S and modal parameters α and m are then varied, looking for growing
modes, i.e., eigenvalues with ωi > 0, which are symptomatic of local instability.

III. NUMERICAL METHOD

Prior to numerical discretization, we transform the radial coordinate as in I. Because the boundary-
layer thickness goes to zero like Z1/2 at small Z, the radial coordinate is first replaced by σ =
(r − 1)/(2Z)1/2 to improve the radial resolution in that limit. The semi-infinite range of σ is then
transformed to a finite interval using

x = σ − σ̂

σ + σ̂
, σ ∈ [0,∞] → x ∈ [−1,1] (11)

where σ̂ > 0 is a numerical parameter allowing some control over the distribution of the discrete
points introduced below.

Also as in I, rewriting the local stability equations using the coordinate x, Chebyshev collocation
is used to discretize the problem. We introduce the N collocation points

xn = cos

(
nπ

N − 1

)
, 0 � n < N (12)

where, to avoid interpolation, N has the same value as in the calculation of the basic flow. Note that,
according to (11), σ̂ divides the flow into two ranges, σ < σ̂ and σ > σ̂ , containing equal numbers
of points. The smaller σ̂ , the better the resolution near the cylinder and the worse the resolution
at large σ , the opposite being true if σ̂ is increased. The variables vz, vr , and vθ are represented
by their values at all collocation points, whereas only the values of q for 0 < n < N − 1 are used.
As is usual in Chebyshev collocation, derivatives are expressed using polynomial fitting: (N − 1)th
degree polynomials are fitted to the discrete values of vz, vr , and vθ and an (N − 3)th one to those of
q. This allows approximation of derivatives as matrices obtained by differentiating the polynomials.
Equations (4)–(7) are applied at xn for 0 < n < N − 1, giving 4N − 8 equations for the 4N − 2

053602-4



INSTABILITY OF FLOW AROUND A ROTATING, SEMI- . . .

FIG. 2. (a) Eigenspectrum in the complex c plane for Re = 2000, α = 0.2, Z = 0.5, m = 1, and S = 0.01.
(b) Relative error plot as a function of the axial discretization of the basic flow for different values of N .

discrete values of vz, vr , vθ , and q. q is eliminated as described in Appendix C1 of [18], as are the
boundary values of vz, vr , and vθ using (8) and (9). The result is a (3N − 6) × (3N − 6) standard
matrix eigenvalue problem with eigenvalue ω and eigenvector whose elements are the discrete values
of vz, vr , and vθ at x = xn for 0 < n < N − 1.

Figure 2(a) shows an example of a numerically computed eigenspectrum in the complex phase
velocity (c = cr + ici) plane (where c = ω/α). It consists of a discretized version of the continuous
spectrum (which arises because the flow domain is semi-infinite in the radial direction) and a set of
discrete eigenvalues, one of which has ci > 0 and therefore represents a growing mode. We conclude
that the flow is unstable for the given values of Re, Z, and S. The continuous spectrum can be safely
neglected as it always lies in ci � 0, originating at c = 1 − iα/Re and extending downwards in the
complex c plane (see the asymptotic analysis in Ref. [19]).

The code was tested by observing the sensitivity of the most unstable (largest ci) discrete
eigenvalue (which is the one of principal interest) to changes in the numerical parameters N , σ̂ , and

, where 
 is the axial step used in the basic-flow computation [recall from I that the basic flow
was obtained by integration of the boundary-layer equations using small steps 
 in ζ = (2Z)1/2].
Figure 2(b) shows a log-log plot of the relative error ε of the computed eigenvalue with σ̂ = 5
and the parameters given in Fig. 2(b) as a function of 
 for different values of N . The error is
computed by comparison with the case N = 128 and 
 = 0.0001. It will be seen that, for N = 64
and 128, the accuracy is mainly limited by axial discretization. The results are consistent with the
use of a scheme which is second-order accurate in 
 to compute the basic flow, as can be seen by
comparison with the reference line on the plot. The mapping parameter σ̂ was found to affect the
precision at only the 10th decimal place when varied between 2–6. After studying such convergence
results for numerous sets of parameters, we decided to use N = 64, σ̂ = 5, and 
 = 0.001 for
the computations. This gives better than eight decimal places of accuracy. Note that, even though
the continuous spectrum is not well resolved, this does not significantly affect the accuracy with
which the most unstable eigenvalue is computed. The numerical eigenfunctions were also validated
by comparing their exponential decay rate at large radial distances with the asymptotic decay rate
given by the streamwise wave number α (see [19]). Good agreement was found.

For given m and S, the neutral curve is defined as the boundary of the region in the Re-Z plane
for which a growing mode exists. Another way of putting this is that it is the curve of zero maximum
growth rate, with the maximum taken over the discrete spectrum and all α. A first approximation
to the neutral curves was obtained by plotting the contour of zero maximum growth rate in the
Re-Z plane using a rectangular grid of values. This was carried out for different values of m and S.
However, obtaining accurate neutral curves with such a method requires a very fine grid, making it
computationally expensive. A faster, multivariate Newton-Raphson scheme was developed to obtain
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FIG. 3. Comparison of the neutral curve for m = 1, S = 0.1 with results of Herrada et al. [15].

more precise results with values taken from the contour plot to initialize the iteration. The neutral
point α,Re at a given m,Z,S is obtained by simultaneously solving the system of equations

ωi(α,Re) = 0, (13)

∂ωi

∂α
(α,Re) = 0. (14)

The Newton-Raphson scheme requires computation of derivatives of ωi with respect to α and
Re, which were obtained using centered finite differencing. The solution was considered to have
converged when the norm of the residuals was less than 10−7. The result was used to initialize the
iteration at the next step in Z, and the process continued for a range of values of Z.

The code was validated by comparing the results for the neutral curve with S = 0.1 and m = 1
with those of [15]. Figure 3 shows good agreement. Since the results of [15] for the nonrotating case
are known to be in agreement with those of [12], a comparison of our results with [12] will not be
presented, although we did check they agreed.

IV. RESULTS

A. Eigenspectra and growth-rate plots

The eigenspectra for the nonrotating case are qualitatively similar to that of the Blasius boundary
layer, there being one distinguished eigenvalue close to the real axis in the complex c plane. This
eigenvalue may lie in either ci > 0 or ci � 0, the remainder of the discrete spectrum being in ci < 0
and well separated from the real c axis. Similarity with the Blasius flow might be expected because
the basic flow without rotation has a velocity profile Uz(r), whose form resembles the Blasius profile,
which it approaches in the limit Z → 0. It is the sign of ci for the distinguished mode which controls
flow stability in the nonrotating case, hence also for sufficiently small values of S.

Figure 2(a) shows an example with small rotation rate (S = 0.01): the eigenspectrum is essentially
the same as for the nonrotating case at the same values of Re, α, Z, and m. However, because it is
close to the real c axis, the slight perturbation of the distinguished mode at small S may suffice for
ci to change sign, with obvious consequences for flow stability. This does, in fact, happen for the
values of Re, α, Z, and m used in Fig. 2(a): ci < 0 when S = 0 and ci > 0 when S = 0.01. This
is a reflection of a surprising sensitivity of flow stability to small amounts of rotation, an important
theme of this paper which will be further elucidated by later results.

As S is increased to larger values, the eigenspectrum changes character and one can no longer
think in terms of a single distinguished mode near the real c axis which controls stability. Figure 4(a)
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FIG. 4. Eigenspectra for (a) Re = 200, α = 0.16, Z = 12.5, m = 3, and S = 0.2, (b) Re = 200, α = 0.04,
Z = 12.5, m = 1, and S = 0.5.

shows an example in which two discrete modes are unstable. Thus, for the rotating case, there can
be more than one growing mode. When this occurs, the mode with the largest ci is more important
because it grows fastest according to the linear theory used here. Figure 4(b) gives an example in
which there is a growing mode with cr > 1, despite the fact that the maximum value of Uz(r) is
1. Howard and Gupta [20] have shown that a modified semicircle theorem (which places limits on
cr ) can be obtained for general swirling flows, but only for axisymmetric disturbances (m = 0) in
the inviscid case. We are unaware of any such result for nonaxisymmetric disturbances. The given
example shows that the phase velocity of a mode can exceed the maximum of Uz(r) when S > 0.

From here on, we focus on the fastest growing discrete mode. Overall instability or stability of
the flow is determined by the sign of the maximum growth rate ωmax

i , the maximum being taken over
all m and α. However, before taking this step, it is perhaps interesting to consider the behavior of
the growth rate ωi as a function of m and α. We never found a case in which ωmax

i > 0 arose from
m � 0 modes, so we mostly restrict attention to m > 0 in what follows.

Figure 5(a) shows an example for which ωi is plotted as a function of α for different values of m.
We see that the m which yields the largest ωi depends on α and that the overall maximum ωmax

i arises
from m = 1 (it is given by the peak in the m = 1 curve). This is not always the case, as is apparent
from Fig. 5(b), for which ωmax

i arises from m = 2. In the absence of rotation, we found that ωmax
i was

always associated with either m = 1 or 2 when the flow was unstable, in agreement with the results
of [12] for the particular case Re = 15 000. However, higher values of m can arise for nonzero S

and we found no general rule concerning the m associated with ωmax
i in the presence of rotation. We

remark that, for the quite different case of flow in a rotating pipe, Pedley [21] also found that the m

yielding the maximum overall growth rate depends on the physical parameters of the flow.
Negative values of m were also examined. In the nonrotating case, reflection symmetry with

respect to any plane containing the cylinder axis implies that the growth rates for m are the same
as for −m. For nonzero S, we found that negative m yields lower growth rates than positive m, as
illustrated by Fig. 5(c). Attention is restricted to m > 0 from here on.

Figure 5(d) shows cases for which ωi(α) has more than one local maximum. As the physical
parameters are varied, the overall maximum can jump discontinuously from one local maximum to
another, a phenomenon encountered later. The effect of such a jump is apparent in Fig. 6(c) of [15]
and in results of the next subsection.

B. Overall maximum growth rate, neutral and critical curves

Contour plots of overall maximum growth rate ωmax
i in the Re-Z plane are shown for three values

of S in Fig. 6. The contours ωmax
i = 0 are the critical curves, which form the boundary between

flow stability and instability. (Note that we use the term neutral curve for the stability boundary of
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FIG. 5. Plots of temporal growth rate as a function of α: (a) Re = 2000, Z = 0.5, and S = 0.01,
(b) Re = 2000, Z = 2, and S = 0.01, (c) Re = 2000, Z = 0.5 for m = 1 and −1 and different (small) values
of S, (d) Z = 0.5, S = 0.1, m = 1 for different values of Re.

a single value of m, while a critical curve allows for all m.) Figure 6(a) shows that the nonrotating
flow is always stable above a certain value of Z (0.8001), i.e., at sufficiently large downstream
distances, and also below a certain value of Re (1059.5, in accord with [12]). The other two cases
are quite different: instability has neither an upper limit in Z nor a lower limit in Re. Note the small
growth rates in the unstable region for all three cases. This reflects control of small-S stability by a
distinguished mode close to the real c axis, as does Fig. 7. Note also the large differences between
the contour plots, a result which is perhaps at first surprising, but is, in fact, a logical consequence
of a controlling mode close to the real c axis for S = 0.

As noted towards the end of Sec. III, obtaining accurate neutral curves using contour plots is
computationally expensive compared to Newton-Raphson iteration and varying Z in small steps,
and the same is even more true for critical curves because different m must be accounted for. For this
reason, we use Newton-Raphson iteration (as described in Sec. III) to follow the neutral curves, then
combine the results for different m to obtain the critical curve. This is achieved by minimization of
the neutral Reynolds number over m for given Z and S.

Figure 8(a) shows neutral curves for the first three nonaxisymmetric modes and S = 0.1. The
critical Reynolds number arises from the m = 1 mode for Z > 1.3 and from m = 2 for Z between
0.05–1.3. Higher m take over for Z less than about 0.05. These do not contribute to the plots of
Fig. 8(a) because the critical Reynolds number lies above the range shown. As noted earlier, m = 1
and 2 control stability in the nonrotating case and here we see that they are the most important modes
for small S as well. Indeed, we found that, when Z > 0.1, criticality was associated with m = 1 or
2 in all cases studied. Figure 8(b) shows plots of the axial wave number corresponding to neutrality.
The jumps are a consequence of the existence of two local maxima in ωi(α), a scenario discussed
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FIG. 6. Contour plots of ωmax
i for (a) S = 0, (b) S = 0.005, and (c) S = 0.1.

earlier and illustrated by Fig. 5(d). As Z is varied, neutrality is controlled first by one of the maxima,
then by the other. At the jump, both maxima give ωi = 0.

Figure 9 shows critical curves and corresponding wave-number plots for values of S between
0–0.012. The sensitivity of flow stability to small amounts of rotation is again apparent. As noted
earlier, when S = 0 there is a minimal Reynolds number and a maximal Z for instability, neither of
which persist to the rotating case. A given value of the Reynolds number corresponds to a horizontal
line in Fig. 9(a), whose intersections with the critical curve yield boundaries in Z separating regions
of stability and instability. With or without rotation, the flow is stable at sufficiently small Z, but
each time the critical curve is crossed, the flow changes stability. In the nonrotating case, stability at
small Z can either persist to all Z (if Re � 1059.5) or there is a range of instability, beyond which
the flow is again stable. The rotating case is quite different because the critical Reynolds number

FIG. 7. Plots of ωmax
i as a function of Z for different (small) values of S and (a) Re = 1250, (b) Re = 5000.
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FIG. 8. (a) Neutral curves and (b) corresponding wave-number plots for m = 1, 2, and 3 and S = 0.1.

decreases to zero at large Z. As a result, the flow is unstable for sufficiently large Z. If the critical
Reynolds number is a monotonically decreasing function of Z, as it is for small S above a certain
threshold value equal to about 0.0045, there is a single intersection of the critical curve with any
given line of constant Re, resulting in stability at small Z, followed by instability once the critical
curve is crossed. On the other hand, the critical curve is nonmonotonic for S below the threshold, as
illustrated by Fig. 9(a) for three such values of S > 0. For values of Re between the local minimum
and maximum of the curve, there are then three stability boundaries, hence, four distinct regions
in Z: stable, unstable, stable, unstable as Z increases. Note that increasing S lowers the critical
Reynolds number, i.e., rotation has a destabilizing effect.

Figure 10 concerns S between 0.1 and 1. According to Fig. 10(a), the critical Reynolds number
remains a decreasing function of Z and S, while Fig. 10(b) shows jumps in the critical wave number.
Some of these jumps were identified as between local maxima of ωi(α) for a single m, while others
correspond to jumps between different m.

Figure 11 gives results for higher values of S. Close inspection of Fig. 11(a) reveals that the
critical Re is no longer a monotonic decreasing function of Z for S = 10 and 15. This is more
apparent in Fig. 12, which extends the range of Z to much higher values using a logarithmic scale.
For S exceeding a threshold value of about 5, the critical curve is nonmonotonic, as it is for S below
the small-S threshold of about 0.0045. This leads to the same qualitative conclusion concerning
stability, namely, the possibility, depending on Re, of more than one stability or instability boundary

FIG. 9. (a) Critical curves and (b) corresponding wavenumber plots for values of S between 0 and 0.012.
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FIG. 10. (a) Critical curves and (b) corresponding wave-number plots for values of S between 0.1 and 1.

in Z. Note the sharp cusp in the critical curve for S = 6, apparent in Fig. 12, which is a consequence
of a jump between different local maxima of ωi(α) for m = 1.

Figure 11(a) shows that the critical Re continues to be a decreasing function of S for fixed Z less
than about 3. However, as is apparent from Fig. 12, this is no longer the case at larger Z when S

exceeds a certain threshold value (which we found to be about 2.5). At such values of S, no general
statement, covering all values of Z, concerning the effects of increasing rotation on flow stability
can be made.

Figure 13(a) shows critical curves for 5 < Z < 100 000 and illustrates the statement, made earlier,
that the critical Reynolds number tends to 0 as Z → ∞. Figure 13(b) shows the same results, but it
is Z1/2Re, rather than Re, which is plotted as a function of Z. It appears that the curves asymptote to
straight lines at large Z, corresponding to the asymptotic expansion Re ∼ Z−1/2(A ln Z + B) for the
critical Reynolds number as Z → ∞. It is interesting to note that the coefficient A (corresponding
to the slope of the asymptote in the figure) appears to have the same value (close to 18) for different
S. On the other hand, B is a decreasing function of S, so increasing rotation destabilizes the flow
at large Z, as it does at small Z. Although asymptotic analysis of the large-Z limit of the stability
problem has not been attempted, the form of the expansion given above is a logical consequence
of that of the asymptotic expansions of the basic-flow velocity profiles, which were derived in I
(Sec. 5a and Appendix A). These expansions proceed in inverse powers of ln Z, hence, the appearance

FIG. 11. (a) Critical curves and (b) corresponding wave-number plots for values of S between 2 and 15.
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FIG. 12. Critical curves for 5 < Z < 10 000.

of ln Z in the expansion of the critical Reynolds number. The coefficients of the basic-flow expansions
are functions of r/Z1/2, leading to the factor of Z−1/2.

Finally, some caveats concerning the results at large S. Figure 11(a) shows that the critical
Reynolds number is rather low (of order 5) except at small Z. Such moderate values of Re raise
questions concerning the basis of this work: both the boundary-layer equations used to compute the
basic flow and the local stability equations for the perturbation are predicated on the assumption of
large Re. Thus, accurate quantitative values of the critical Reynolds number should not be expected
at large S. We might, nonetheless, hope that qualitative trends resemble the present results.

C. Small-S perturbation analysis

As we have seen (recall Figs. 6 and 9), flow stability is significantly affected by small amounts
of rotation. This suggests using the Taylor’s series

ωi = ωi0 + ∂ωi

∂S
S + 1

2

∂2ωi

∂S2
S2 + · · · (15)

to express the effects of rotation. Here, ωi0 and the derivatives of ωi denote S = 0 values for given
m, Z, Re, and α. As discussed earlier, small-S stability is controlled by a single distinguished
mode, having small ωi0 and to which we specialize in this section (as noted earlier, other discrete
eigenvalues are well below the real ω axis and hence unimportant).

FIG. 13. Critical curves for 5 < Z < 100 000: (a) Re, (b) Z1/2Re as functions of Z.
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FIG. 14. Comparison of the growth rate of the most unstable mode obtained from the full numerical
calculation and perturbation theory of different orders: m = 1, Z = 1, Re = 2000, α = 0.1.

Figure 14 shows a plot of ωi(S) for particular values of m, Z, Re, and α. The full numerical
results are compared with the Taylor’s series truncated at different orders [the derivatives in Eq. (15)
being determined using second-order, centered finite differencing). Second- and higher-order terms
can be neglected to a first approximation. Note the small value of ωi0, here negative, which is
characteristic of the distinguished mode, and the order 1 value of ∂ωi/∂S. It is the combination of
these two ingredients which makes flow stability sensitive to small amounts of rotation. As noted
earlier, increasing small S destabilizes the flow, a result which is a consequence of positive ∂ωi/∂S

for the distinguished mode when S = 0.

V. CONCLUSION

In this paper, we have studied the local, linear stability of flow around a semi-infinite, rotating
cylinder placed in an axial stream. Assuming large values of the Reynolds number, the basic flow is
determined numerically using a boundary-layer approximation (as described in I). Large Reynolds
number also justifies local stability analysis. The stability problem depends on three nondimensional
physical parameters: the Reynolds number Re, the rotation rate S, and the axial location Z. Modal
analysis introduces two additional parameters: namely, α, the axial wave number, and m, which is
an integer whose value identifies the azimuthal Fourier component of the mode. The local stability
equations are solved numerically to obtain the complex frequency ω = ωr + iωi of modes via
solution of a matrix eigenvalue problem. The numerics were checked by studying the sensitivity of
the results to variations of the numerical parameters of the problem and also by comparison with the
few results available in the literature. The eigenspectrum consists of a discrete part and a numerical
approximation (many closely spaced eigenvalues lying along a curve in the complex ω plane) of the
continuous spectrum. The latter lies in ωi < 0 and thus represents a decaying contribution which
is unimportant from a stability point of view. Discrete eigenvalues in ωi > 0 represent growing
modes and are symptomatic of instability. Let ωmax

i be the maximum growth rate, where only
discrete eigenvalues contribute and the maximum is taken over α and m. If ωmax

i > 0, the flow
is unstable for the given values of Re, S, and Z. This allows the determination of the stability
boundary in physical-parameter space. The most important results of the paper consist of critical
curves representing this boundary in the Z-Re plane for different values of S (see Figs. 9–13).

An important conclusion of the paper is that flow stability is surprisingly sensitive to small
amounts of rotation. This is apparent in Figs. 6 and 9(a) and is further quantified by the perturbation
analysis of Sec. IV C. It is the consequence of a nearly neutral mode for S = 0 which controls stability
at small S. Even a small amount of rotation can produce a sufficient perturbation that ω crosses
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the real axis and flow stability or instability switches for the given values of Re and Z. Rotation is
destabilizing for small S, i.e., the critical Reynolds number decreases for fixed Z as S is increased.

As is apparent from Fig. 9(a), in the absence of rotation the flow is stable beyond a certain value
of Z (close to 0.8) and also below a Re threshold (close to 1060). No such constraints on instability
apply when rotation is added. As for S = 0, the critical Reynolds number goes to infinity at small
Z, but, for nonzero S, it approaches zero as Z → ∞. Thus, as in the nonrotating case, the flow is
stable at sufficiently small Z, but, with rotation, it is unstable at large enough downstream distances.

Between small and large Z there is at least one boundary separating stable and unstable portions
of the flow. The simplest case is when the critical Reynolds number is a monotonic decreasing
function of Z. There is then a single stability boundary in Z, below which the flow is stable, and
above which it is unstable. On the other hand, a nonmonotonic critical curve implies the possibility,
dependent on Re, of more than one stability boundary in Z. We found that the critical curve was
monotonic for S between about 0.0045 and 5.

As noted above, rotation is destabilizing at small S. This was found to persist up to about S = 2.5,
but beyond that there were cases for which the critical Reynolds number increases with increasing
S at fixed Z. Even above this threshold, the destabilizing trend continues for Z below about 3 and
at sufficiently large values of Z. Destabilization by rotation can thus be considered as the norm.

Finally, the limit of large Z was also examined. We found that the critical Reynolds number has
the asymptotic expansion Re ∼ Z−1/2(A ln Z + B), where the factor A has the same value for all
S and B is a decreasing function of S. The expansion is consistent with the earlier statement that
critical Re goes to zero as Z → ∞, while decreasing B means that rotation destabilizes the flow at
large Z, as stated above.
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The dynamics of small-amplitude perturbations, as well as the regime of fully
developed nonlinear propagating waves, is investigated for pulsatile channel flows.
The time-periodic base flows are known analytically and completely determined by
the Reynolds number Re (based on the mean flow rate), the Womersley number Wo
(a dimensionless expression of the frequency) and the flow-rate waveform. This paper
considers pulsatile flows with a single oscillating component and hence only three
non-dimensional control parameters are present. Linear stability characteristics are
obtained both by Floquet analyses and by linearized direct numerical simulations.
In particular, the long-term growth or decay rates and the intracyclic modulation
amplitudes are systematically computed. At large frequencies (mainly Wo > 14),
increasing the amplitude of the oscillating component is found to have a stabilizing
effect, while it is destabilizing at lower frequencies; strongest destabilization is found
for Wo ≃ 7. Whether stable or unstable, perturbations may undergo large-amplitude
intracyclic modulations; these intracyclic modulation amplitudes reach huge values
at low pulsation frequencies. For linearly unstable configurations, the resulting
saturated fully developed finite-amplitude solutions are computed by direct numerical
simulations of the complete Navier–Stokes equations. Essentially two types of
nonlinear dynamics have been identified: ‘cruising’ regimes for which nonlinearities
are sustained throughout the entire pulsation cycle and which may be interpreted as
modulated Tollmien–Schlichting waves, and ‘ballistic’ regimes that are propelled into
a nonlinear phase before subsiding again to small amplitudes within every pulsation
cycle. Cruising regimes are found to prevail for weak base-flow pulsation amplitudes,
while ballistic regimes are selected at larger pulsation amplitudes; at larger pulsation
frequencies, however, the ballistic regime may be bypassed due to the stabilizing
effect of the base-flow pulsating component. By investigating extended regions of
a multi-dimensional parameter space and considering both two-dimensional and
three-dimensional perturbations, the linear and nonlinear dynamics are systematically
explored and characterized.
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1. Introduction

Pulsatile flows occur in a variety of engineering applications as well as in the
human body. Over the past fifty years many studies have addressed the linear
dynamics of oscillating flows over a flat plate or through channels or pipes, but
surprisingly few recent investigations have considered pulsatile flows, and the
development of finite-amplitude travelling waves has hardly ever been addressed.
While purely oscillatory flows are governed by a single characteristic time, based
on the oscillation period, pulsatile flows also depend on a second characteristic time
scale, related to the mean flow velocity. Another essential difference is that oscillating
configurations undergo global flow reversal and therefore the absolute value of the
flow speed increases and decreases twice per period, while pulsating flows generally
maintain the same flow direction and display only one phase of increasing flow
speed and one phase of decreasing flow speed in each cycle. Hence, the presence
of a non-vanishing mean-flow component leads to behaviour distinct from purely
oscillating situations. Using the classical channel geometry, the purpose of the present
work is to systematically establish both linear and fully nonlinear flow features
prevailing for fundamental pulsatile-flow configurations.

Among the few known exact solutions of the Navier–Stokes equations (Drazin &
Riley 2006), those which are time periodic and parallel are of particular interest (Davis
1976). The Stokes (1851) layer, i.e. the flow induced in a semi-infinite volume of fluid
by an infinite flat plate harmonically oscillating in its own plane, has served as the
archetypal configuration for the study of time-periodic flows near a solid boundary.
Similar velocity profiles prevail if the fluid is in contact with a fixed plate and is
brought into motion by an oscillating pressure gradient parallel to the plate. If the
flow is confined between two parallel plates, the exact base-flow profiles are still
obtained in terms of exponential functions, while periodic flows through a circular
pipe are known as Womersley (1955) solutions and may be expanded in terms of
Bessel functions.

All these time-periodic flows develop an oscillating boundary layer of characteristic
thickness

δ =
√

ν/Ω, (1.1)

where ν is the kinematic viscosity of the fluid and Ω the pulsation frequency. For
channels or pipes, the time-periodic flow profiles significantly depend on the ratio
of the diameter to the oscillating-boundary-layer thickness, known as the Womersley
number Wo. Thus, for large values of Wo, confinement or curvature effects are
expected to be negligible and the dynamics similar to that of a semi-infinite Stokes
layer. In contrast, at low values of Wo, pulsatile flows may be seen as slowly
modulated parabolic Poiseuille profiles. In physiological situations (Ku 1997; Pedley
2000), typical Womersley numbers prevailing in the main blood vessels are in the
range 5–15 which is neither small nor very large. Our recent study of flow through
model abdominal aortic aneurysms (Gopalakrishnan, Pier & Biesheuvel 2014a,b has
revealed the need to investigate in detail the dynamics of physiological flow conditions
even for simple parallel geometries. As will be shown in the present paper, it is
precisely in the range 5 < Wo < 20 that pulsatile channel flow undergoes transitions
between different characteristic regimes, both for small-amplitude perturbations as
well as fully developed nonlinear propagating waves.
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1.1. Literature review
Early theoretical and numerical work is mainly focused on the linear stability
of Stokes layers or the equivalent channel and pipe flows. For obvious reasons,
experimental investigations almost exclusively consider the flow through circular
pipes, but are able to address the fully developed dynamics prevailing in unstable
configurations. More recently, the linear stability of a range of time-periodic flows has
been revisited, using the now available numerical methods and facilities. Surprisingly,
apart from a few recent computations of turbulent periodic flows, the nonlinear regime
has not yet attracted much theoretical or numerical attention.

Grosch & Salwen (1968) were among the first to address the linear stability of
time-dependent plane Poiseuille flow, by expanding the disturbance streamfunction on
a small set of basis functions. They found that for weak pressure gradient modulations,
the resulting modulated flow was more stable than the steady flow, while a rather
drastic destabilization was observed at higher velocity modulations.

von Kerczek & Davis (1974) studied the linear stability of oscillatory Stokes layers,
using quasi-static theories and integration of the linearized time-dependent equations.
They were unable to find any unstable modes for the configurations considered. Using
semi-analytic methods, Hall (1978) also found this flow to be stable in the parameter
range investigated.

Yang & Yih (1977) considered axisymmetric perturbations to harmonic oscillating
pipe flow. All configurations for which calculations have been carried out are found to
be stable. Later, Fedele, Hitt & Prabhu (2005) also claimed that axisymmetric modes
in pulsatile pipe flow are stable, while, more recently, Thomas et al. (2011) were able
to obtain unstable axisymmetric modes and to establish critical conditions for this
flow.

In a landmark study of pulsating plane channel flow, von Kerczek (1982) considered
configurations with moderate pulsation amplitudes, mostly near the critical Reynolds
number for steady flow, and computed Floquet exponents by a series expansion, using
a perturbation analysis in the amplitude of the oscillating base velocity. It was found
that the sinusoidally pulsating flow is more stable than the steady plane Poiseuille
flow for a range of frequencies greater than approximately Wo = 12. Lower or much
higher frequencies were found to make the flow unstable, in contrast with the results
of Grosch & Salwen (1968). The perturbation analysis also confirmed the result
obtained by Hall (1975) that the growth rate depends quadratically on small pulsating
amplitudes.

Using numerical simulations, Singer, Ferziger & Reed (1989) found that the effect
of oscillation is generally stabilizing. However, at low frequencies, the perturbation
energy may vary by several orders of magnitude within each cycle. These authors
confirmed the findings by von Kerczek (1982) and suspect that those by Grosch &
Salwen (1968) are underresolved. They were also probably the first to attempt a
nonlinear simulation.

Rozhdestvenskii, Simakin & Stoinov (1989) appear to be the first to implement a
complete Floquet analysis, based on temporal integration of matrices. They were also
able to confirm results by von Kerczek (1982).

Using mainly analytical methods, Cowley (1987) and, more recently, Hall (2003),
suggested that the Stokes layers do not sustain linearly unstable modes in the limit of
very large Reynolds numbers.

In an experimental study, Merkli & Thomann (1975) investigated transition in
oscillating pipe flow and showed that turbulence occurs in the form of periodic bursts
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which are followed by relaminarization in the same cycle and do not necessarily lead
to turbulent flow during the whole cycle.

Using a similar experimental set-up, Hino, Sawamoto & Takasu (1976) identified
three types of regimes: weakly turbulent, conditionally turbulent and fully turbulent.
Decelerating phases are found to promote turbulence while the laminar flow may
recover during accelerating phases.

Adopting a physiological approach, Winter & Nerem (1984) reported similar
experimental observations and noted that fully turbulent flow is only found when a
mean flow is present.

Stettler & Hussain (1986) further investigated the transition occurring in a pulsatile
pipe flow experiment and documented the passage frequency of ‘turbulent plugs’ for
a wide range of control parameters and delineated the conditions when plugs occur
randomly or are phase locked with the pulsation.

Considering oscillatory pipe flow, Akhavan, Kamm & Shapiro (1991a,b) established
experimentally and numerically that turbulence appears explosively towards the end of
the acceleration phase and is sustained throughout the deceleration phase while being
restricted to the wall region. Using a quasi-steady transient growth analysis, it was
suggested that transition may be the result of a secondary instability mechanism.

Straatman et al. (2002) derived, by a linear stability analysis, that pulsating a plane
Poiseuille flow is always destabilizing. However, they seemed to associate stability
with decay throughout the cycle and it is therefore difficult to interpret the marginal
curves shown in that paper.

More recently, in a series of theoretical and numerical papers, Blennerhassett
and Bassom, with Thomas and Davies, have used Floquet analysis and linear
simulation to address the stability of a range of related time-periodic flows due
to an oscillating plate (Blennerhassett & Bassom 2002; Thomas et al. 2010, 2014,
2015), a streamwise oscillating channel (Blennerhassett & Bassom 2006; Thomas et al.
2011) or pipe (Blennerhassett & Bassom 2006; Thomas et al. 2011; Thomas, Bassom
& Blennerhassett 2012) as well as a torsionally oscillating pipe (Blennerhassett &
Bassom 2007; Thomas et al. 2012), thereby resolving some of the inconsistencies of
previous linear stability analyses and establishing, among others, curves of marginal
linear instability for this family of flows. The spatio-temporal impulse response of the
Stokes layer was studied by Thomas et al. (2014), and the fate of some disturbances
when they become nonlinear was also considered.

Luo & Wu (2010) revisited the linear instability of finite Stokes layers, comparing
results obtained by instantaneous instability theory in a quasi-steady approach with
those from Floquet analysis. It was shown that during its amplification phase, a
Floquet mode closely follows the instantaneous unstable mode, and the results by
Blennerhassett & Bassom (2002) were confirmed.

Transition to turbulence has been investigated by direct numerical simulations
of the Stokes boundary layer by Vittori & Verzicco (1998), Costamagna, Vittori
& Blondeaux (2003) and Ozdemir, Hsu & Balachandar (2014). Tuzi & Blondeaux
(2008) have addressed the intermittent turbulent regime observed in a pulsating pipe.
These studies consider flow in wavy walled channels or pipes and it is observed
that turbulence generally appears around flow reversal, and that it displays statistical
properties similar to those prevailing in the steady case.

1.2. Objectives and organization of the paper
By considering the fundamental configuration of pulsatile channel flow, the aim of the
present study is to systematically document the temporal dynamics of small-amplitude
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perturbations and, in unstable situations, to characterize the resulting finite-amplitude
regime of travelling nonlinear modulated waves.

Revisiting the linear regime, using both Floquet analyses and linearized numerical
simulations, we confirm the earlier findings and analyse in full detail three-
dimensional perturbations over large parameter ranges.

The so-far neglected finite-amplitude travelling wave solutions prevailing for linearly
unstable base flows are computed by direct numerical simulations of the complete
Navier–Stokes equations, at prescribed total pulsating flow rates. Again, the purpose
is to identify and analyse the characteristic regimes and to systematically explore a
wide parameter space.

To this end, after introducing the governing equations and the geometry in § 2,
the base flow and non-dimensional parameters are specified in § 3. The different
mathematical approaches used in this work are formulated in § 4, while the associated
numerical solution methods and relevant validation steps are discussed in appendix A.
The main body of the paper consists of the results pertaining to the linear (§ 5)
and nonlinear (§ 6) dynamics. In both cases, we start by discussing the features of
characteristic examples, before progressively taking into account variations of more
parameters in order to explore how the dynamics unfolds over the complete parameter
space. The paper finishes (§ 7) with a summary and some suggestions for future work.

2. Governing equations and geometry

Throughout this study, the fluid flow is described by a vector velocity field u(x, t)
and a scalar pressure field p(x, t) that depend on position x and time t and are
governed by the incompressible Navier–Stokes equations

∂u
∂t

+ (u · ∇)u = ν1u − ∇p + f , (2.1)

0 = ∇ · u, (2.2)

where ν is the kinematic viscosity of the fluid (and the pressure has been redefined
to eliminate the constant fluid density from the equations). In the momentum
equation (2.1), the term f (x, t) represents an externally applied volume force.

The fluid domain is bounded by two fixed parallel plates, along which no-slip
boundary conditions prevail. Using a Cartesian coordinate system, position is given
by x = x0e0 + x1e1 + x2e2, where x0, x1 and x2 (respectively e0, e1 and e2) denote
wall-normal, streamwise and spanwise coordinates (respectively unit vectors), and the
domain corresponds to |x0| < h where 2h is the channel width.

3. Base flow and non-dimensional parameters

A pulsatile base flow, of frequency Ω , is an exact solution of the Navier–Stokes
equations that is temporally periodic and consists of a velocity field purely in the
streamwise direction that only depends on the wall-normal coordinate:

U(x, t) = U1(x0, t)e1 with U1(x0, t) =
∑

n

U(n)
1 (x0) exp(inΩt). (3.1)

Such a base flow is associated with a spatially uniform and temporally periodic
streamwise pressure gradient of the form −G(t)e1, with

G(t) =
∑

n

G(n) exp(inΩt), (3.2)
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and corresponds to a temporally periodic flow rate

Q(t) =
∑

n

Q(n) exp(inΩt). (3.3)

In the above expressions, the conditions Q(−n) =[Q(n)]⋆, G(−n) =[G(n)]⋆, and U(−n)
1 (x0)=

[U(n)
1 (x0)]⋆ ensure that all flow quantities are real (with ⋆ denoting complex conjugate).
Using these expansions in the Navier–Stokes equations shows that the different

harmonics of the base flow are decoupled and yields the linear relationship between
the flow-rate components Q(n) and the velocity components U(n)

1 (x0) as

U(n)
1 (x0) = Q(n)

2h
W
(x0

h
,
√

nWo
)

, (3.4)

where the Womersley number Wo is defined as

Wo ≡ h
√

Ω/ν, (3.5)

and the function W determines the profiles of the different velocity components and
is defined as

W(ξ , w) ≡





(
cosh(

√
iξw)

cosh(
√

iw)
− 1

)/(
tanh(

√
iw)√

iw
− 1

)
if w 6= 0

3
2(1 − ξ 2) if w = 0,

(3.6)

for |ξ | 6 1, using
√

i ≡ (1 + i)/
√

2. These profiles (3.6) are normalized to unit cross-
sectionally averaged velocity.

Furthermore, the pressure and flow-rate components are related as

Q(n)

G(n)
= 2

h3

ν

i
nWo2

(
tanh(

√
inWo)√

inWo
− 1

)
if n 6= 0 and

Q(0)

G(0)
= 2

3
h3

ν
. (3.7a,b)

Hence it is obvious that the pulsatile base flow is entirely determined by its
frequency Ω and the Fourier components Q(n) of the flow rate (or the components
G(n) of the associated pressure gradient).

The mathematical and numerical methods implemented in the present study can
handle flow rates of the form (3.3) with an arbitrary number of Fourier components,
but this would correspond to a tremendously large multi-dimensional parameter space,
impossible to explore exhaustively. Since, the aim here is to systematically analyse the
behaviour of fundamental pulsating-flow configurations, the control-parameter space is
restricted by investigating only base flow rates with a single oscillating component,
i.e. for which Q(n) =0 as |n|>2. Without loss of generality, Q(1) may then be restricted
to real values. As only flows with a non-vanishing mean-flow component Q(0) will be
considered, it is then convenient to write

Q(t) = Q(0)(1 + Q̃ cos Ωt), (3.8)

where the relative amplitude Q̃ of the oscillating flow-rate component is defined as

Q̃ ≡ 2Q(1)/Q(0). (3.9)
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FIGURE 1. Snapshots of typical base-flow profile associated with a flow rate of the form
Q(t)/Q(0) = 1 + Q̃ cos Ωt. In this example, Wo = 10 and Q̃ = 0.6 and ten profiles over one
complete pulsation cycle are shown.

After defining a Reynolds number

Re ≡ Q(0)/ν, (3.10)

based on the mean velocity Q(0)/2h, the channel width 2h and the viscosity ν, the base
flow is entirely specified by three non-dimensional control parameters: the Womersley
number Wo (3.5), the Reynolds number Re (3.10) and the relative amplitude of the
oscillating flow-rate component Q̃ (3.9).

Snapshots of typical base-flow profiles are given in figure 1. Remember that the
oscillating profiles develop a boundary layer near the walls of thickness δ = √

ν/Ω .
The relative thickness of this boundary layer is governed by the Womersley number
since Wo = h/δ. Throughout this paper, reference is often made to acceleration
(respectively deceleration) phases of the base flow, here defined as phases during
which the flow rate Q(t) increases (respectively decreases). Note that since the
boundary layers near the walls are out of phase with the bulk flow, the actual fluid
accelerations or decelerations at different positions in the channel cross-section do
not coincide exactly with such a global definition based on the sign of dQ/dt.

4. Mathematical formulation

In this entire study, the total instantaneous flow fields are separated into basic and
perturbation quantities as

utot(x, t) = U1(x0, t)e1 + u(x, t), (4.1)
ptot(x, t) = −G(t)x1 + p(x, t), (4.2)

whether the perturbation is of small amplitude (for linear stability analyses) or not (for
investigating the fully developed nonlinear dynamics). The momentum and continuity
equations for the perturbation quantities u(x, t)≡ u0(x, t)e0 + u1(x, t)e1 + u2(x, t)e2 and
p(x, t) then read, in dimensional form,

∂u
∂t

+ U1
∂u
∂x1

+ u0
∂U1

∂x0
e1 + (u · ∇)u = ν1u − ∇p + f , (4.3)

0 = ∇ · u. (4.4)

The external volume force f (x, t) is mainly used in nonlinear evolution problems for
maintaining the prescribed total pulsatile flow rate; it will be specified and discussed
below (§ 4.3). Also, the initial perturbation in both linear and nonlinear evolution
problems is triggered by a small-amplitude impulsive f , and it has been checked that
the resulting dynamics does not depend on the details of this initial impulse.
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4.1. Linear temporal evolution problem
When carrying out a linear stability analysis for small-amplitude perturbations, the
quadratic terms (u · ∇)u in the previous equation (4.3) may be neglected. Since the
base flow is homogeneous in directions parallel to the channel walls, infinitesimally
small velocity and pressure disturbances may then be written by resorting to spatial
normal modes of the form

u(x, t) = ul(x0, t) exp i(α1x1 + α2x2), (4.5)
p(x, t) = pl(x0, t) exp i(α1x1 + α2x2), (4.6)

where α1 and α2 are the streamwise and spanwise wavenumbers, respectively.
Substitution of (4.5), (4.6) into the linearized version of the governing equations
(4.3), (4.4) yields

∂tu0 + iα1U1u0 = ν(∂00 − α2
1 − α2

2)u0 − ∂0p, (4.7)
∂tu1 + iα1U1u1 + (∂0U1)u0 = ν(∂00 − α2

1 − α2
2)u1 − iα1p, (4.8)

∂tu2 + iα1U1u2 = ν(∂00 − α2
1 − α2

2)u2 − iα2p, (4.9)
0 = ∂0u0 + iα1u1 + iα2u2, (4.10)

with the notation ∂t ≡ ∂/∂t, ∂0 ≡ ∂/∂x0 and ∂00 ≡ ∂2/∂x2
0. Together with no-slip

boundary conditions along the channel walls, this system of partial differential
equations consists of a temporal evolution problem for the complex-valued functions
u0, u1, u2 and p that depend on a single spatial coordinate, x0, and is numerically
solved using the method outlined in § A.3 of the appendix.

4.2. Floquet analysis
Instead of integrating the previous linear temporal evolution problem by starting with
a given initial condition, the linear stability of pulsating channel flow can also be
studied by solving the eigenproblems arising from a Floquet analysis, thus obtaining
the complete spectrum and the associated eigenfunctions.

Since the base flow is time periodic with pulsation Ω , perturbations are sought in
normal-mode form as

u(x, t) =
[∑

n

û(n)
(x0) exp inΩt

]
exp i(α1x1 + α2x2 − ωt), (4.11)

p(x, t) =
[∑

n

p̂(n)(x0) exp inΩt

]
exp i(α1x1 + α2x2 − ωt), (4.12)

where the complex frequency ω is the eigenvalue, and the eigenfunctions

û(x0, t) ≡
∑

n

û(n)
(x0) exp inΩt and p̂(x0, t) ≡

∑

n

p̂(n)(x0) exp inΩt (4.13a,b)

have the same temporal periodicity as the base flow.
Substitution of these expansions, with û(n)

(x0) ≡ û(n)
0 (x0)e0 + û(n)

1 (x0)e1 + û(n)
2 (x0)e2,

into (4.7)–(4.10) yields the Floquet eigenvalue problem. This system of linear coupled
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ordinary differential equations in the x0-coordinate may be written, for each integer n,
as

ωû(n)
0 = nΩ û(n)

0 + α1

∑

k

U(k)
1 û(n−k)

0 + iν(∂00 − α2
1 − α2

2)û
(n)
0 − i∂0p̂(n), (4.14)

ωû(n)
1 = nΩ û(n)

1 + α1

∑

k

U(k)
1 û(n−k)

1 − i
∑

k

∂0U(k)
1 û(n−k)

0

+ iν(∂00 − α2
1 − α2

2)û
(n)
1 + α1p̂(n), (4.15)

ωû(n)
2 = nΩ û(n)

2 + α1

∑

k

U(k)
1 û(n−k)

2 + iν(∂00 − α2
1 − α2

2)û
(n)
2 + α2p̂(n), (4.16)

0 = −i∂0û(n)
0 + α1û(n)

1 + α2û(n)
2 , (4.17)

together with no-slip boundary conditions along the channel walls

û(n)
0 = û(n)

1 = û(n)
2 = 0 for x0 = ±h. (4.18)

In the above momentum equations (4.14)–(4.16), the coupling of the different Fourier
components of the velocity eigenfunctions occurs through the base-flow velocity
components. Note that, since U(k)

1 = 0 for |k| > 2 in the configurations under
investigation (3.8), the coupling of the eigenvelocities through the base flow only
occurs between n and n − 1, n or n + 1. The numerical solution of this generalized
eigenvalue problem (4.14)–(4.18) is outlined in § A.2 of the appendix.

The long-term evolution of a given mode is dictated by the complex frequency ω,
or equivalently by the Floquet multiplier µ ≡ exp(−iωT) which accounts for the gain
after one complete pulsation period. The complex frequency of the most unstable or
least stable mode depends on all parameters through a linear dispersion relation as

ω = ωlin(α1, α2; Re, Wo, Q̃). (4.19)

Whenever ωi > 0, or equivalently |µ| > 1, the perturbation is unstable and grows
exponentially over a large number of pulsation periods. Note, however, that within a
pulsation period the dynamics differs from such an exponential behaviour due to the
base-flow pulsation.

4.3. Nonlinear temporal evolution problem
In unstable situations, an initial small-amplitude perturbation of wave vector α1e1 +
α2e2 may be amplified and eventually reach finite amplitudes so that the nonlinear
term in (4.3) can no longer be neglected. Expanding the finite-amplitude disturbance
as

u(x, t) =
∑

n

u(n)(x0, t) exp in(α1x1 + α2x2), (4.20)

p(x, t) =
∑

n

p(n)(x0, t) exp in(α1x1 + α2x2), (4.21)
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and replacing these expansions with u(n)(x0, t)≡ u(n)
0 (x0, t)e0 + u(n)

1 (x0, t)e1 + u(n)
2 (x0, t)e2

into (4.3), (4.4) results in a nonlinear temporal evolution problem consisting of a
system of coupled partial differential equations for the different flow components

∂tu
(n)
0 + inα1U1u(n)

0 +
∑

k

N(n,k)u(k)
0 = ν∆(n)u(n)

0 − ∂0p(n), (4.22)

∂tu
(n)
1 + inα1U1u(n)

1 + (∂0U1)u
(n)
0 +

∑

k

N(n,k)u(k)
1 = ν∆(n)u(n)

1 − inα1p(n), (4.23)

∂tu
(n)
2 + inα1U1u(n)

2 +
∑

k

N(n,k)u(k)
2 = ν∆(n)u(n)

2 − inα2p(n), (4.24)

0 = ∂0u(n)
0 + inα1u(n)

1 + inα2u(n)
2 , (4.25)

where the operators N(n,k) and ∆(n) are defined as

N(n,k) ≡ u(n−k)
0 ∂0 + u(n−k)

1 ikα1 + u(n−k)
2 ikα2 and ∆(n) ≡ ∂00 − n2α2

1 − n2α2
2 . (4.26a,b)

This is akin to performing a direct numerical simulation in a finite domain
with periodic boundary conditions in the wall-parallel coordinates. The initial-value
problem of interest here is the temporal development of a streamwise and spanwise-
periodic small-amplitude perturbation, characterized by real values of α1 and α2. The
initial evolution is dictated by the linear temporal growth rate ωi, obtained from a
linear stability analysis. Whenever ωi > 0, modulated exponential temporal growth
takes place until nonlinear effects come into play. The quadratic nonlinear terms
of the Navier–Stokes equations then promote higher spatial harmonics of the form
u(n)(x0, t) exp in(α1x1 + α2x2) as well as a spatially homogeneous flow correction
u(0)(x0, t). Terms of the form exp i(nα1x1 + mα2x2) with m 6= n would only be
generated by secondary instabilities; therefore, finite-amplitude flow fields may be
expanded here as a single spatial Fourier series (4.20), (4.21) since the aim is to
obtain finite-amplitude primary solutions. A complete secondary stability analysis of
these primary nonlinear waves is beyond the scope of the present investigation.

The development, through nonlinear interactions, of a spatially homogeneous flow
correction u(0)(x0, t) results in a modification of the streamwise total flow rate by

q1(t) =
∫ +h

−h
u(0)

1 (x0, t) dx0, (4.27)

and three-dimensional oblique waves may also give rise to a non-vanishing spanwise
flow rate

q2(t) =
∫ +h

−h
u(0)

2 (x0, t) dx0. (4.28)

Since there is no mean pressure gradient associated with a perturbation of the
form (4.21), the governing equations (4.3), (4.4) for perturbations of the form (4.20),
(4.21) without an external volume force f correspond to a temporal evolution
problem at prescribed total pressure gradient. In order to simulate a temporal
evolution at prescribed total flow rate, the assumed form of the pressure (4.21)
is not sufficiently general: one must allow for the development of a spatially
homogeneous pressure gradient, which is equivalent to an external volume force
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of the form f = −g1(t)e1 −g2(t)e2 and entails the additional terms −g1(t) and −g2(t)
on the right-hand side of (4.23) and (4.24) when n = 0. This additional force, or
pressure gradient, in the streamwise and spanwise directions may be tuned so that
disturbances develop without modifying the base flow rate, which is purely in the
streamwise direction. The numerical computation of the required g1(t) and g2(t) will
be discussed in § A.3.

5. Linear dynamics

The configurations under investigation are completely determined by three
non-dimensional control parameters: the Womersley number Wo (3.5), the Reynolds
number Re (3.10) and the relative amplitude of the oscillating flow-rate component
Q̃ (3.9). Numerical results, however, depend on the choice of units for space and
time. In the sequel, distances are measured in units of the channel diameter (here
2h) and velocities in units of mean base-flow velocity (here Q(0)/2h). The associated
time scale of 4h2/Q(0) then leads to a non-dimensional frequency of Ω = 4Wo2/Re,
which corresponds to a pulsation period of T = πRe/2Wo2.

With the non-dimensionalization adopted in this work, the steady Poiseuille flow is
known to become linearly unstable for Re > Rec with Rec ≃ 7696, and the marginal
perturbation at criticality is two-dimensional with a streamwise wavenumber of α1,c ≃
2.041 and a frequency of ωc ≃ 0.808 (see e.g. p. 73 of Schmid & Henningson (2001)
and references therein).

The approach used here is to investigate how the instability features are influenced
by the presence of an additional pulsatile component. Starting from Poiseuille flow,
the instability characteristics are monitored as the amplitude Q̃ of the oscillating base
flow-rate component is increased. For most results presented below, the reference
configuration is the steady Poiseuille flow at Re = 10 000, which is linearly unstable.
Depending on the pulsation frequency, measured by the Womersley number, the aim
is to work out whether the pulsating component promotes or reduces the instability
and how the linear dynamics is affected within a pulsation period and in the long
term.

The linear stability analysis is introduced with typical temporal evolution problems,
increasing only Q̃ while all other parameters are kept constant. Subsequently, more
general situations are considered, varying the Womersley number Wo, streamwise and
spanwise wavenumbers α1 and α2 and eventually the Reynolds number Re to obtain
the critical conditions for onset of linear instability in the most general case.

5.1. Typical temporal evolution problems
To illustrate the temporal dynamics of small-amplitude perturbations developing in
pulsatile channel flow, we first consider perturbations of streamwise wavenumber α1 =
2 at Re = 10 000.

Figure 2(a) shows the temporal evolution of a perturbation developing in steady
Poiseuille flow (with Q̃ = 0), computed by time marching of (4.7)–(4.10). An
exponentially growing linear travelling wave is seen to develop, where ul(x0, t) ∼
exp(−iωt) with a complex frequency of ω = 0.7497 + 0.0067i. This frequency is
numerically determined by computing e.g. i(∂tu0)/u0, and its value is also confirmed
by solving the corresponding eigenvalue problem (4.14)–(4.18). The energy contained
in the perturbation grows exponentially as E ∼ exp(2ωit), see figure 3. Throughout
this section on linear dynamics, the instantaneous energy E(t) of a perturbation is
defined as the spatially averaged value of |u(x, t)|2 per unit volume.
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FIGURE 2. (Colour online) Temporal evolution of a small-amplitude perturbation with
α1 = 2 at Re = 10 000 and Wo = 10. Perturbation velocity time series for base flow with
(a) Q̃ = 0 (Poiseuille flow), (b) Q̃ = 0.02, (c) Q̃ = 0.04, (d) Q̃ = 0.06, (e) Q̃ = 0.08 and
( f ) Q̃ = 0.10 over 4 base-flow pulsation cycles. In this linear dynamics, the velocity scale
is arbitrary but identical for all cases shown, and the same initial perturbation has been
used throughout to trigger the perturbation.

Adding to this base flow a pulsatile component of different magnitudes Q̃ =
0.02, 0.04, . . . , 0.10, at Wo = 10, the perturbation is observed to undergo a
modulated exponential growth (figure 2b–f ), where the modulations occur at
the frequency of the base flow. The temporal evolution of the corresponding
fluctuating energy is shown in figure 3. The long-term growth of the perturbation
is governed by the Floquet multiplier µ ≡ exp(−iωT) and may be derived in
the direct numerical simulations by monitoring e.g. u0(x0, t + T)/u0(x0, t) (see
§ A.3 for more details on the numerical implementation). Here, for Q̃ = 0.02, 0.04,
0.06, 0.08 and 0.10, the perturbation grows exponentially according to a complex
frequency of ω = 0.7495 + 0.0068i, ω = 0.7490 + 0.0072i, ω = 0.7481 + 0.0077i,
ω = 0.7468 + 0.0085i and ω = 0.7852 + 0.0095i respectively. Again, these values
are confirmed by solving the corresponding Floquet eigenproblems. Thus, the weak
periodic component of the base flow is here responsible for a slight increase in
growth rate (ωi).
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FIGURE 3. (Colour online) Temporal evolution of perturbation energy for Q̃ = 0.00,
0.02, . . . , 0.08, 0.10 at α1 = 2, Re = 10 000 and Wo = 10 (same configurations as figure 2).
Intracyclic modulation amplitude rapidly increases with the pulsation amplitude Q̃, and
it is observed that intracyclic growth (respectively decay) approximately coincides with
base-flow deceleration (respectively acceleration) phases, as indicated by solid sinusoidal
line representing Q(t) (not to scale).

In these examples, the pulsatile component of the base flow only weakly affects
the long-term perturbation growth: all energy curves in figure 3 display a similar
mean slope in these logarithmic plots. However, the dynamics within each cycle
significantly changes with increasing values of Q̃. Indeed, the amplitude of the
intracyclic modulations increases by approximately three orders of magnitude as Q̃ is
increased from 0.02 to 0.1.

Comparison of the energy curves with the base flow rate (solid grey curve in
figure 3) shows that enhanced growth occurs in the deceleration phase of the base
flow, while decay occurs during the acceleration phase. Although time dependent,
this behaviour is similar to what is known for steady boundary layers developing
along a flat plate, for which an adverse pressure gradient promotes transition while
a favourable pressure gradient delays it (Kachanov 1994). The importance of this
intracyclic growth and decay rapidly increases with Q̃, while the net growth over an
entire base-flow cycle in these examples is of the same order as the growth prevailing
for the equivalent steady Poiseuille configuration.

In order to characterize the intracyclic dynamics, it is convenient to compensate the
computed quantities by removing the asymptotic long-term exponential growth, i.e. to
consider

u(x0, t) ≡ u(x0, t) exp(−ωit) and E(t) ≡ E(t) exp(−2ωit). (5.1a,b)

Note that the compensated flow fields u, obtained by processing data from direct
numerical simulations, differ from the Floquet eigenfunctions only by a phase velocity
term exp(iωrt). The ratio

Emax
min ≡ maxt E(t)

mint E(t)
(5.2)
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FIGURE 4. (Colour online) Spectra of compensated velocity time series for Q̃ =
0.00, 0.02, . . . , 0.08, 0.10 at α1 = 2, Wo = 10 and Re = 10 000. The peak in these
spectra near ω/Ω = −19 is associated with the dominant frequency −ωr of the travelling
fluctuations. The width is related to the number of Fourier modes that are required in a
Floquet analysis and is seen to rapidly increase with the base-flow pulsating amplitude Q̃.

is then a direct measure of the amplitude of the intracyclic modulations. While Emax
min =

1 for steady Poiseuille flow, it rapidly grows with the pulsatile component and reaches
Emax

min = 8042 for Q̃ = 0.10 in the above example. More results for Emax
min over a large

parameter space are presented below.
The velocity time series shown in figure 2 illustrate that the dynamics is governed

by two distinct time scales: fast oscillations (associated with ωr) are due to the
spatially travelling wave, while the slower modulations are tuned to the frequency Ω
of the base flow. In these examples, ωr/Ω ≃ 19 as Ω = 4Wo2/Re = 0.04. This
discrepancy of frequencies explains why a stability analysis in terms of Floquet
eigenmodes (4.13) requires a large number of Fourier components to be successful,
and the required number of modes rapidly increases with Q̃. In theory, a Floquet
analysis is preferable to a linearized direct numerical simulation since it yields the
entire spectrum and not only the dominant mode. In practice, however, the size
of the associated eigenproblems becomes rapidly unmanageable as Q̃ is increased,
while the resolution requirements for a direct numerical simulation (DNS) are largely
independent of Q̃.

The number of Floquet harmonics that is required for a sufficient resolution of
the modes may be estimated from DNS data. Indeed, a Fourier analysis of the
compensated flow fields u yields the spectra shown in figure 4. These spectra are
centred around the dominant frequency in the signal, which corresponds to −ωr,
and their width (e.g. the number of modes above the dashed line at 1/20 of the
maximum) is directly related to the number of Fourier modes required to approximate
the intracyclic dynamics. The rapid broadening of the spectra in figure 4 with Q̃ is
associated with the increase of the intracyclic modulation amplitude, and highlights
the sensitivity of the dynamics to the pulsating component of the base flow.

5.2. Temporal instability at α1 = 2 and Re = 10 000
The influence of the base-flow pulsating magnitude and frequency on disturbance
growth has been systematically investigated at Re = 10 000 and (α1, α2) = (2, 0) for
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FIGURE 5. (Colour online) Linear temporal growth rate at Re = 10 000 and α1 = 2 for
0 6 Q̃ 6 0.6 and Wo = 5, 6, . . . , 25.

5 6 Wo 6 25 and 0 6 Q̃ 6 0.6. The temporal growth rate ωi has been computed both by
direct numerical simulations of the linearized evolution equations and by solving the
Floquet eigenproblems. For each value of the Womersley number Wo = 5, 6, . . . , 25,
the pulsating magnitude Q̃ has been increased from 0 to 0.6 (in steps of 0.002) to
illustrate the effect of an increasing oscillating component, starting with a Poiseuille
flow, which is unstable in this configuration. For small values of Q̃, the growth
rate is seen to depend quadratically on the pulsating magnitude (figure 5a), and the
instability is enhanced at low frequencies (Wo = 5, . . . , 13) while it is reduced at
higher frequencies (Wo = 14, . . . , 25); strongest destabilization occurs for Wo = 9. Note
that the quadratic dependence in small values of Q̃ has been analytically established
by Hall (1975) and von Kerczek (1982). At larger values of Q̃, perturbations are
found to decay (ωi < 0) for Womersley numbers beyond Wo = 14, and the decay rate
may display a non-monotonic dependence on Q̃ (figure 5b).

The intracyclic modulation amplitudes Emax
min computed for the same parameter

ranges are given in figure 6. Whatever the Womersley number Wo, the ratio Emax
min

increases almost exponentially with Q̃ starting from Poiseuille flow (Q̃ = 0). At
larger pulsation amplitudes Q̃, the growth of Emax

min is seen to saturate; however, at
low Womersley numbers, the exponential growth of Emax

min continues to astronomical
values as Q̃ increases. Since the intracyclic amplification Emax

min is related to the
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FIGURE 6. (Colour online) Amplitude of intracyclic modulation Emax
min at Re = 10 000 and

α1 = 2 for 0 6 Q̃ 6 0.6 and 5 6 Wo 6 25.

deceleration and acceleration phases of the base flow, its growth may be understood
in the following manner. Increasing Q̃ at constant Wo, corresponds to stronger
deceleration and acceleration of the base flow without modifying their durations
and therefore enhances the ratio Emax

min that is reached within each pulsation cycle.
Moreover, reducing Wo corresponds to increasing the pulsation period as Wo−2, and
therefore stretching the duration of both deceleration and acceleration phases. Hence,
Emax

min grows much faster with Q̃ at smaller values of Wo.
As discussed previously, in situations where significant intracyclic modulations take

place, a large number of Fourier components is required when carrying out a stability
analysis based on Floquet eigenproblems. From the DNS results, after computing
Fourier spectra of the compensated velocity fields, the approximate number of
Fourier modes required in a Floquet analysis can be determined: the data plotted
in figure 7(a) correspond to the number of modes in the compensated spectrum
with energy above 1/20 of the maximum (above dashed line in figure 4). This plot
may be used as a guideline for estimating the parameter region amenable to Floquet
analysis. The relevance of this criterion is demonstrated in figure 7(b), comparing
temporal growth rates computed both by linearized DNS (lines) and Floquet analysis
(symbols) retaining Nf = 30 Fourier components to expand the eigenmodes (4.13). As
expected, both methods yield indistinguishable results up to Q̃ = 0.6 for moderate to
large values of Wo. It is only at lower pulsation frequencies, i.e. lower Wo, that a
truncated Floquet method is seen to fail beyond some value of Q̃.

5.3. Two-dimensional instability analysis at Re = 10 000
A complete two-dimensional instability analysis has been performed by exploring a
range of streamwise wavenumbers, 0.5 6 α1 6 4.0, for each configuration. This range
has been chosen so as to encompass all unstable wavenumbers for 5 6 Wo 6 25 and
0 6 Q̃ 6 0.6 at Re = 10 000.
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FIGURE 7. (Colour online) Linear dynamics at Re = 10 000 and α1 = 2 for 0 6 Q̃ 6 0.6
and 5 6 Wo 6 25. (a) DNS-based estimate of the number of Fourier modes required for a
sufficiently resolved Floquet analysis. (b) Comparison of temporal growth rates, computed
by linearized DNS (solid lines) and Floquet eigenproblems (symbols) with Nf = 30. Failure
of truncated Floquet analysis (symbols off solid lines in b) largely corresponds to curves
above dashed line in (a).

Figure 8 shows isolines of positive temporal growth rate for (a) Wo=6, (b) Wo=10,
(c) Wo = 12 and (d) Wo = 15, computed via linearized DNS. For Poiseuille flow (Q̃ =
0), unstable wavenumbers range from α1 ≃ 1.75 to α1 ≃ 2.19, and, as the amplitude Q̃
of the pulsating base-flow component is increased, this range evolves as well as the
maximum growth rate that is achieved for each Q̃.
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FIGURE 8. (Colour online) Isolines of linear temporal growth rate for two-dimensional
perturbations in (α1, Q̃)-plane at Re = 10 000 and (a) Wo = 6, (b) Wo = 10, (c) Wo = 12,
(d) Wo = 15. Thick black lines correspond to the marginal curve ωi = 0 and thin coloured
lines to positive growth rates ωi = 0.005, 0.010, 0.015, . . . .

As already observed, the instability is enhanced with increasing Q̃ for low to
moderate Womersley numbers. Figure 8(a–c), corresponding to Wo = 6, 10 and 12
respectively, shows how the upper bound of the unstable wavenumber range increases
almost linearly with Q̃, while the lower bound depends much less on Q̃. The most
unstable wavenumber occurs roughly in the centre of the unstable range, and it is
therefore observed that an increasing pulsation amplitude Q̃ favours instabilities at
smaller wavelengths (larger α1). Thus, for these configurations, the maximum temporal
growth rate is significantly larger than the values shown in figure 5 corresponding to
a fixed α1 = 2.

At larger Womersley numbers (see figure 8d corresponding to Wo = 15), the
pulsating component has a stabilizing effect and the range of unstable α1 disappears
as Q̃ is increased.

5.4. Three-dimensional instability analysis at Re = 10 000
According to Squire’s theorem, which remains valid for pulsating flows (Conrad &
Criminale 1965), a two-dimensional analysis is sufficient to study onset of instability.
Nonetheless, it is worth investigating the dynamics of three-dimensional perturbations
developing in pulsatile channel flow. Figure 9 shows the temporal growth rate in
the (α1, α2)-wavevector plane for a range of pulsating amplitudes Q̃ and Womersley
numbers Wo, at Re = 10 000.

At a high pulsation frequency of Wo = 15 (figure 9c), the pulsating component
reduces the growth rates and base flows are stable at Q̃ = 0.2 and beyond. In contrast,
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at lower Womersley numbers, the base-flow pulsation enhances the instability and
increases the range of unstable wavenumbers. At Wo = 5 (figure 9a), the maximum
growth rate increases slightly faster with Q̃ than at Wo = 10 (figure 9b). While the
maximum growth rate follows very similar trends at Wo = 5 and 10, the evolution
with Q̃ of the entire unstable region in the (α1, α2)-wavevector plane shows some
differences. Indeed, at Wo = 5 (figure 9a), the pulsation promotes spanwise modes
associated with a finite α2 and small α1. At Wo = 10 (figure 9b), the pulsation rather
favours streamwise modes: as Q̃ is increased, the unstable region further extends in
the direction of large values of α1.

5.5. Critical Reynolds number

Whether a given base flow, characterized by the non-dimensional parameters Re, Wo
and Q̃, is linearly unstable or not depends on the growth rate of its most unstable or
least stable mode:

ωmax
i (Re, Wo, Q̃) ≡ max

α1,α2
Im ωlin(α1, α2; Re, Wo, Q̃). (5.3)

In accordance with Squire’s theorem, it is observed that the maximum growth rate
always occurs for α2 = 0. Then, the critical Reynolds number Rec(Wo, Q̃) for onset of
instability at given values of Wo and Q̃ is obtained by the condition of vanishing ωmax

i .
The evolution of Rec with Q̃ for a range of Wo is shown in figure 10. Poiseuille
flow (Q̃ = 0) corresponds to a critical Reynolds number of Rec = 7696. For the
configurations investigated here, the pulsating base-flow component is seen to have a
stabilizing effect for Womersley numbers beyond 13. This stabilizing effect is very
strong for Wo > 18: when increasing Q̃, the critical Reynolds number more than
doubles when Q̃ = 0.2 is reached. On the other hand, for lower frequencies, the
pulsating component has a destabilizing effect, which appears to be strongest around
Wo = 7.

6. Nonlinear dynamics

In this section the aim is to analyse the fully developed dynamics sustained in
linearly unstable base flows, in order to identify and characterize the different regimes
that prevail in this configuration. Since fully developed perturbations naturally arise
from the temporal development of a small-amplitude initial disturbance, the present
approach is based on temporal evolution problems investigated by direct numerical
simulations of the complete Navier–Stokes equations. The initial evolution is dictated
by linear dynamics, as discussed in the previous section. Whenever the linear temporal
growth rate is positive, the perturbation necessarily reaches finite-amplitude levels and
nonlinear effects come into play. In the absence of secondary instabilities, a fully
developed regime is then reached with spatial periodicity imposed by the prescribed
values of streamwise and spanwise wavenumbers α1 and α2.

Subcritical behaviour has been documented for plane Poiseuille flow (Ehrenstein &
Koch 1991) and is expected to exist also for pulsatile channel flow. However, it is
beyond the scope of the present paper to investigate finite-amplitude regimes that may
exist beyond the linearly unstable regions in parameter space.
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FIGURE 9. (Colour online) Isolines of temporal growth rate ωi in the (α1, α2)-wavevector
plane for Q̃ = 0.0, 0.1, . . . , 0.6 at (a) Wo = 5, (b) Wo = 10, (c) Wo = 15. Thick black lines
correspond to the marginal curve ωi = 0 and thin coloured lines to positive growth rates
ωi = 0.005, 0.010, 0.015, . . . .
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FIGURE 10. (Colour online) Critical Reynolds number for onset of temporal instability
as a function of the base-flow pulsation amplitude Q̃ for a range of Womersley numbers:
Wo = 5, 6, . . . , 25.

6.1. Two characteristic examples of fully developed regimes
While carrying out direct numerical simulations over large regions of a multi-
dimensional parameter space, essentially two types of fully developed regimes have
been observed: ‘cruising’ regimes for which nonlinearities are sustained throughout
the entire pulsation cycle and ‘ballistic’ regimes that are propelled into a nonlinear
phase before subsiding again to small amplitudes within every cycle.

These two distinct regimes may be illustrated by analysing perturbations with α1 = 2
developing in a base flow at Re = 10 000 and Wo = 10 with two different pulsation
amplitudes Q̃ = 0.08 and 0.20.

6.1.1. ‘Cruising’ nonlinear regime
For a pulsatile base flow at Re = 10 000, Wo = 10 and Q̃ = 0.08, a small-amplitude

perturbation of streamwise wavenumber α1 = 2 is linearly unstable and therefore leads
to a fully developed regime. Figure 11(a) gives the temporal evolution of the total
perturbation energy on a linear scale, while figure 11(b) shows the energy of the
different spatial Fourier components on a logarithmic scale. Here, the instantaneous
energy E(n)(t) of the nth Fourier component of the perturbation is defined as the
spatially averaged value of |u(n)(x0, t)|2 per unit volume.

Instantaneous spatially averaged wall shear stress values are plotted in figure 11(c).
During the early stages of the temporal evolution (here approximately 0 < t/T < 10),

a linear regime prevails with a complex frequency of ω = 0.7468 + 0.0085i and an
intracyclic modulation amplitude of Emax

min = 1.35 × 103. In this regime, the different
Fourier components are classically slaved to the fundamental as E(n) ∝ (E(1))n for n > 2,
and E(0) ∝ (E(1))2. The mean slopes of the energy curves are seen to follow these
scalings in figure 11(b), and the intracyclic modulations around these mean slopes do
the same. It is only the mean-flow correction E(0) that is found to decay more slowly
than (E(1))2 during the intracyclic decay phases. This slower decay of the spatially
homogeneous component E(0) corresponds to viscous dissipation that is less efficient
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FIGURE 11. (Colour online) ‘Cruising’ nonlinear regime resulting from modulated
exponential growth of small-amplitude initial perturbation with α1 = 2 at Re = 10 000,
Wo = 10 and Q̃ = 0.08. (a) Total perturbation energy. (b) Energy of each spatial Fourier
component. (c) Spatially averaged wall shear stress of perturbation (black solid), total (red
dashed) and base (grey dotted) fields relative to steady Poiseuille flow value.

than the stabilization of the E(1) component during the base-flow acceleration phase.
Indeed, for the same base flow, the decay of a spatially homogeneous perturbation
with α1 = α2 = 0 follows the dashed line in figure 11(b), which displays a similar
slope as the mean-flow correction E(0) here in its phases of slow decay.

As finite-amplitude levels are reached (here beyond t/T = 10), a fully developed
regime is entered consisting of a travelling nonlinear wave that is modulated by the
pulsating base flow. In this regime, the modulation amplitude is no larger than the
average values so that the regime remains fully nonlinear throughout the pulsation
cycle and is characterized by a ratio of intracyclic modulation amplitudes of order
unity, here Emax

min = 2.51.
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FIGURE 12. (Colour online) Snapshots of velocity fields in cruising nonlinear regime over
two wavelengths with α1 = 2 at Re = 10 000, Wo = 10 and Q̃ = 0.08: (a) total velocity
at t/T = 29.5, (b) perturbation velocity at t/T = 29.5, (c) total velocity at t/T = 30.0,
(d) perturbation velocity at t/T = 30.0. Solid curves to the right of (a) and (c) indicate
base-flow profile prevailing at the same instant.

From figure 11(b) it is observed that the total perturbation energy is largely
dominated by the fundamental component E(1), even in the nonlinear regime. Higher
harmonics are well below the fundamental and follow the same pattern of intracyclic
modulation. It is only the mean-flow correction E(0) that displays a different trend:
two intracyclic maxima, coinciding with the extrema of the fundamental (or the total)
energy. The second maximum of E(0) that occurs when the perturbation is near its
lowest is probably due to the continuing transfer of energy from the fundamental to
the spatially homogeneous component and due to the fact that this energy is only
slowly dissipated so that E(0) continues to build up while E(1) decreases. Monitoring
the energy associated with the different Fourier components shows that this fully
developed regime may be accurately computed by using only a limited number of
components. All of the computations of the present study have been carried out with
Nh = 9, and for most cases the fully developed dynamics was already well resolved
with Nh = 5.

The instantaneous spatially averaged wall shear stress (WSS) is plotted in
figure 11(c), relative to the value prevailing for a steady Poiseuille flow at the same
Reynolds number. The wall shear stress component due to the perturbation (solid black
curve) follows a similar evolution to the fluctuating energy (figure 11a), which results
in a significant increase of the total WSS (dashed red curve) and departure from the
WSS prevailing for the base flow (dotted grey curve). The growth (respectively decay)
of the perturbation WSS during the deceleration (respectively acceleration) phases
of the base flow, results in a total spatially averaged WSS modulation out of phase
with the base flow by approximately a quarter period, similar to what is observed for
Stokes layers.

This regime consists of a travelling nonlinear wave that propagates downstream with
a temporally modulated amplitude. Snapshots of the flow fields over two wavelengths
are shown in figure 12, near maximum energy at t/T = 29.5 (a,b) and minimum
energy at t/T = 30.0 (c,d). The total flow fields (a,c) display the sinuous structure
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FIGURE 13. (Colour online) (a) Spatio-temporal pattern of the perturbation WSS in
cruising regime over one streamwise wavelength λ=2π/α1 and one pulsation period. WSS
values are relative to a steady Poiseuille flow at the same Reynolds number, and thick
solid black isoline corresponding to WSS = 0 separates thin dashed red (respectively blue)
isolines corresponding to levels WSS = 2, 4, 6 (respectively WSS = −2, −4, −6).
(b) Instantaneous spatially averaged (solid black), minimum (dashed blue) and maximum
(dashed red) values of WSS.

of these nonlinear travelling waves, while the perturbation velocity fields (b,d) give
an idea of the associated propagating vortices.

These modulated travelling nonlinear waves are associated with the spatio-temporal
WSS pattern shown in figure 13(a) over one streamwise wavelength for one pulsation
period. The characteristic oblique lines in this plot are associated with the nonlinear
waves travelling at a nearly constant phase velocity. Their amplitude is modulated
over the pulsation period, similarly to what has already been observed in figure 11.
However, the wave-like nature of the flow structure is associated with local WSS
values well above and below their spatial average shown in figure 11(c). The
temporal evolution of the local maximum and minimum WSS values are shown
in figure 13(b) together with the instantaneous spatial average. While the spatially
averaged perturbation WSS values are of the same order as the base-flow contribution,
the local extrema are significantly larger. Also, the modulation of these nonlinear
propagating waves results in larger modulation amplitudes for the local extrema than
for the spatially averaged values. Thus, this fully developed regime is associated with
strong localized stresses in alternating directions travelling along the channel walls.
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FIGURE 14. (Colour online) ‘Ballistic’ nonlinear regime resulting from modulated
exponential growth of small-amplitude initial perturbation with α1 = 2 at Re = 10 000,
Wo = 10 and Q̃ = 0.2. (a) Total perturbation energy. (b) Energy of each spatial Fourier
component. (c) Spatially averaged wall shear stress of perturbation (black solid), total (red
dashed) and base (grey dotted) fields relative to steady Poiseuille flow value.

6.1.2. ‘Ballistic’ nonlinear regime
The temporal evolution of an initial small-amplitude perturbation for a base flow

at a larger pulsating amplitude of Q̃ = 0.20 is depicted in figure 14. In this example,
the small-amplitude regime prevails approximately for 0 < t/T < 5, and, in that
stage, the perturbation exponentially grows according to a complex frequency of ω =
0.8119 + 0.0156i with a significantly larger intracyclic modulation amplitude of Emax

min =
4.61 × 107.

Once finite amplitudes are reached, the essential difference with the previous
configuration is that the nonlinear regime does not prevail throughout the entire
pulsation cycle: the fully developed regime consists of regular nonlinear bursts
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separated by phases of nearly unperturbed base flow. Thus, the ratio of intracyclic
modulation amplitudes is here much larger than unity, Emax

min = 391, since the
perturbation drops to very small levels during the linear phase of the cycle
(figure 14a).

Monitoring the temporal evolution of the energy contained in the different spatial
Fourier components (figure 14b), shows that the observations of the previous
configuration still hold: during the linear phases, higher harmonics are slaved to
the fundamental as E(n) ∝ (E(1))n; a few Fourier components are enough to fully
resolve the dynamics; during stabilization phases, the mean-flow correction E(0)

decays on a slow time scale and therefore becomes un-slaved from the fundamental.
Here the un-slaving of the mean-flow correction from the fundamental also occurs in
the linear phases of the fully developed regime: the slow decay rate of the mean-flow
correction is dictated by viscosity and is equivalent to that of a spatially homogeneous
perturbation with α1 = α2 = 0 indicated by a dashed line in figure 14(b). Again, the
total perturbation energy is dominated by the fundamental component, except during
the linear phases of the fully developed regime where the fundamental drops to
negligible levels while the mean-flow correction lags behind. Note also that due to
these alternating linear and nonlinear phases, the energy levels in the ballistic regime
are significantly lower than those of the cruising regime.

The temporal evolution of the associated WSS is shown in figure 14(c). Obviously
the WSS associated with the perturbation (solid black curve) is only significant during
the nonlinear phases. These nonlinear phases are relatively short compared with the
pulsation period, therefore the total WSS (dashed red curve) in the fully developed
regime only weakly departs from the WSS prevailing for the base flow (dotted grey
curve).

This fully developed regime consists of periodic nonlinear bursts that are identically
regenerated during every pulsation cycle. Snapshots of the flow fields over two
wavelengths are shown in figure 15. Near maximum energy at t/T = 29.6, the total
flow fields (figure 15a) exhibit the sinuous structure of the finite-amplitude travelling
perturbation; this sinuosity is, however, less pronounced than in figure 12(a) since
the perturbation is less energetic here. The associated perturbed fields at t/T = 29.6
are represented in figure 15(b). In the linear phase, at t/T = 30.0, the total flow
fields (figure 15c) are indistinguishable from the base flow since the perturbation has
negligible amplitude.

These nonlinear bursting travelling waves are associated with the spatio-temporal
WSS pattern shown in figure 16(a). As already noted, the perturbation WSS is
only significant during the nonlinear phases of the dynamics, here approximately for
29.4 < t/T < 29.8. While the spatially averaged perturbation WSS (solid black curve
in figure 16b) does not exceed half the mean value prevailing for the base flow, the
local extrema due the travelling wave structure reach values that are an order of
magnitude larger. Thus the ballistic regime is still associated with intense spatially
localized WSS events, while the spatially averaged values remain rather weak (see
also figure 14c).

6.1.3. Terminology
These two markedly different fully developed dynamics exemplified by the

configurations discussed in this section have motivated the terms ‘cruising’ and
‘ballistic’ regimes by analogy with cruising and ballistic flight: the ‘cruising’
perturbations are continuously driven by nonlinearities while the ‘ballistic’ state
is characterized by ‘take-off’ and ‘landing’ of the perturbation energy level. More
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FIGURE 15. (Colour online) Snapshots of velocity fields in ballistic nonlinear regime over
two wavelengths with α1 = 2 at Re = 10 000, Wo = 10 and Q̃ = 0.2: (a) total velocity at
t/T = 29.6, (b) perturbation velocity at t/T = 29.6, (c) total velocity at t/T = 30.0 when
the perturbation is negligible. Solid curves to the right of (a,c) indicate base-flow profile
prevailing at same instant.
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FIGURE 16. (Colour online) (a) Spatio-temporal pattern of the perturbation WSS in
ballistic regime over one streamwise wavelength λ = 2π/α1 and one pulsation period.
WSS values are relative to a steady Poiseuille flow at the same Reynolds number, and
the thick solid black isoline corresponding to WSS = 0 separates the thin dashed red
(respectively blue) isolines corresponding to levels WSS = 1, 2, 3 (respectively WSS =−1,
−2, −3). (b) Instantaneous spatially averaged (solid black), minimum (dashed blue) and
maximum (dashed red) values of WSS.
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FIGURE 17. (Colour online) Temporal evolution of perturbation energy in fully developed
regime at (a) Wo = 7, (b) Wo = 10, (c) Wo = 15, (d) Wo = 20, for Q̃ = 0.00 (horizontal
line), 0.02, 0.04, . . . , 0.20 and α1 = 2, Re = 10 000.

precisely, in the cruising regime, nonlinearities are sustained throughout the pulsation
cycle, resulting in a fully developed regime with a modulated amplitude, that may be
interpreted as saturated Tollmien–Schlichting waves undergoing modulations caused
by the pulsation of the underlying base flow. In contrast, the ballistic regime consists
of linear and nonlinear phases that alternate within every pulsation cycle: from a
small-amplitude minimum reached near the middle of the linear phase, strong linear
growth thrusts the system into a nonlinear regime that culminates after saturation at
finite amplitude, before collapsing again and subsiding towards the next minimum.

6.2. Nonlinear dynamics at α1 = 2 and Re = 10 000
The fully developed regime that prevails after perturbations reach finite amplitudes has
been systematically investigated at α1 = 2 and Re = 10 000 for Womersley numbers in
the range 5 6 Wo 6 25 and increasing pulsation amplitudes Q̃. Figure 17 shows the
temporal evolution of the perturbation energy in the final regime over two base-flow
pulsation periods for 0 6 Q̃ 6 0.2.

For Poiseuille flow, i.e. Q̃ = 0, finite-amplitude Tollmien–Schlichting waves with
constant energy are selected (dark blue horizontal lines in figure 17).

As the base-flow pulsation amplitude Q̃ is increased, these nonlinear travelling
waves display energy modulations around a mean value: in this cruising regime the
temporally averaged perturbation energy remains very close to the value prevailing
for Q̃ = 0. As for the linear dynamics (see figure 3), energy builds up during
base-flow deceleration (n < t/T < n + 0.5 for integer n) while it declines during
base-flow acceleration (n + 0.5 < t/T < n + 1); recall that the definition of base-flow
acceleration and deceleration phases is based on the sign of dQ/dt.

The amplitude of these perturbation energy modulations grows as Q̃ is increased.
Eventually the minimum energy value reached near t/T = n drops to a low level,
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and the flow behaviour switches then to a ballistic regime, characterized by linear
phases of negligible perturbation amplitudes alternating with finite-amplitude bursts.
This transition from cruising to ballistic regimes appears to be rather sudden: curves
in figure 17 correspond to constant steps in Q̃ of 0.02, and they display a gap at the
transition between these two nonlinear regimes. At larger pulsation frequencies, see
figure 17(d) at Wo = 20, the base-flow modulation has a stabilizing effect so that the
ballistic regime is never selected: as Q̃ is increased, the critical value for stability is
reached while the flow is still in a cruising regime. The fully developed modulated
Tollmien–Schlichting waves that prevail at the lower values of Q̃ could probably be
interpreted as inviscid vorticity waves and described by a Korteweg–de Vries equation,
following a similar approach than that proposed by Tutty & Pedley (1994). In that
context, the transition from cruising to ballistic regimes may be governed by a similar
mechanism than that leading to cnoidal waves in a Korteweg–de Vries model.

Note also that when the critical value of Q̃ for transition from cruising to ballistic
regimes is approached, the energy curves display small-scale irregular fluctuations that
break the overall periodicity of the flow from one pulsation period to the next and
are believed to be the sign of secondary instabilities rather than numerical instabilities
since this same behaviour is observed after changing spatial and temporal resolutions
of the simulations. These secondary instabilities certainly play a role in the precise
transition scenario between the two nonlinear regimes. However, the present numerical
implementation was designed to investigate the structure of nonlinear travelling waves
of given spatial wavenumbers and does not take into account sufficient degrees of
freedom for a full secondary stability analysis, which is left for future investigations.

At larger base-flow modulation amplitudes, the maximum energy reached during
the nonlinear bursts in the ballistic regime increases again with Q̃, as illustrated in
figure 18 for 0.2 6 Q̃ 6 0.4 and Wo = 7 and 10. Eventually, the nonlinear bursts
occurring at every base-flow pulsation period display some variation from one period
to the next. Depending on the control parameters, the fluctuations that affect the
regular pattern associated with the ballistic regime result either in period doubling
or more irregular behaviour. A more detailed characterization of the fully developed
regimes prevailing beyond these periodic nonlinear waves has not been attempted.

The phase diagram in figure 19 indicates the nature of the selected regime over the
whole range of investigated Womersley numbers: 5 6 Wo 6 25. The cruising regime
prevails at low base-flow modulation amplitudes, starting from Poiseuille flow at Q̃=0.
At larger values of Q̃, to the right of the dashed curve, transition to a ballistic regime
occurs. The pulsating base flow is linearly stable above the black curve. The critical
value of Q̃ where the transition between the two nonlinear regimes occurs is seen to
weakly depend on the Womersley number. It is only at low values of Wo that the
cruising regime survives significantly beyond Q̃ ≃ 0.1. At larger pulsation frequencies
(i.e. larger Wo), the stabilizing effect of the base-flow pulsation competes with its
enhancing effect on the perturbation energy modulation. Thus, as already observed in
figure 17(d) for Wo = 20, the ballistic regime is suppressed and the cruising regime
prevails over the entire range of unstable Q̃, here for Wo > 17.

The criterion used to distinguish between cruising and ballistic regimes is based on
the ratio Emax

min of the energy perturbation in the fully developed regime. This ratio is of
order 1 for cruising regimes and increases more than tenfold in the ballistic regime,
characterized by vanishing energy levels in its linear phases. Since the transition
between both nonlinear regimes occurs rather suddenly, the boundary between both
regimes is largely independent of the precise value of the critical ratio Emax

min used.
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FIGURE 18. (Colour online) Temporal evolution of perturbation energy in fully developed
regime at (a) Wo = 7, (b) Wo = 10, for Q̃ = 0.20 (dark blue), 0.22, . . . , 0.38, 0.40 (red)
and α1 = 2, Re = 10 000. The maximum energy of the nonlinear bursts increases with Q̃
and, at larger values of Q̃, successive peaks culminate at slightly different levels.
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FIGURE 19. (Colour online) Phase diagram of the flow dynamics for Re = 10 000 and
α1 = 2. A cruising regime prevails at low base-flow modulation amplitudes Q̃. At larger Q̃,
to the right of the dashed curve, a ballistic regime takes over. Above the black curve, the
pulsating base flow is linearly stable.

6.3. Two-dimensional nonlinear dynamics at Re = 10 000

The complete two-dimensional nonlinear travelling wave solutions have been
computed by exploring the whole range of linearly unstable wavenumbers α1 for
0 6 Q̃ 6 0.5 and 5 6 Wo 6 25 at Re = 10 000.

Figure 20 shows characteristic features of perturbation energy for selected
configurations. Panels of the first column (a1–d1) in this figure illustrate the
temporally averaged energy of the fully developed regime prevailing in the linearly
unstable domain of the (α1, Q̃)-plane for (a1) Wo = 6, (b1) Wo = 10, (c1) Wo = 12 and
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FIGURE 20. (Colour online) Isolines of perturbation energy levels for two-dimensional
fully developed nonlinear regimes in (α1, Q̃)-plane at Re=10 000 and (a) Wo=6, (b) Wo=
10, (c) Wo = 12, (d) Wo = 15. Panels (1) represent temporally averaged energy, while (2)
and (3) give maximum and minimum values respectively. Colour isolines correspond to
E = 0.01, 0.02, 0.03, . . . , and the thick black curve represents the neutral boundary.

(d1) Wo = 15. Panels in the second (a2–d2) and third (a3–d3) columns correspond
respectively to maximum and minimum energy values in the same regimes.

For Poiseuille flow, constant-amplitude Tollmien–Schlichting waves are obtained, so
that all plots correspond to the same values along the line Q̃ = 0.

Increasing the base-flow pulsation amplitude Q̃ results in modulated nonlinear
travelling waves with increasing modulation amplitude. For example, considering
the case Wo = 6 (figure 20a1–a3) and concentrating on α1 = 2 for 0 6 Q̃ 6 0.1,
it is seen that the average energy (figure 20a1) remains almost constant while
the maximum energy (figure 20a2) increases with Q̃ and the minimum energy
(figure 20a3) decreases. The same observation holds for different values of α1

and Wo: for 0 6 Q̃ 6 0.1, the discrepancy between maximum energy (figure 20a2–d2)
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and the corresponding minimum energy (figure 20a3–d3) increases with Q̃, while the
average energy (figure 20a1–d1) remains almost constant in Q̃. It is found that this
cruising regime prevails over all unstable wavenumbers α1, and that the modulation
amplitude is more pronounced at smaller wave lengths (larger α1). Note also that
the nonlinear regime displays finite-amplitude energy levels up to the upper marginal
wavenumber (near α1 ≃ 2.2): it is expected that these nonlinear solutions continue
to exist in the linearly stable region for larger values of α1, but the investigation of
such sub-critical nonlinear modulated solutions by continuation methods has not yet
been attempted.

The cruising regime, characterized by energy modulations around a mean value that
is rather independent of Q̃, extends over the entire range of linearly unstable α1 from
Q̃ = 0 to Q̃ ≃ 0.15 at Wo = 6 and to Q̃ ≃ 0.11 at Wo = 10, 12 and 15. Thus, the
phase diagram of figure 19 remains valid after taking into account the whole range
of unstable wavenumbers α1.

As already observed, the cruising regime ends rather suddenly when Q̃ is
increased. The ballistic regime, that takes over at larger base-flow pulsation
amplitudes, is characterized by much lower values of the temporally averaged energy
(figure 20a1–c1) and vanishing values of minimum energy levels (figure 20a3–c3).
The maximum energy (figure 20a2–c2) prevailing in the ballistic regime displays low
values at onset of this regime (near Q̃ ≃ 0.15) and increases with Q̃. The irregular
shape of isolines in the ballistic regime is due to the loss of exact periodicity of
the nonlinear solutions already observed in the previous section: when the successive
nonlinear bursts are not perfectly identical, some scatter results while recording peak
values in different realizations. At larger pulsation frequencies, the instabilities are
suppressed as Q̃ is increased (figure 20d1–d3), thus avoiding the ballistic regime.

6.4. Three-dimensional nonlinear dynamics at Re = 10 000
For given pulsating base flows, three-dimensional finite-amplitude modulated
propagating waves have been computed over the entire linearly unstable region of
the (α1, α2)-wavevector plane. The linear temporal growth rate of three-dimensional
perturbations has been discussed in § 5.4 and illustrated in figure 9.

The task of systematically investigating these fully developed nonlinear solutions
has been carried out for 5 6 Wo 6 25 and 0 6 Q̃ 6 0.6 at Re = 10 000. For each
base flow, characterized by the non-dimensional control parameters Q̃, Wo and Re, the
nonlinear temporal evolution problem has been simulated for those values of (α1, α2)

that are associated with a positive linear temporal growth rate. In this process, the
(α1, α2)-wavevector plane has been covered using steps of 0.05 in both α1 and α2 and,
for each run, characteristic quantities are derived from the fully developed nonlinear
regime.

Figure 21 shows levels of temporally averaged perturbation energy while peak
energy levels are plotted in figure 22. In these figures, colour isolines correspond to
energy levels E = 0.01, 0.02, . . . , and the thick black curve represents the neutral
boundary.

At low base-flow modulation amplitudes, Q̃ = 0.0 and 0.1, the fully developed flow
is in the cruising regime, characterized by a significant average perturbation energy
(figure 21) and slightly larger maximum energy levels (figure 22). In this regime,
average and peak energy levels significantly increase with α1, starting at low values
near the small-α1 neutral boundary and reaching finite values at the large-α1 neutral
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FIGURE 21. (Colour online) Isolines of average energy levels for three-dimensional
nonlinear solutions in the (α1, α2)-wavevector plane for Q̃ = 0.0, 0.1, . . . , 0.5 at (a) Wo =
5, (b) Wo = 10, (c) Wo = 15 and Re = 10 000. Colour isolines correspond to E =
0.01, 0.02, 0.03, . . . , and the thick black curve represents the neutral boundary.
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FIGURE 22. (Colour online) Isolines of maximum energy levels for three-dimensional
nonlinear solutions in the (α1, α2)-wavevector plane for Q̃ = 0.0, 0.1, . . . , 0.5 at (a) Wo =
5, (b) Wo = 10, (c) Wo = 15 and Re = 10 000. Colour isolines correspond to E =
0.01, 0.02, 0.03, . . . , and the thick black curve represents the neutral boundary.
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boundary. The energy levels depend more weakly on α2, so that the isolevels remain
roughly parallel to the neutral boundaries as α2 is increased from 0.

Between Q̃ = 0.1 and Q̃ = 0.2, the flow switches to ballistic regimes, and this
transition is accompanied by a sharp drop in energy levels. Beyond Q̃ = 0.2, for low to
moderate pulsation frequencies, the perturbation energy levels increase again with Q̃,
very weakly on average (figure 21a,b) but significantly for peak values (figure 22a,b).
In contrast, at higher Womersley numbers, base-flow pulsation has a stabilizing effect,
see figures 21(c) and 22(c) at Wo = 15. In the ballistic regime, the energy isolines are
more irregular for the same reasons as those mentioned in the previous sub-section,
but the general trend of the peak energy levels remains the same, except that the
largest values are reached within the linearly unstable region and not near the large-α1
neutral boundary. Therefore it would be expected that the cruising nonlinear regime
is more likely to display subcritical behaviour, i.e. to continue to exist beyond the
large-α1 neutral boundary, than the ballistic regime.

At a given value of Q̃, the same regime is seen to prevail over the entire linearly
unstable region of the (α1, α2)-plane. Thus it appears that the phase diagram
of figure 19 still remains valid after taking into account all linearly unstable
three-dimensional waves.

The maximum localized WSS occurring in the nonlinear regimes is shown in
figure 23. In this figure, colour isolines correspond to WSS levels of 0.5, 1.0, 1.5, . . . ,

relative to Poiseuille flow values. These plots follow a similar trend as the peak energy
levels shown in figure 22, except that the regime change between Q̃ = 0.1 and 0.2 is
associated with a less pronounced drop in WSS.

6.5. Nonlinear dynamics at other Reynolds numbers
In order to systematically investigate the nonlinear dynamics prevailing after onset
of linear instability, i.e. for Reynolds numbers above the marginal curves plotted in
figure 10, two-dimensional nonlinear travelling wave solutions have been computed
for linearly unstable configurations in the range 8000 6 Re 6 15 000.

The main findings are summarized in figure 24, extending the phase diagram of
figure 19 and showing the nature of the selected flow regime in the (Q̃, Wo)-plane
for Re = 8000, 10 000, 12 000 and 15 000. As in figure 19, these curves correspond
to a fixed streamwise wavenumber of α1 = 2. In the preceding sections it has been
shown, for Re = 10 000, that this approach yields a good approximation of the
boundary between cruising and ballistic regimes without exploring the whole region
of linearly unstable three-dimensional waves in the (α1, α2)-plane for each base flow.
A systematic coverage of the five-dimensional parameter space (Re, Wo, Q̃, α1, α2)
would require of the order of 106 runs for each value of Re. Nonetheless, it has been
checked that the curves of figure 24 are a faithful representation of the dominant
flow dynamics prevailing for any linearly unstable wavenumbers.

In agreement with the linear results of § 5, the stable region of the (Q̃, Wo)-plane
shrinks as the Reynolds number is increased: the stability boundary (solid curves in
figure 24) moves toward larger values of Q̃ and Wo with increasing Re. In contrast,
the boundary between cruising and ballistic regimes remains almost unchanged over
the entire range from Re = 8000 to Re = 15 000. For all the base flows considered in
this investigation, the transition from cruising to ballistic regimes is found to occur
when the base-flow oscillation amplitude exceeds about 10 %–15 % of the steady flow
component.



470 B. Pier and P. J. Schmid

0

0.5

1.0

1.5

2.0

2.5

(a)

(b)

0

0.5

1.0

1.5

2.0

2.5

0.5
1.0

1.5
2.0

2.5
3.0

3.5
4.0

0.5
1.0

1.5
2.0

2.5
3.0

3.5
4.0

FIGURE 23. (Colour online) Isolines of maximum local WSS levels for three-dimensional
nonlinear solutions in the (α1, α2)-wavevector plane for Q̃ = 0.0, 0.1, . . . , 0.5 at (a) Wo = 5,
(b) Wo = 10 and Re = 10 000. Colour isolines correspond to WSS = 0.5, 1.0, 1.5, . . . ,
relative to Poiseuille value, and the thick black curve represents the neutral boundary.

7. Summary and future work

In this paper, we have systematically investigated the rich dynamics resulting from
perturbations developing in harmonically pulsating channel flows, for Womersley
numbers in the range 5 6 Wo 6 25.

The temporal dynamics of small-amplitude perturbations consists of travelling
waves that grow or decay exponentially in the long term while displaying intracyclic
modulations tuned to the base-flow pulsations. Starting from steady Poiseuille flow
and increasing the amplitude of the oscillating base-flow component Q̃ at constant
Womersley number, it is found that the oscillating component reduces instability
for Wo & 13 while it has a destabilizing effect at lower frequencies. Strongest
destabilization occurs near Wo = 7. Using Floquet analysis and linearized simulations,



Linear and nonlinear dynamics of pulsatile channel flow 471

0 0.1 0.2 0.3 0.4
5

10

15

20

25

Stable

Cruising

Ballistic

8000
10 000
12 000

FIGURE 24. (Colour online) Maps in (Q̃,Wo)-plane indicating nature of the flow dynamics
prevailing for a range of Reynolds numbers: Re=8000, 10 000, 12 000 and 15 000. Dashed
curves correspond to boundary between cruising and ballistic regimes. Above the solid
curves the base flows are linearly stable.

the present investigation confirms that growth rates depend quadratically on small
values of Q̃, a result analytically obtained by Hall (1975).

While instability (respectively stability) is determined by the net growth (respectively
decay) of fluctuations over one complete pulsation cycle, strong transient growth and
decay occur within each cycle. At small values of Q̃, the intracyclic growth and decay
phases almost balance so that the long-term growth remains similar to the Poiseuille
value despite intracyclic modulation amplitudes that may reach several orders of
magnitude. Intracyclic growth and decay mainly occur during base-flow deceleration
and acceleration phases respectively, and intracyclic modulation is enhanced at low
pulsation frequencies, i.e. for long durations of deceleration and acceleration phases.
A side-effect of these strong intracyclic modulations is the requirement of a large
number of Fourier modes for a reasonably resolved Floquet analysis. This also
probably explains why earlier attempts at linear stability analyses by solving Floquet
eigenproblems were fraught with difficulties, and only Thomas et al. (2011) were
able to locate neutral conditions.

Exploring the whole range of three-dimensional perturbations does not change the
general picture derived from two-dimensional stability analysis since Squire’s theorem
remains valid for pulsating flows (Conrad & Criminale 1965). Nonetheless, it is found
that oblique perturbations at finite spanwise and small streamwise mode numbers are
more strongly destabilized by low-frequency base-flow pulsation, e.g. at Wo = 5, than
at frequencies around Wo = 10.

Using direct numerical simulations to compute the temporal evolution of fully
developed nonlinear propagating waves resulting from linearly unstable situations
has shown that there exist two distinct regimes of finite-amplitude dynamics. In
the cruising regime, the perturbation evolves nonlinearly throughout the pulsation
cycle, while the ballistic regime consists of linear and nonlinear phases that alternate,
locked-in with the base-flow pulsation. Nonlinear solutions in the cruising regime
may be interpreted as saturated Tollmien–Schlichting waves that are modulated
by the base-flow pulsation. These cruising waves are selected for weak base-flow
pulsation amplitudes Q̃ and their intracyclic modulation amplitudes increase with Q̃,
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albeit not as drastically as in the linear regime. For stronger base-flow pulsations,
the intracyclic modulation amplitude eventually becomes of the same order as the
mean perturbation level. When such strongly modulated waves are no longer able
to keep up with the nonlinear regime throughout the cycle, transition to the ballistic
regime occurs. In the ballistic regime, the temporal evolution is then governed by the
following sequence of steps: during base-flow deceleration phases, small-amplitude
fluctuations grow fast, as in a purely linear setting, thus propelling the system into
a nonlinear regime where the amplitude saturates at finite level; during subsequent
base-flow acceleration, the perturbation amplitude declines until the flow falls back to
the linear regime; the fluctuation amplitude then rapidly drops to reach a minimum
near the maximum of the basic flow rate, and grows again in the subsequent base-flow
deceleration phase. Thus, the ballistic regime follows part of a linear dynamics with
high intracyclic modulation amplitude, while nonlinear saturation caps its growth and
limits the perturbation level in the high-amplitude phase. These linear and nonlinear
mechanisms adjust so that the nonlinear bursts are identically regenerated, resulting in
a regime with no net growth or decay over one pulsation cycle. For larger base-flow
pulsation amplitudes, these nonlinear bursts prevailing in the ballistic regime display
some fluctuations from cycle to cycle, which is the sign of secondary instabilities,
beyond the scope of the present investigation.

Computation of spatio-temporal wall shear stress patterns has revealed that both
cruising and ballistic regimes are associated with intense spatially localized WSS
values, much stronger than the spatially averaged values as well as the base-flow
values.

Working out the nonlinear dynamics for the entire parameter space in the range
5 6 Wo 6 25, shows that a cruising regime prevails at low base-flow modulation
amplitudes Q̃, and that transition to a ballistic regime occurs between Q̃ = 0.1 and
0.2, unless the ballistic regime is bypassed because the neutral boundary is crossed
while still in the cruising regime.

The present investigation uses a single spatial Fourier series (4.20), (4.21) to
compute the saturated wavetrains. This approach yields nonlinear solutions of the
Navier–Stokes equations and prevents the development of secondary instabilities that
would break the imposed spatial periodicity. Secondary instabilities may play an
important part in the fully developed dynamics, and in particular near the transition
between cruising and ballistic regimes. Secondary stability properties could be
investigated by implementing a technique similar to that used for the rotating-disk
flow (Pier 2007), and the resulting dynamics could be computed by simulations
allowing for more degrees of freedom, e.g. using a double Fourier expansion in both
wall-parallel directions for the flow fields.

The nonlinear travelling waves found in the present investigation display a structure
that is reminiscent of solutions to the Korteweg–de Vries equation. Therefore one
might expect that an approach similar to that implemented by Tutty & Pedley (1994)
could account for the dynamics, and possibly explain the ballistic regime in terms of
cnoidal waves. Another line of thought would be to analyse the pulsating channel flow
in terms of a Mathieu equation (McLachlan 1964), also known to give rise to similar
solutions as the amplitude of the oscillatory term becomes larger.

Having established the existence of nonlinear modulated travelling wave solutions
for linearly unstable pulsating channel flows, it would now be worth to investigate
the existence of subcritical solutions, i.e. finite-amplitude solutions that prevail in
linearly stable base flows. Such subcritical solutions are known to exist for steady
Poiseuille flow (Ehrenstein & Koch 1991) and are therefore also expected in its
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pulsating counterpart. These subcritical solutions may be sought by continuously
varying control parameters in a DNS or by generalizing the continuation technique
of Ehrenstein & Koch (1991) to take into account the modulation of these solutions.
The findings of the present paper suggest that the cruising regime probably displays
such a subcritical behaviour, while it is less likely for the ballistic regime. And
indeed, since the ballistic regime continuously regenerates nonlinear pulses on its
own, it presumably does not depend on a finite-amplitude perturbation to be selected.

In the context of small-amplitude fluctuations, a question that has not yet been
addressed is the nature of pulsating channel-flow instability, i.e. convective or
absolute (Huerre & Monkewitz 1990). For purely oscillating boundary layers, as
investigated by Blennerhassett & Bassom (2002, 2006) and Thomas et al. (2014),
the onset of instability is expected to coincide with absolute instability, while steady
plane Poiseuille flow is at most convectively unstable. Therefore, transition between
convective and absolute instability is likely to occur when the pulsating base-flow
component is increased or equivalently the steady component reduced; this could be
investigated using the theory discussed by Brevdo & Bridges (1997).

The observation of linear modes exhibiting strong intracyclic growth phases, raises
the question of the possibility for even larger transient growth resulting from an
optimal initial condition. Current investigations address the computation of transient
energy amplifications using non-modal stability theory (see Schmid 2007) applied to
time-periodic flows.

In a physiological context, the blood flow rates resulting from the cardiac pulse
cannot be described by a single oscillating harmonic component but require a Fourier
expansion of the form (3.3) with more modes. All the mathematical methods and
numerical tools developed in the present investigation can handle flow rates with an
arbitrary number of base-flow Fourier components. Current collaboration with Service
de chirurgie vasculaire (Hôpital Édouard–Herriot, Lyon) and Service de Radiologie
(Hôpital de la Croix-Rousse, Lyon) aims at obtaining relevant flow-rate waveforms
for studying their fluid dynamical properties.

For bioengineering applications as well as for fundamental reasons, the present
approach needs to be generalized from plane channel to circular pipe configurations.
This work is in progress and requires minor adjustments to take into account the extra
terms due to a formulation in cylindrical coordinates. However, the main difficulty
arises from the fact that Hagen–Poiseuille flow through a circular pipe is linearly
stable at all Reynolds numbers, therefore an approach based on temporally modulating
the steady base flow is inappropriate for comprehending a regime of nonlinear waves
travelling through a circular pipe. Thomas et al. (2011) have found neutrally stable
conditions for pulsating pipe flow that could be used as starting points for nonlinear
simulations; these conditions, however, correspond to essentially oscillating flow with
a weak steady component, thus complicating their continuation toward physiological
conditions. Furthermore, pulsatile flow through curved pipes (Siggers & Waters 2008)
probably sustains even more complex dynamics.
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Appendix A. Numerical solution methods and validation

Following the mathematical formulation of § 4, the governing equations yield
systems of coupled partial differential equations of first order in time with spatial
derivatives only in the wall-normal coordinate x0. The numerical implementation
of these one-dimensional multi-component problems is based on the home-spun
PackstaB library in C++; it involves a Chebyshev collocation technique for spatial
discretization and a predictor–corrector fractional-step method for temporal integration.
The essential features used in the present investigation are presented below, more
details of the general method may be found in (Pier 2015, § A.6).

A.1. Spatial discretization
The differential problems in the wall-normal coordinate x0 are solved via a Chebyshev
collocation method (Boyd 2001) where the collocation points ξi ≡−h cos(iπ/(N0 − 1))
for 0 6 i < N0 span the diameter of the channel.

No-slip boundary conditions apply to the velocity components while there
are no boundary conditions for the pressure. Thus the velocity components are
discretized using all N0 collocation points including boundary points, while the
pressure components may be discretized using only the N0 − 2 interior points. This
amounts to approximating velocity components by polynomials of order N0 − 1
and pressure components by polynomials of order N0 − 3. In this collocation
technique, approximations of the x0-derivatives are then computed by using N0 × N0
or (N0 − 2) × (N0 − 2) matrices, respectively.

Taking into account symmetry/antisymmetry of the different flow fields and using
the associated discretized differential operators in the x0-coordinate, computations may
be restricted to half the channel width and the numerical effort reduced by using only
the N⋆

0 collocation points from the centreline to the boundary instead of the complete
set of N0 = 2N⋆

0 − 1 points covering the entire channel diameter.

A.2. Eigenvalue problems
The Floquet analysis discussed in § 4.2 yields an infinite system of linear coupled
ordinary differential equations involving the Fourier components of the velocity and
pressure eigenfunctions (4.14)–(4.17).

Truncating the Fourier expansions of the eigenfunctions (4.13) at |n| 6 Nf then
yields an algebraic generalized eigenvalue problem of size (4N0 − 2)(2Nf + 1),
since there are N0 values for each of the three velocity components and N0 − 2
values for the pressure components. This generalized eigenvalue problem may be
reduced to a regular eigenvalue problem of size 2(N0 − 2)(2Nf + 1) by eliminating
the pressure (taking the divergence of the momentum equations) and one of the
velocity components (using the continuity equation) as well as the (homogeneous)
velocity boundary conditions. This may be further reduced to 2(N⋆

0 − 1)(2Nf + 1),
with N0 = 2N⋆

0 − 1, by separately solving for sinuous or varicose modes.
Note that for all configurations considered in this study, it has been found that the

most unstable or least stable perturbation is a sinuous mode, a confirmation of what
was already observed by von Kerczek (1982).
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A.3. Temporal evolution problems
In a linear analysis, the equations (4.7)–(4.10) involve three scalar velocity components
and one pressure field. In a nonlinear analysis, after truncating the Fourier expansions
(4.20), (4.21) at |n| 6 Nh, the equations (4.22)–(4.25) involve 3(2Nh + 1) velocity
components and 2Nh + 1 pressure components; note that the condition of real fields
implies that 2Nh + 1 complex components are completely described by 2Nh + 1
independent real components. Time marching of these incompressible Navier–Stokes
equations is carried out by a second-order accurate predictor–corrector fractional-step
method, derived from the implementations of Goda (1979) and Raspo et al. (2002),
where the velocity components are obtained at the intermediate time step by solving
Helmholtz-type problems, and Poisson-type problems yield the pressure predictions
and corrections required to enforce divergence-free velocity fields. Complete details
of the numerical method are given in Pier (2015, § A.6.3).

For each simulation, the numerical values of the Floquet multiplier µ and of the
associated frequency ω are derived by computing the ratios ui(x0,j, t + T)/ui(x0,j, t),
where i = 0, 1 or 2 and x0,j is any of the collocation points. It is then checked
that all these ratios converge to the same constant value and do not depend on the
phase with respect to the base-flow pulsation, with at least five significant digits.
Since the precision of these ratios is degraded when both the numerator and the
denominator approach very small values, a threshold has been set on the magnitude
of the denominator (typically 10−5) below which the ratio is not computed. The same
strategy has been adopted to produce table 1, but using longer time series than for
the rest of the paper in order to obtain the required highly converged numbers.

As mentioned in § 4.3, an external volume force f = −g1(t)e1 −g2(t)e2 is used
in the nonlinear governing equations in order to simulate evolution problems at
the prescribed instantaneous total flow rate of the base flow. The purpose of this
time-dependent spatially homogeneous body force, or pressure gradient, in the wall-
parallel directions is to ensure that the spatially invariant flow corrections u(0)(x0, t)
due to nonlinearities develop without modifying the base flow rate. In the numerical
implementation, the streamwise and spanwise flow-rate corrections q1(t) and q2(t),
defined in (4.27), (4.28), are driven to vanishing values by applying pressure gradient
values governed by

∂tg1 = q1

(
G(0)

τQ(0)

)
and ∂tg2 = q2

(
G(0)

τQ(0)

)
. (A 1a,b)

Using sufficiently small values of the relaxation time τ and solving (A 1) while time
marching (4.22)–(4.25) guarantees that the pressure gradients g1(t) and g2(t) constantly
adjust so as to suppress any departure from the base flow rate.

A.4. Validation
The accuracy of our numerical schemes has been assessed by comparison with known
results and by extensive resolution tests.

For steady Poiseuille configurations, the eigenvalues given by Schmid & Henningson
(2001, p. 504) have been reproduced to 8 significant digits both by solving the
corresponding eigenvalue problem and by linearized direct numerical simulations
(DNS); note that in these tables (Schmid & Henningson 2001, p. 504) the third
column corresponds to α = 0.25 and β = 2 instead of the mistakenly given β = 3.
The nonlinear time-marching procedure has been checked by reproducing the
Tollmien–Schlichting waves obtained by Ehrenstein & Koch (1991).
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Floquet N⋆
0 = 16 24

Nf = 4 0.77226176 + 0.01194734i 0.77241812 + 0.01208715i
8 0.78504147 + 0.00935444i 0.78521143 + 0.00945091i
12 0.78504178 + 0.00935423i 0.78521176 + 0.00945071i
16 0.78504178 + 0.00935423i 0.78521176 + 0.00945071i
20 0.78504178 + 0.00935423i 0.78521176 + 0.00945071i

N⋆
0 = 32 40

Nf = 4 0.77241825 + 0.01208730i 0.77241825 + 0.01208730i
8 0.78521144 + 0.00945111i 0.78521144 + 0.00945111i
12 0.78521178 + 0.00945092i 0.78521178 + 0.00945092i
16 0.78521178 + 0.00945092i 0.78521178 + 0.00945092i
20 0.78521178 + 0.00945092i 0.78521178 + 0.00945092i

DNS N⋆
0 = 16 24

Nt = 2 × 103 0.78591123 + 0.00945731i 0.78604254 + 0.00954315i
5 × 103 0.78520420 + 0.00933115i 0.78534476 + 0.00946264i
104 0.78508394 + 0.00929745i 0.78524509 + 0.00945350i
2 × 104 0.78504068 + 0.00928410i 0.78522016 + 0.00945137i
5 × 104 0.78501960 + 0.00927863i 0.78521309 + 0.00945070i
105 0.78501341 + 0.00927741i 0.78521196 + 0.00945057i
2 × 105 0.78501048 + 0.00927694i 0.78521160 + 0.00945057i
5 × 105 0.78500878 + 0.00927670i 0.78521146 + 0.00945061i

N⋆
0 = 32 40

Nt = 2 × 103 0.78604246 + 0.00954325i 0.78604246 + 0.00954326i
5 × 103 0.78534469 + 0.00946274i 0.78534468 + 0.00946274i
104 0.78524501 + 0.00945363i 0.78524501 + 0.00945363i
2 × 104 0.78522009 + 0.00945157i 0.78522009 + 0.00945157i
5 × 104 0.78521311 + 0.00945102i 0.78521311 + 0.00945102i
105 0.78521211 + 0.00945094i 0.78521211 + 0.00945094i
2 × 105 0.78521186 + 0.00945092i 0.78521186 + 0.00945092i
5 × 105 0.78521179 + 0.00945092i 0.78521179 + 0.00945092i

TABLE 1. Complex frequency ω of most unstable linear perturbation at Re = 10 000, Wo =
10, Q̃ = 0.1 and α1 = 2. Values computed by solving Floquet eigenproblem (truncated at
Nf Fourier components) and linearized DNS (with Nt time steps per pulsation period) for
different spatial resolutions.

For pulsating base flows, we have reproduced the growth rates shown in figure 1
of von Kerczek (1982) by computing data similar to those shown in our figure 5(b).
By modifying our codes to take into account oscillating boundaries, we have also
reproduced the data given in table 1 of Blennerhassett & Bassom (2006), albeit not
to 6 significant digits for all of them, and those more recently presented in figure 2b
of Thomas et al. (2011).

The validation of our numerical methods is further based on thorough resolution-
independence studies and, for the linear results, on the consistency between Floquet
analysis and linearized DNS.

Table 1 gives values of the complex frequency ω for the most unstable linear
perturbation at Re = 10 000, Wo = 10, Q̃ = 0.1 and α1 = 2. For a range of spatial
discretizations N⋆

0 = 16, 24, 32 and 40, the value of ω is computed by solving Floquet
eigenproblems using an increasing number Nf of Fourier modes for the eigenfunctions
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(a)

24

(b)

35

10

FIGURE 25. (Colour online) (a) Error in ω computed by linearized DNS with increasing
number Nt of time steps per pulsation period and N⋆

0 = 16, 24, 32, 40, 48. (b) Error in
perturbation energy computed by nonlinear DNS with increasing Nt and Nh = 2 (blue),
3, 4, . . . , 10 (red) at N⋆

0 = 56.

Nh = 4 N⋆
0 = 32 40 48 56

Nt = 2 × 104 0.0035969556 0.0035969659 0.0035969656 0.0035969656
5 × 104 0.0035965369 0.0035965454 0.0035965451 0.0035965451
105 0.0035964768 0.0035964830 0.0035964826 0.0035964826
2 × 105 0.0035964555 0.0035964615 0.0035964612 0.0035964612
5 × 105 0.0035964290 0.0035964511 0.0035964508 0.0035964508
106 0.0035964198 0.0035964480 0.0035964477 0.0035964477

Nh = 9 N⋆
0 = 32 40 48 56

Nt = 2 × 104 0.0035947566 0.0035945442 0.0035945398 0.0035945397
5 × 104 0.0035941373 0.0035938778 0.0035938737 0.0035938737
105 0.0035941337 0.0035937882 0.0035937844 0.0035937847
2 × 105 0.0035942881 0.0035937632 0.0035937600 0.0035937600
5 × 105 0.0035948005 0.0035937528 0.0035937513 0.0035937512
106 0.0035953686 0.0035937481 0.0035937493 0.0035937492

TABLE 2. Energy of fully developed nonlinear fluctuation at Re = 10 000, Wo = 10, Q̃ = 0.2
and α1 = 2. Values computed by DNS with Nt time steps per pulsation period, spatial
Fourier expansions truncated at |n| 6 Nh and using a range of resolutions in x0 coordinate.

and by linearized DNS using an increasing number Nt of time steps per base-flow
pulsation period. With both methods, it is found that eight significant digits are
achieved for N⋆

0 > 32. In this example, the eigenproblem is already very accurately
resolved with Nf > 12, and the temporal simulations reach the same precision with
Nt > 5 × 105. Note that these correspond to approximately Nt/20 time steps per
perturbation period since ωr/Ω ≃ 20 with Ω = 4Wo2/Re = 0.04. Figure 25(a) plots
the error of the values computed by DNS with respect to the converged Floquet
results and demonstrates the second-order convergence of the temporal integration
scheme; for N⋆

0 > 32, curves are indistinguishable in this log–log plot. In practice,
linearized simulations with Nt = 104 and N⋆

0 = 32 yield results of sufficient accuracy
over the entire parameter space considered here. In contrast, the number Nf of Fourier
modes required for convergence depends on Wo and increases significantly with Q̃ as
discussed in § 5.2.
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Table 2 gives values of the average perturbation energy in the fully developed
regime at Re = 10 000, Wo = 10, Q̃ = 0.2 and α1 = 2, obtained by DNS with up
to Nt = 106 time steps per pulsation period and different settings of Nh and N⋆

0 .
This configuration is discussed in detail in § 6.1.2. For nonlinear temporal evolution
problems, the resolution requirements to achieve a precision of 8 significant digits
are more difficult to meet since increasing the number Nh of spatial Fourier modes
also requires larger values of N⋆

0 to fully resolve these higher modes. Nonetheless,
figure 25(b), which plots the error with respect to the value computed at highest
resolution, shows that second-order convergence is still achieved for the nonlinear
simulations. For the parameter ranges considered in this paper, it has been found that
nonlinear simulations with Nt = 105, Nh = 7 and N⋆

0 = 48 are generally more than
enough to obtain reliable results and plots that do not change at higher resolutions.
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It is now established that subcritical mechanisms play a crucial role in the transition
to turbulence of nonrotating plane shear flows. The role of these mechanisms in rotating
channel flow is examined here in the linear and nonlinear stages. Distinct patterns of
behavior are found: the transient growth leading to nonlinearity at low rotation rates Ro, a
highly chaotic intermediate Ro regime, a localized weak chaos at higher Ro, and complete
stabilization of transient disturbances at very high Ro. At very low Ro, the transient growth
amplitudes are close to those for nonrotating flow, but Coriolis forces assert themselves by
producing distinct asymmetry about the channel centreline. Nonlinear processes are then
triggered, in a streak-breakdown mode of transition. The high Ro regimes do not show these
signatures; here the leading eigenmode emerges as dominant in the early stages. Elongated
structures plastered close to one wall are seen at higher rotation rates. Rotation is shown to
reduce nonnormality in the linear operator, in an indirect manifestation of Taylor-Proudman
effects. Although the critical Reynolds for exponential growth of instabilities is known to
vary a lot with rotation rate, we show that the energy critical Reynolds number is insensitive
to rotation rate. It is hoped that these findings will motivate experimental verification and
examination of other rotating flows in this light.

DOI: 10.1103/PhysRevFluids.2.083901

I. INTRODUCTION

Rotation of the system, in a number of flow situations, plays an important role in stability and
turbulence characteristics. Rotational effects are seen to influence the evolution of several flow
phenomena of practical interest ranging from engineering to geophysics. Atmospheric and oceanic
flows offer a myriad of not entirely understood phenomena, which are affected by Earth’s rotation
in addition to other physics [1,2]. In industrial situations, the modeling of rotational effects of
flows is a crucial aspect in the design procedure of several technologies: pumps and turbines, for
example [3].

The effect of rotation on shear flow instabilities is not immediately obvious, and it depends
largely on the strength of the rotation. Rotation introduces a body force which is a function
of space and time, and bears some analogy to density stratification. At high Ro, the flow is
expected to obey Taylor-Proudman behavior [4,5], by which variations parallel to the rotation
axis are strongly suppressed. In the manner of swirling flows, an inviscid criterion for instability
in parallel flows of the form U = [U (y),0,0], with the rotation vector � = (0,0,�) perpendicular
to the plane of the flow, was formulated by Bradshaw [6] and Pedley [7]. As per the criterion,
an instability can occur if at any point in the flow the absolute vorticity of the base flow and the
rotation vector are antiparallel. Subsequent studies have shown that this simple analogue of the
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Rayleigh criterion provides good predictions in many parallel flows even in the presence of viscous
effects [8–12].

One of the most commonly studied systems is the pressure-driven flow between two stationary,
parallel plates that is rotated about the spanwise coordinate, which is also the geometry of our
interest. This is an appealing system for investigation as it is a simple rotating shear flow which
offers regions that are both stable and unstable as per the inviscid criterion given above. Henceforth,
this system will be referred to simply as rotating channel flow. This flow is characterized by two
parameters, the Reynolds number Re = U0d/ν and the rotation number Ro = �d/U0, where U0 is
the centerline velocity in the channel, d is its half-width, � is the rotation rate, and ν is the kinematic
viscosity of the fluid.

It was found experimentally that the critical Reynolds number Recr , below which no exponential
instabilities exist, may be up to two orders magnitude lower than that of a nonrotating channel
[8,11]. This critical Reynolds number shows a nonmonotonic variation with the strength of rotation
and is very sensitive to it. Just past Recr , the first unstable mode corresponds to a stationary
streamwise-invariant disturbance. As we move further into the unstable part of the parameter space,
we may find oblique modes that have growth rates comparable to the streamwise-invariant mode
[13]. At high Ro, Taylor-Proudman behavior sets in and these streamwise-invariant rotation modes
are suppressed. The two-dimensional spanwise-invariant Tollmien-Schlichting (TS) mode can be
triggered even for values of Re above the critical value 5772 for nonrotating channels [14,15]. But in
the regime where both the TS mode and the rotation mode are present, the rotation mode is expected
to win over due to a much larger growth rate [13].

Secondary instabilities of the traveling wave type with short and long wavelengths which
eventually broke down to turbulence had been observed in experiments [11]. Merging and splitting
of vortex pairs through a nonlinear wavelength selection process was also seen. These types of
motions were further confirmed by numerical studies [16–18]. Matsubara and Alfredsson attribute
the secondary instability to the spanwise inflectional profile resulting from the saturation of the
primary disturbance [19]. The existence of secondary and tertiary saturated solutions of rotating
shear flows has also been investigated [13,20,21]. The turbulent rotating channel flow has been
studied extensively for a wide range of Reynolds numbers through experiments and simulations
[9,22–25].

For the rotating channel flow, the effect of nonmodal (algebraic) growth of disturbances has
not been previously investigated to our knowledge, despite extensive studies on instabilities and
turbulence in the system. In a different geometry, namely on the rotating asymptotic suction
boundary layer, transient growth effects were studied [26]. The effect of subcritical mechanisms
in nonmagnetized accretion disks modeled as plane shear flows with rotation have been studied
[27–29]. Given that it has been firmly established that subcritical linear processes arising from
nonmodal dynamics play a pivotal role in determining the conditions of transition to turbulence in a
variety of shear flows [30,31], it is important to ask how rotation will modify the role of nonmodal
dynamics.

In some range of rotation numbers, the critical Reynolds number is very low and exponential
growth of instabilities may be expected to dominate. However, given that the rotation number is
independent of the Reynolds number and that the critical Reynolds number is a sensitive function of
Ro, it is necessary to investigate algebraic growth in the modally stable region of the Re-Ro plane.
Second, in the unstable region as well, algebraic growth can affect the transition process in spite of
coexisting exponential modes of growth. In this article, we seek to characterize the role played by
algebraically growing disturbances in different rotation regimes, modally stable and unstable, within
the purview of the transition processes.

II. SYSTEM

Our system, consisting of a pressure driven flow between parallel fixed walls, is subjected to
rotation about the spanwise direction with a constant angular velocity � = (0,0,�) (Fig. 1). For the
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FIG. 1. The rotating channel, with a parabolic streamwise velocity (U = 1 − y2) and a rotation rate �

about the spanwise coordinate.

purposes of the analysis to follow, we consider the two parallel walls to extend infinitely; i.e., there
are no end walls. It is also convenient to work in a frame of reference that is rotating along with
the channel. Then the governing equations for the velocity u∗ = (u∗,v∗,w∗) and pressure p∗ are the
incompressible Navier-Stokes equations in the rotating frame given by

∂t∗ u∗ + u∗ · ∇∗u∗ = − 1

ρ
∇∗p∗ + ν�∗u∗ − 2� × u∗, (1)

∇∗ · u∗ = 0. (2)

Here ρ is constant density of the fluid. The centrifugal force has been absorbed into the pressure term.
With U0 and d as the velocity and length scales respectively, the Reynolds and rotation numbers
as defined in the previous section, and ẑ being the unit vector along the spanwise coordinate, the
governing equations in the nondimensional form are as follows:

∂t u + u · ∇u = −∇p + 1

Re
�u − 2Ro ẑ × u, (3)

∇ · u = 0. (4)

When the effects of the end walls are neglected, the base flow adopts a parabolic streamwise
velocity profile U = (1 − y2) [10]. Note that we use uppercase to denote base flow. The transverse
and wall-normal velocity components are zero. In a real system with end walls, a secondary flow in
the form of a double vortex is set up [32]. As is standard for rotating flows, a mean pressure gradient
is sustained in the wall-normal direction y, balancing Coriolis forces, and may be obtained from
Eq. (3) as

∂yP = −2URo. (5)

Tritton and Davies [33], using an elegant displaced particle argument, describe the instability
mechanism in rotating plane shear flows in terms of the imbalance of centrifugal force and force
due to this wall-normal pressure gradient. Their argument recovers the inviscid criterion derived
by Bradshaw [6] and Pedley [7]. In nondimensionalized form, the criterion for instability has the
following form:

φ(y) = 2Ro

(
−∂U

∂y
+ 2Ro

)
< 0. (6)

Examining our system in this context, we see that for a given sense of rotation, one side of the
channel is inviscidly stable and the other is unstable. Since we have a base flow which is symmetric
about the centerline, if the sense of rotation were to be reversed, we would merely have a switch in
which side is unstable, and all results would merely be mirror images. We therefore fix our rotation
to be anticyclonic, i.e., Ro > 0. However, we caution that for asymmetric shear flows, positive and
negative Ro would need to be studied separately [26,33,34].
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III. LINEAR ANALYSIS

A. Governing equations and methodology

On introducing perturbations that are nominally small compared to the base state quantities,
and by linearizing the governing equations, we can study linear stability characteristics of the base
flow. In the current setting where the channel extends infinitely in the streamwise and the spanwise
directions, we can consider the disturbances to be periodic in these directions with a specific
wavenumber k = (α,β), with α the streamwise wavenumber and β the spanwise wavenumber, so
disturbances take on the form f = f̂ (y,t)ei(αx+βz). In terms of the wall-normal velocity disturbance
[v = v̂(y,t)ei(αx+βz)] and the wall-normal vorticity disturbance [η = η̂(y,t)ei(αx+βz)], the resulting
system of linear equations is

∂ q̂
∂t

= Lq̂, q̂(t = 0) = q̂
0
, (7)

where q̂ =
[
v̂

η̂

]
, and L =

[
D2 − k2 0

0 1

]−1[
Los −2iRoβ

−iβU ′ + 2iRoβ Lsq

]
.

Here D(.) = ∂(.)/∂y, a prime denotes d(.)/dy, and k2 = α2 + β2. LOS and LSQ are the Orr-
Sommerfeld and Squire operators given by

LOS = iαU ′′ − iαU (D2 − k2) + 1

Re
(D2 − k2)2, (8)

LSQ = −iαU + 1

Re
(D2 − k2). (9)

The perturbation pressure can then be obtained as the solution of a Poisson equation. The boundary
conditions for the above system of equations are

v̂(±1,t) = Dv̂(±1,t) = η̂(±1,t) = 0. (10)

For the rest of the article, we simply refer to wall-normal components of velocity and vorticity as
normal components unless suggested otherwise.

If the spectrum of the linearized operator L in Eq. (7) contains an eigenvalue with a positive real
part, then there is an exponentially growing mode that causes the base flow to transition to another
state. If there is no such growing eigenmode, we may conclude that the flow is asymptotically stable.
In the present system, exponential instabilities are known to set in fairly low values of Re.

The linearized problem governed by Eq. (7) may also be addressed as an initial value problem
with a view of finding the initial condition that maximizes an objective functional, i.e., in this case
the disturbance kinetic energy [30]. The maximum possible gain at a given time G(t) and its global
maximum Gmax can be defined for a set of fixed values of parameters Re and Ro as follows:

G(t ; α,β) = sup
q̂

0

||q̂(t)||2

E

||q̂
0
||2

E

and Gmax = sup
t�0,α,β

G(t ; α,β). (11)

The disturbance kinetic energy norm that is to be maximized is defined in terms of the normal
velocity v and normal vorticity η as

||q̂(t)||2

E
= 1

2k2

∫ 1

−1
q̂H (t)

[
k2 − D2 0

0 1

]
q̂(t)dy. (12)

For a given Re and Ro, the streamwise wavenumber α, spanwise wavenumber β, and time t that
yield Gmax are said to be optimal for maximizing the disturbance energy. These values are denoted
as the optimal streamwise wavenumber αopt, optimal spanwise wavenumber βopt, and optimal time
Topt.
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FIG. 2. The stability boundaries as per the energy and the eigenvalue methods.

For obtaining the optimal initial condition, the eigenvectors of the linearized operators can be
used as a basis as they are complete in the present bounded geometry [35]. Upon inspecting the
pseudospectra of the linearized operator, we find that a resolution of N = 65 Chebyshev collocation
points in the normal direction is sufficient to form a complete basis of eigenvectors. Calculations
performed with N = 81 or 121 produce the same result up to at least nine decimal places. Defining
� as the diagonal matrix consisting of eigenvalues of the operator L, and q̃ as the corresponding
set of eigenvectors of L, we may express solutions of Eq. (7) in variable separable form as

q̂(y,t) = q̃(y)k(t). (13)

This allows us to deal with a computationally simpler problem as we now have k(t) = e�t k(0).
Eigenfunctions which decay extremely rapidly have no consequence to the evolution of the transient
disturbance and may be ignored. We choose a decay rate of −3 as the cutoff and find disturbances
that are linear combinations of eigenfunctions with slower decay rate.

The computations were performed in MATLAB. Our code uses a differentiation suite for the
Chebyshev grid developed by Weideman and Reddy [36]. The objective functional was maximized
by using the MATLAB generic nonlinear constrained optimization package FMINCON. The code has
been validated by confirming the eigenspectra for the nonrotating channel flow at Re = 2000 up to
eight significant digits (Appendix A.7 in Ref. [30]).

B. Stability boundaries

The stability of a flow to small perturbations may be determined by either modal analysis or from
the point of growth of perturbation energy. As mentioned earlier, the asymptotic stability of the flow
is determined by the spectrum of the linearized operator. If the energy of any small disturbance
decays monotonically for all time, then the flow is considered to be stable from an energy point of
view. A flow which is asymptotically stable but not energy stable may display a transiently growing
feature, which, but for nonlinear effects, will eventually decay [37]. This growth of disturbances
can sometimes be sufficient to trigger nonlinearities, in which case the flow need not return to the
initial base state. In shear flows, typically there is a stark difference in the critical Reynolds numbers
obtained by the two measures. This is due to the nonnormal nature of the linearized operator L.

We denote the critical Reynolds number, below which no disturbance mode grows exponentially,
as RecrM (where M stands for modal), and the energy critical Reynolds number as RecrE , above
which Gmax first exceeds 1. In Fig. 2, we show how these critical values vary with the Ro. It can
be seen that RecrM obtained by modal analysis is highly sensitive to the rotation rate. Lezius and
Johnston [10] first accurately derived the modal neutral curve by noting the analogy of the present
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FIG. 3. The Gmax contours for Re = 250 for different Ro. The optimal parameters are (a) Topt = 18.72,
αopt = 0.0, βopt = 2.05, Gmax = 12.64; (b) Topt = 4.85, αopt = 2.00, βopt = 0.36, Gmax = 2.52.

problem to the flow between two rotating cylinders in the narrow gap limit. The mode corresponding
to the marginal state is seen to be streamwise independent. When the rotation rate is low, the spanwise
wavenumber of the critical mode is around 2. As the rotation rate is increased, the corresponding
critical mode has larger spanwise wavenumbers.

From Fig. 2, we see that RecrE is far less sensitive to changes in the rotation rate; it changes
from 51.43 to 41.16 over three decades of magnitude of Ro. In configurations between the neutral
curves obtained by the two methods, disturbances may grow in energy for some time by a linear
mechanism. We shall discuss the role of algebraic disturbances in the region in parameter space
above the energy critical Reynolds number. It is also to be noted that the energy critical Reynolds
numbers obtained for low rotation rates are close to 49.60, a value obtained by Joseph and Carmi
[38] for the nonrotating channel flow (also see Ref. [37]).

C. Modally stable regime

We next study the transient growth characteristics in different regions of the Re-Ro parameter
space where exponential instabilities are absent. In Fig. 3 we demonstrate by a typical example that
transient growth is qualitatively different to the left and to the right of the neutral stability boundary.
For a fixed Re (=250), the figure shows contours of Gmax for representative low and high rotation
rates. The Ro = 0.001 case is not markedly different from the corresponding results for a stationary
channel at this Reynolds number. There, too, the disturbances that yield the largest growths are
streamwise invariant [39]. They form rolls that evolve into streaks as a consequence of the vortex
tilting lift-up mechanism [40]. On the other hand, at Ro = 0.8, the optimal disturbances are almost
aligned along streamwise direction with a very small dependence on the spanwise coordinate. This
suggests that the Orr mechanism is likely to be the more dominant energy amplification mechanism
[41]. It may be noticed that the maximum achievable algebraic growth is lower when compared to
the situation at low Ro.

In Fig. 4, we show level curves of Gmax in the Re-Ro plane (outside the linearly unstable region).
Two findings are immediately apparent. As in the example above, transient growth levels are much
smaller everywhere on the right of the neutral boundary as compared to a corresponding Reynolds
number on the left. Second, on a given side of the neutral boundary, Gmax depends primarily on Re

and is rather insensitive to changes in Ro. We can gain insight into these observations by examining
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FIG. 4. Level curves of Gmax are given. For low Ro, the behavior resembles that of the optimal disturbances
of the nonrotating channel. A large drop in the amplification levels is seen at high Ro.

the different sources of nonnormality in the linearized equations [Eq. (7)]. The strength of the rotation
then determines which of the sources of nonnormality will emerge stronger.

The major source of nonnormality is the forcing due to the normal velocity v̂ in the normal
vorticity equation, and it is this term that is responsible for the lift-up mechanism. An examination
of the structure of the stability operator makes it evident that, at a given β, the departure from
normality due to these operators decreases as the rotation rate increases. As in the nonrotating case,
the largest amplifications are seen for disturbances that are streamwise independent at low rotation
rates. For low rotation rates, the terms involving Ro serve to act as small corrections to the linearized
operator. Hence, the growth in disturbance energies is similar to the growth seen in the nonrotating
case. This translates to the lack of the dependence on Ro of Gmax in the low rotation regime in Fig. 4.

The other source of nonnormality in the linearized equations is that the Orr-Sommerfeld operator
LOS itself is not self-adjoint. This gives rise to a much weaker transient growth in two dimensions,
which is completely independent of the rotation rate. As the rotation rate is increased, consistent with
Taylor-Proudman arguments, the motion of the fluid is restricted to the plane perpendicular to the
rotation axis. Thus, while disturbances favoring the lift-up mechanism are suppressed strongly, the
disturbances amplified by Orr mechanism can still be excited at higher rotation rates. Disturbances
initially having spanwise variation rapidly evolve to become two-dimensional with no flow along the
axis of rotation. Thus the optimal disturbances in this regime evolve transiently only due to the Orr
mechanism; i.e., βopt = 0. Evidence of the Orr mechanism leading to the largest amplifications can
be seen in Fig. 4 at high Ro, where the level curves become horizontal and thus display insensitivity
to the rotation rate.

In Fig. 5, we have plotted the Gmax for specific values of Ro in different rotation regimes as a
function of Re. The values obtained at higher Ro are shown to be at times an order of magnitude
lower than for a small Ro for a given Re. It is seen here as well that Gmax does not vary too much
as the Ro is varied in different rotation regimes for large ranges of Re. At low rotation rates, as long
as Re is not sufficiently close to the critical value at given Ro, the energy amplification obtained is
found to obey the scaling laws due to Gustavsson’s results [42] as the different curves coincide. It
can be seen that for Ro = 2.5 × 10−4, as we increase Re, deviations from the Ro = 0 curve start to
appear. This is a result of the values of Re approaching the neutral boundary. Thus, it would be of
interest to examine the regions close to the stability boundary in more detail.

In the high-rotation-rate modally stable regime, very close to the stability boundary, it can be
seen in Fig. 4 that the level curves rise very slightly with Ro. This implies that the value of Re which
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FIG. 5. A contrast between maximum transient energy growth at high and low rotation numbers.

yields a given energy growth increases with the rotation rate. It is important to note that if β were
to be identically zero, there would be no effect of the rotation on transient growth, since Ro would
completely drop out of Eq. (7) (Ro appears in the linearized equation only in the form βRo). The
independence of the Orr mechanism on rotation was also demonstrated for the rotating Couette flow
in the thesis of Daly [43]. Thus, the level curves not being perfectly horizontal near the stability
boundary implies an oblique optimal structure; i.e., βopt �= 0. As we move to a region in Re-Ro

parameter space further away from the stability boundary, the optimal amplification corresponds to
that of the disturbance best amplified by the Orr mechanism at a given Re as the spanwise variation
is suppressed, consistent with Taylor-Proudman theory.

As we approach the neutral stability curve from the low Ro side, we see in Fig. 4 that the level
curves of Gmax noticeably dip toward a lower Re. This means that for a fixed Re, we have an increase
in Gmax as we approach the stability boundary. The typical behavior of optimal growth with Ro (for
Re = 1000) is shown in Fig. 6. The corresponding time at which this optimal growth is attained is
also shown. The first modes that go linearly unstable are streamwise independent. The least stable
modes have smaller decay rates as we approach the neutral boundary from the left, and hence the
time before the modes individually decay is slightly longer. This allows for the lift-up effect to
persist for a slightly longer time.

As mentioned earlier, the optimal structures obtained at low rotation rates are streamwise rolls
that develop into streaks. This is similar to the nonrotating case in the sense that streaks are formed.
However, due to the additional Coriolis force, the streaks are not symmetric about the centerline,
with one side of the channel displaying a stronger streak than the other. This feature is more
pronounced close to the stability boundary. Figure 7 shows the optimal structure for a typical low
rotation (Ro = 0.0002) and compares this to the nonrotating case. The velocities in the two cases
are comparable.

The optimal disturbance is given in Fig. 8 for Re = 1000 and Ro = 0.8. We can see that the
rotation does not bias the occurrence of a secondary disturbance velocity toward any particular wall
despite the high rotation rates. The strong rotation does little to alter the features of a flow that is
largely confined to the plane normal to the rotational axis, i.e., the x-y plane. Hence, disturbances
may evolve by the Orr mechanism unhindered by the rotation.

D. Modally unstable regime

If there exists an exponentially growing linear mode for a given wavenumber vector, then an
optimal analysis to determine the maximum amplification attainable over all time would not yield a
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FIG. 6. Optimal growth Gmax and optimal time Topt when the neutral boundary is approached with Re =
1000.

finite value. Does this mean transient growth is inconsequential here? That remains to be verified.
For the nonrotating channel flow, it was shown that algebraic growth can raise the energy of the
disturbance before exponential instability definitively takes over the dynamics [39].

As the parameter space to be explored is vast, we shall limit our analysis to Re = 1500 and
some typical values of Ro where unstable modes exist; we have verified that our findings below are
valid over a range of Re. The same set of pairs of Re and Ro have also been used for nonlinear
analysis using direct numerical simulations; the results will be presented in the next section. Hence,
the discussion presented in this subsection will provide the necessary context for the results from
the nonlinear simulations.

1. Modal instabilities

As we are considering parameters within the unstable regime, it would be instructive to see what
region in wavenumber space modal instabilities exist. In Fig. 9(a), the curves represent the neutral
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FIG. 7. The optimal structures for Re = 1000 for low Ro (a), and for the nonrotating case (b), at the
optimal times. The contours depict the magnitude of the streamwise velocity component. The velocity field
(v,w) are expressed through the vectors. The optimal parameters are (a) Topt = 90.27, αopt = 0, βopt = 2.10,
Gmax = 214.05; (b) Topt = 75.68, αopt = 0, βopt = 2.04, Gmax = 196.17.
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FIG. 8. The velocity components of the optimal disturbance at the optimal time when Ro = 0.8 and
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optimal parameters are Topt = 8.52, αopt = 1.75, βopt = 0.169, and Gmax = 11.03.

boundaries in the α-β plane for different Ro when Re = 1500. The wavenumber space bounded by
each curve and the α = 0 axis are the modally unstable regions for the given rotation rate. Thus,
the introduction of rotation brings in a large class of instabilities that was absent in the case of the
nonrotating channel flow.

The largest growth rates correspond to modes that are streamwise independent. In Fig. 9(b), we
show the exponential growth rate of the least stable streamwise-independent mode as a function of
the spanwise wavenumber for different rotation rates; the growth rate is given by the real part of
the eigenvalue (λr ). The growth rate associated with these unstable modes are large when compared
to that of the Tollmien-Schlichting mode in the nonrotating channel. The spanwise wavenumber
corresponding to the most unstable of these streamwise-independent modes does not remain constant;
at larger rotation rates, the spanwise wavenumber of the most unstable mode increases. The observed
trend is consistent with what is observed for the marginally stable modes along the neutral curve as
the rotation rate is increased.
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FIG. 9. Re = 1500. (a) The marginal stability curves for various Ro. (b) The exponential growth rate λr of
the least stable mode (with α = 0) as a function of β for various Ro.
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2. Transient analysis

We turn our attention back to the issue of characterizing algebraic growth mechanisms. As we
are dealing with cases within the linearly unstable regime, we have to examine the extent of the role
played by the unstable mode during the evolution of the disturbance. Now for a given rotation rate,
we shall denote the most unstable eigenmode as q̂u. We shall analyze the evolution of the initial
perturbation for different rotation rates in the linearized setting governed by Eq. (7). q̂(t) denotes
the disturbance state vector at different times during the linear evolution of the perturbation. At this
juncture, for every time, we define a vector p̂(t) that is obtained by normalizing q̂(t) to have unit
kinetic energy as per Eq. (12). Thus, for p̂(t), we simply have

p̂(t) = q̂(t)

||q̂(t)||
E

. (14)

To see if q̂(t) is indeed coincident with the unstable mode q̂u, we now take advantage of Eq. (12)
and define a new quantity M as

M(t) = 1

2k2

∫ 1

−1
p̂H (t)

[
k2 − D2 0

0 1

]
q̂u dy. (15)

We can interpret M simply as a measure of the projection of the disturbance onto the unstable
eigenmode. When M = 1, the disturbance has evolved such that it exactly coincides with the
unstable eigenmode. It follows that M will remain at 1 for all subsequent times after this point while
the system behaves linearly.

We have already noted the limitations of doing a linear optimal perturbation analysis within
unstable regime. However, our aim is to maximize growth at early times, so by specifying a target
time Ttar, we can find the best possible initial condition with a particular wavenumber that maximizes
the gain [given by Eq. (12)] obtained at that particular time; we denote this gain as Gopt,t. On obtaining
the optimal initial conditions, we can find the extent of coincidence between the disturbance and
the unstable mode at the initial and optimal times using Eq. (15). In addition to fixing Re at 1500,
we shall also restrict the subsequent discussion to results for disturbances with wavenumber vector
k = (0,2). The results do not qualitatively change on varying Re and the disturbance wavenumbers
within the modally unstable regime, and do not have a bearing on the overall conclusions.

In Fig. 10, we have plotted the maximum gain Gopt,t obtained and the corresponding projection
measures at different rotation rates for a range of values of Ttar. For a comparison, we also plot the
gain had the initial condition been the unstable mode; this gain is given by Guns,t. We see that the
maximum gain due to introduction of the optimal disturbances is greater than the corresponding
gain seen when the unstable mode is used as the initial condition for all choices of the target time.
In other words, if the initial conditions are the optimal ones, we get an initial spurt in disturbance
kinetic energy followed by exponential growth, so the total disturbance kinetic energy is greater with
algebraic growth than without. It is also telling that the unstable mode is never seen to be the optimal
initial condition. This is a direct consequence of the nonnormal nature of the linearized operator. In
the evolution of these optimals, the initial evolution is algebraic and this elevates the energy of the
unstable mode that will continue evolving as per its associated growth rate after the other modes
die out.

At this point, we can define a quantity Ga/e as follows:

Ga/e(t) = Gopt,t

Guns,t
. (16)

Going back to Fig. 10, we see that beyond a certain target time (τ ∗), the Gopt,t and Guns,t are directly
proportional to each other. This suggests that the ratio Ga/e is a constant (G∗) for all target times
larger than this threshold value. This “saturated” ratio can serve as a measure of the nonmodal growth
as it indicates the extent to which the energy of the unstable mode is enhanced by initial algebraic
growth.
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(c) Ro = 0.02

FIG. 10. The gains Gopt,t and Guns,t, and the projection measures M when Ttar is varied for different rotation
rates. Re = 1500, α = 0, and β = 2.

We plot G∗ and τ ∗ as a function of the rotation number Ro in Fig. 11. The values of G∗ cover a
wide range and are seen to be nonmonotonic in Ro. The lowest values of G∗ [∼O(1)] are obtained
when we are well away from the neutral stability boundary on both the low and high rotation portion
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FIG. 11. (a) G∗ and (b) τ ∗ at different Ro. Re = 1500, α = 0, and β = 2.
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FIG. 12. The evolution of the projection measure M defined in Eq. (15) for different rotation rates.
Re = 1500, α = 0, and β = 2.

of the Re-Ro phase space. This is consistent with the fact that exponential instabilities in this range
of Ro are readily excited. On the other hand, there is also a significant window in the low rotation
range (nearly two decades of values of Ro), where Gopt,t and Guns,t differ by well over an order of
magnitude.

We estimate by τ ∗ the time at which the disturbance evolution is taken over by the unstable
mode, which then drives the dynamics entirely. When the rotation rate is increased, i.e., when we go
further into the linearly unstable regime, the time period before the unstable mode takes over and the
dynamics becomes shorter. As our interest is in the relevance of algebraic growth, we see a range
of Ro for which τ ∗ is not too small. This essentially suggests a window for the different nonnormal
modes to interact with each other to produce a transient phenomenon. From the trends observed,
for this set of rotation rates, there is a strong suggestion that nonmodal mechanisms are capable of
playing a role in the transition process.

Thus far, the discussion involved finding an optimal perturbation for each value of the rotation
rate while specifying a target time. We can also compare the extent to which the algebraic growth
is prevalent at different Ro by fixing the initial condition. A suitable initial condition for the present
study would be one that would evolve transiently in the absence of rotation. Once again with
Re = 1500 and k = (0,2), we choose the optimal perturbation when Ro = 1 × 10−4 as our initial
condition; Ro = 1 × 10−4 belongs the modally stable region of Re-Ro phase plane, and therefore
there is no trouble evaluating the optimal perturbation over all time. The method used here ties in with
the conditions under which the nonlinear simulations discussed in the next section were performed.

We will start by examining when the values of Ro are small. So now we examine the projection
measure M defined by Eq. (15) for the two rotation rates that fall in the linearly unstable regime.
We see in Fig. 12(a) at later times M = 1, indicating that the disturbance has come to comprise
the unstable mode alone. During the early stages of the evolution, the secondary flow evolves in a
manner to form streaks in the flow as is in the nonrotating channel flow. At higher rotation rates, the
unstable mode is excited relatively quickly as can be surmised from Fig. 12(b), where the projection
measure M [Eq. (15)] is plotted. Therefore, at higher rotation rates, the initial condition serves as a
background out of which the unstable mode emerges.

The measures of G∗, τ ∗, and M calculated in this section offer some preliminary insight what
might transpire in the transition picture for different Ro. For a more complete picture, we now turn
our attention to results obtained from nonlinear simulations.

IV. NONLINEAR SIMULATIONS

In cases where a modal perturbation grows exponentially, or where transient growth is large, a
nonlinear study is imperative to understand the next stage of evolution. We carry this out by direct
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numerical simulations of the three-dimensional Navier-Stokes equations in this flow, to characterize
the transition to a new (steady or unsteady) state of the channel flow at different rotation rates.
As discussed above, the rotational channel flow is a well-studied problem from both numerical and
experimental points of view. In these studies, typically transitions away from the parabolic profile are
achieved by the introduction of noise at a sufficiently high level such that instabilities are triggered,
and the flow is allowed to evolve nonlinearly [18,44]. These studies were interested in the linearly
unstable regime. In the present, we discuss results from nonlinear simulations with a wide range of
Ro, encompassing both regimes that are modally stable and those that are unstable. To make the
discussion simpler, we present results at a Reynolds number of 1500, deeming them to be typical of
the simulations we have carried out at other Reynolds numbers.

A. Methodology

The simulations were performed using the SIMSON code developed by KTH Mechanics,
Stockholm [45]. A pseudospectral method is employed with Fourier expansions in the streamwise
and spanwise directions, and a Chebyshev discretization is employed in the normal direction.
For the results to follow, the horizontal directions are discretized using 64 Fourier modes each,
and 81 Chebyshev polynomials are used for discretizing the normal coordinate. A second-order
Crank-Nicolson scheme was used to discretize the linear terms, and the nonlinear terms were
discretized by a four-stage Runge-Kutta (RK3) scheme. Periodic boundary conditions are used in
the streamwise and spanwise directions, and at the walls, no slip and no penetration are imposed. In
addition, all the simulations are performed with the mass flux through the channel kept fixed.

For validating the code, we imposed the least stable eigenmode as the initial condition at a very
low amplitude (10−6 times the centerline base velocity) and found that the disturbance growth rates
agrees with those predicted by linear stability theory for both the rotating and the nonrotating channel
flows. For the rotating case, where the flow has undergone transition, we also verified that the total
shear stress (sum of viscous and Reynolds stresses) varies linearly with the normal coordinate. The
code has also previously been employed for numerous studies with the plane channel flow geometry
(see Chevalier et al. [45]).

Here we wish to specify initial conditions that are favorable for algebraic evolution of the
secondary flow. When the rotation rates are low, a streamwise independent initial disturbance is
likely to grow transiently. Within the unstable regime as well, it was shown in the previous section
that there is scope for algebraic amplification before the unstable modes dominates. For all the
results here we fix Re = 1500, a value where subcritical transition was previously observed in the
nonrotating case [46]. The main results to follow are obtained with the optimal disturbance with
wavenumber vector k = (α,β) = (0,2) for Ro = 10−4 provided as the initial condition. Within the
regime of linear instability, we continue to use these initial conditions.

The computational box employed for all the cases is xl × yl × zl = 2π × 2 × 2π . Since our
interest here is largely on the period leading up to transition, this is sufficient. However, it is
to be noted that when one is interested in finding secondary instabilities (of twisting and wavy
types), a much larger extent in the streamwise direction is desired [18]. We have ascertained that
the short-time evolution of the flow varies insignificantly upon changing the streamwise extent
of the computational domain. The computational box measures two wavelengths of the perturbation
in the spanwise coordinate.

The initial kinetic energy has an amplitude of 25 × 10−6 per box of size 1 wavelength of the
disturbance in both streamwise and spanwise directions. In case of a zero wavenumber in either
direction, an arbitrary length is fixed in that direction to define the box. The initial amplitude chosen
is the lowest that leads to transition in the nonrotating case, and this is in agreement with the threshold
values obtained in previous studies [46]. For cases that fall within the linearly unstable regime, we
can also start with lower initial perturbation energy.

Particular care must be taken when the initial perturbation is streamwise independent, since these
perturbations, through the nonlinear term in the governing equation, would act to excite only higher
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FIG. 13. The nonlinear simulations presented here are for the parameter values denoted by the symbols.
Re is fixed at 1500.

harmonics of the initial spanwise wavenumber while remaining independent of the streamwise
coordinate. In order to excite other streamwise spatial frequencies, we also introduce noise at a very
low level at the start of the simulation [30,46]. The noise is introduced in the form of Stokes modes
for a few nonzero streamwise wavenumbers. The total energy content of the noise is prescribed to be
half a percent of that of the optimal perturbation, which ensures that noise is not the dominant factor
in the dynamics and serves to trigger secondary instabilities. We have verified that the flow does not
undergo transition to a new state when noise alone is introduced. The noise is added primarily to
excite secondary instabilities.

The rotation rate is varied across some decades of Ro to clearly elucidate what happens in
different regimes. In Fig. 13, we show the different cases considered and where they lie in the
Re-Ro space with respect to the neutral stability boundary. The lowest Ro we choose is 1 × 10−7,
and this practically corresponds to the nonrotating case. On the low rotation side, we also study
Ro = 1 × 10−4, which is just outside the stability boundary. Within the region where exponential
instabilities may occur, we choose several points. The highest Ro we study is 0.9, which does
not yield exponentially growing disturbances at Re = 1500; i.e., it lies to the right of the stability
boundary. For ease of discussion, we shall refer to cases with Ro � 0.003 as low rotation cases and
to higher Ro as high rotation cases.

To get a measure of whether the transitioned flow is chaotic, we define an entropy Q as follows:

Q = 1

2xlzl

∫
box

[ωx(x,y,z,τ + �t) − ωx(x,y,z,τ )]2 dx, (17)

where xl and zl are the streamwise and spanwise lengths of the box, and 2xlzl is the volume of the
periodic box. Streaks that have evolved from streamwise vortices have been seen as precursors to
the transition process in several shear flows [47,48]. Hence, we define Q based on the streamwise
vorticity, as this gives us a picture of the fluid motion in the y-z. A similar approach had been
employed by previously to quantify chaotic motion due to a flow past an inline oscillating cylinder
[49]. On defining Q by using other vorticity or velocity components, qualitatively similar results
are obtained. We choose the reference time τ to be later than the time at which the initial transient
behavior dies down. At �t = 0, we have Q = 0. In a strictly periodic flow with period T , Q will
return to zero when �t = nT , where n is any positive integer.

In Table I, we have specified that the growth rates of the least stable eigenmodes with wavenumber
vector k = (α,β) = (0,2) when Re = 1500 to serve as a reference.
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TABLE I. The exponential growth rates of the least stable mode with k = (α,β) = (0,2) when Re = 1500
at different rotation rates.

Ro Growth rate Ro Growth rate Ro Growth rate

1 × 10−7 −0.00431158 0.003 0.03165619 0.5 0.19551277
1 × 10−4 −0.00087845 0.02 0.09718189 0.7 0.05017800
3 × 10−4 0.00398466 0.2 0.25758712 0.9 −0.01717999

B. Nonlinear results: Low rotation rates

To start off, we shall first consider the cases where the rotation rates are small. As a measure
of transition, we examine the time evolution of the root mean square (rms) values of the different
components of the velocity for all the cases. For all the cases, there is an initial period where there
is transient amplification of the disturbance. Several wavenumbers then start to gain energy (not
shown) through the nonlinear terms aided by the initial noise. The transient amplification seen at
early times is then inhibited by nonlinear effects. For both low and high rotation cases, we seek
to describe the flow characteristics well after the initial transients have run their course, and the
resulting flow is fully nonlinear.

It can be seen in Fig. 14 that the rms values of the streamwise velocity u settle within a range of
amplitudes not very dependent on the rotation rate. A transient spurt in rms values of the various
velocity components is followed by a settling down into a time-dependent state at a lower mean
energy level than the maximum transient. In this state, the rms values show an apparently chaotic
signal for all the cases with similar time-averaged behavior. The observations when other components
of the velocity are considered offer similar trends. We emphasize that this is the case regardless of
the fact that some of the configurations here (Ro = 3 × 10−4, 0.003) can support exponential
instabilities. We also show in Fig. 14(b) that the initial evolution of the secondary flow appears to
be similar while the nonlinear terms have not fully come into play. Departures from this type of
behavior are seen when the rotation rate is increased. This prepares us for pronouncedly different
behavior at high rotation rates.

The rms values do not, however, tell us about where the secondary flow is set up and what the
dominant structures are. The linear stability results lead us to expect that the Coriolis force biases
the flow toward stronger secondary flow near the high-pressure side of the channel. In Fig. 15, we
show vortex core regions identified by use of the λ2 criterion [50]. λ2 is the second eigenvalue of the
tensor S2 + R2, where S is the strain rate tensor and R is the antisymmetric part of the velocity
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FIG. 14. (a) Evolution of root mean square (rms) values of the streamwise velocity component. (b) A
magnified portion of panel (a) highlighting the early stages of the evolution of the secondary flow.
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FIG. 15. The isocontours of constant λ2 = −0.05 at various rotation rates. The vortex cores are identified
in each of the cases at t = 500, a characteristic time after the initial transient behavior has died out.

gradient tensor (the rotation tensor multiplied by 0.5). We choose a characteristic time t = 500 for
comparing the different cases such that the initial transient behavior has run its course and the flow
is fully nonlinear.

When the rotation rate is low, we see the vortex structures to be distributed across the channel
and to be disordered. The behavior is qualitatively similar in all cases and similar to that in a
stationary channel. At early times (not shown), the secondary flow initially gets set up as aligned in
the streamwise direction and then breaks down to give a seemingly chaotic flow [46]. Thus, the flow
at low Ro, even if within the linearly unstable regime, can undergo transition via mechanisms by
which subcritical transition occurs in the nonrotating channel flow. At this point, no clear indication
of the role of the unstable mode is seen.

In Fig. 16 are shown mean flow profiles of the present simulation for different values of Ro

considered. The mean flow is derived by averaging in the streamwise and spanwise coordinates and
in time. The profiles obtained resemble that of nonrotating turbulent channel flow. It was seen in
earlier work that the mean flow in the rotating channel is no longer symmetric about the centerline
due to the Coriolis force when the flow becomes turbulent [22,23]. Despite being in the linearly
unstable regime, here we do not see strong manifestations of the asymmetry in the mean flows
despite the Coriolis force being capable of exciting instabilities in a couple of the cases.

The rms values in Fig. 14 suggest a strongly fluctuating velocity field. To get a sense of how
chaotic each of the resulting flows are, we now turn to the entropy measure Q defined in Eq. (17).
Setting the reference time τ as 500, in Fig. 17, we plot the evolution of Q for the different cases
considered. The plots make it evident that we have chaotic flow, since in no case do we have Q

returning to zero. In addition, the range of values of Q seen for the different cases is not drastically
different.

Thus far, there has been no indication of whether the unstable mode plays a significant role during
the transition process. The results from the linear analysis in the previous section suggest that the
disturbance initially grows algebraically despite the presence of the unstable mode (for the unstable
configurations considered here). The nonlinearity in the governing equations act to limit the linear
growth once the secondary flow has become sufficiently strong. Then the peak of the rms values in
Fig. 14 can be considered a marker for when the flow has become fully nonlinear; this is seen to
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FIG. 16. The temporally and spatially averaged mean flow profiles for different rotation rates. The familiar
profile of a turbulent channel flow is obtained for low rotation rates.

occur at t ≈ 50 for all the cases. At the same stage in the linear evolution, the unstable mode has not
yet come to dominate the dynamics [see Fig. 12(a)]. The algebraic evolution of the disturbance has
been so strong such that the flow becomes fully nonlinear without the linear unstable mode having
completely emerged.

In the case of the nonrotating channel flow, the optimal perturbation eventually decays if the
nonlinear terms are not triggered. This happens when the energy content of the perturbation is
initially very low, and the algebraic linear amplification is not strong enough to render the nonlinear
terms important. If we were to introduce the perturbation at lower energy levels, the secondary flow
can evolve linearly for long enough to coincide with the unstable mode. This is clearly depicted
in Fig. 18 when Ro = 3 × 10−4. As we increase rotation such that we are further away from the
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0.20
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0.28

FIG. 17. The evolution for the measure of chaos Q for different Ro. For all the cases, a departure from the
initial state is shown. Here we choose τ = 500 as the starting state.
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FIG. 18. The unstable mode is eventually excited in the full nonlinear setting when initial perturbation
energy is low (Ro = 3 × 10−4). Algebraic growth is seen at early times before the unstable mode becomes
dominant.

stability boundary, the time taken for the unstable mode to emerge becomes shorter. Upon exciting
the unstable mode, the flow would evolve as dictated by the exponential growth rate from linear
theory until the nonlinear terms become important.

From Fig. 18, we also see that the initial rise in the rms values happen at a much faster rate
than the growth rate specified by the unstable mode. Eventually the unstable mode alone is seen to
dominate. At the stage where the unstable mode alone survives, the secondary flow is seen to have
already attained a kinetic energy that is larger than what would have achieved had we started with an
unstable mode alone. We can then say that given a class of initial conditions with the same kinetic
energy, algebraic disturbances can enhance the energy content of the unstable mode and make the
flow nonlinear at earlier times.

So in the cases considered above at low rotation rates, algebraically growing disturbances have
been shown to be capable of triggering transition in two ways. First, the algebraic growth can be
strong enough such that the nonlinear terms come into play. The transition is triggered by the vortex
stretching and tilting mechanisms that lead to the formation of streaky structures. Alternatively, if
we impose the initial energy content of the disturbance to be very low, we end up with the situation
where the unstable mode is eventually excited and transition occurs by the secondary instabilities
of the saturated flow. However, in contrast to noisy environments, the unstable mode emerges with
much higher energy due to the algebraic amplification of the disturbance. With regard to that point
when the evolution transition has occurred, the nonmodal mechanisms are more dominant at short
times. However, if the flow has not undergone transition by subcritical mechanisms, the unstable
mode will trigger the nonlinearity at later stages.

C. Nonlinear results: Intermediate and higher rotation rates

As the rotation is increased, we are now very much within the modally unstable regime. In
the previous subsection, we already saw signs of the unstable mode emerging in the dynamics
provided that the flow has not become fully nonlinear until a certain time. The range of rotation
rates considered here are more in line with earlier studies where strong instabilities and transition to
turbulence have been observed. The question then posed here would be to see if the nonnormal nature
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FIG. 19. (a) For the high rotation cases, the evolution of the root mean square (rms) values of the normal
velocity component. (b) The rms values of the different velocity components when Ro = 0.2. The secondary
flow becomes more isotropic when the rotation rate is increased.

of the governing equations and algebraic disturbances have any significant effect on the dynamics
of the flow.

As before, we first examine the rms values of the resulting flow at various rotation rates in Fig. 19.
A notable algebraic behavior, as was evident at lower values of Ro (Fig. 14), is not very apparent
here. In Fig. 19(a), for certain cases (Ro = 0.2, for instance), the rms value (perturbation energy)
rises drastically in a short period, and consequently the flow rapidly becomes nonlinear. One must
be remember that the exponential growth rates of modes for these values of Ro are fairly high, and
the linear regime lasts for a very short window. For the values of Ro considered here, the results
from the linear analysis also do not predict pronounced algebraic growth effects (see Subsec. III D).

The rms values of the streamwise velocity get suppressed to a greater extent (not shown). For
the other velocity components, the rms behavior is not monotonic as we increase the rotation rate
[see Fig. 19(a)]. What was initially a more streamwise dominant flow in the case of low rotation
rate cases now has comparable rms values of velocity in all directions; the Ro = 0.2 case displays
this the best [see Fig. 19(b)]. Inside the linearly unstable region, the rms values of the spanwise and
normal velocity components increase in a range of Ro. These values once again get suppressed as
the rotation is further increased, and the region of linear stability is approached. Also to be noted is
that on increasing the rotation rates, the rms values display smaller deviations from their long time
average [for instance, compare the cases with Ro = 0.2,0.7 in Fig. 19(a)].

From Fig. 19(a), the flow has undergone a transition to an unsteady state at all rotation rates except
Ro = 0.9. For this case, the high rotation rates effectively kills all the fluctuations very quickly, in
keeping with Taylor-Proudman arguments. The resulting flow then quickly reverts back to the
parabolic flow. For the parameters considered here, in the rapidly rotating case, both exponential and
algebraic growths of perturbations are suppressed. One must keep in mind that when Re > 5772,

transition due to the breakdown of the two-dimensional TS waves, which is unaffected by rotation,
is still possible [15].

When we consider the λ2 structures in Fig. 20, they are found to be increasingly concentrated at
the lower, high-pressure side of the channel. The structures appear to be far more disordered when
the rotation rate is far from either linear stability boundary (Ro = 0.2, for example). The vortex
structures formed also appear to be more ordered along the streamwise coordinate as the rotation
is further increased. The conspicuous absence of vortical structures on the low-pressure side of the
channel suggests that the flow remains largely ordered and laminar in that region. Thus, the Coriolis
force acts to effectively laminarize at least one side of the channel flow. Such behavior was seen
in Ref. [10], where the authors found a reduction in the turbulent intensities near the low-pressure
wall. As we increase the rotation rates further, the Coriolis force acts to the confine the secondary
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FIG. 20. The isocontours of constant λ2 = −0.05 at different rotation rates. All cases are supercritical. The
vortex cores are identified at t = 500, same as in Fig. 15.

motion to smaller regions in the channel. Thus, the secondary flow set up is much weaker, as can be
seen for the Ro = 0.7 case in Fig. 20.

The mean flow obtained for these rotation rates are given in Fig. 21. The case of Ro = 0.2 displays
clear departure from symmetry about the centerline. It is noticed that the velocity profile is linear
over a significant portion of the channel width. This portion is the region where the strong vortical
structures seen in Fig. 20 exist. A similar correspondence of linear velocity profiles and strong
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FIG. 21. The temporally and spatially averaged mean flow profiles for different rotation rates. Prominent
asymmetry is seen at higher rotation rates.
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FIG. 22. The evolution for the measure of chaos Q for different Ro. For all the cases, a departure from the
initial state is shown. Here we choose τ = 500 as the starting state.

structures has been reported earlier for turbulent rotating shear flows [23,51–53]. We comment here
that the resulting mean flow is not different from the case if we induce transition using the unstable
mode.

To get a picture of how chaotic the resulting flows are after transition, we plot entropy Q in
Fig. 22. It is seen that for none of the cases does Q go to zero, and hence the resulting flows are
chaotic. Additionally it must be noted that Q defined in Eq. (17) is an integral measure over the
computational box. At these rotations, we are seeing one side of the channel getting laminarized
with the vortex structures concentrated on the other side. This means that the contribution to Q in
these cases is not very significant in the laminarized side of the channel. Despite such a situation, the
values of Q are fairly high when compared to the low rotation cases. This suggests that the regions
where the secondary flow does persist offer extremely chaotic dynamics.

V. CONCLUSION

In this article, we focus on the role of algebraic disturbances in the transition scenario of the
rotating channel in various rotation regimes. We show that the critical modal Reynolds number for
the rotating channel flow does not coincide the energy critical Reynolds number for all rotation
regimes. As a consequence, transient amplification of disturbances is observed in modally stable
regions in the Re-Ro phase plane. Interestingly, we show that the energy critical Reynolds number
is only feebly sensitive to the rotation rate, in stark contrast to the modal behavior. On a given side
of the modally stable region (i.e., at low and high Ro) at a given Reynolds number, the optimal
transient growth does not vary much with the rotation rate at a given Re. However, the insensitivity
to rotation on either side of the neutral curve has very different origins. It is only in the vicinity of the
neutral boundary in Re-Ro parameter space that discernible changes in the optimal characteristics
are observed.

At low rotation rates, the transient growth of disturbance kinetic energy is due to the lift-up
effect and is subsequently shown to be important while considering transition. The optimal transient
growth amplitudes and the corresponding optimal wavenumbers obtained are close to those for
the nonrotating channel. It is a consequence of rotation serving as a correction to the dynamics
of the channel flow. However, even at extremely low rotation rates, the optimal structure breaks
centerline symmetry due to the Coriolis force, with larger asymmetry closer to the neutral boundary.
At extremely large rotation rates, consistent with the Taylor-Proudman theorem, all variation along
the axis of rotation is inhibited. The streamwise-independent disturbances which yield the largest
transient growth at low Ro are therefore now suppressed. Thus, we see only weakly growing
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perturbations that evolve transiently due to the Orr mechanism that is completely unaffected by the
strength of the rotation.

Within the modally unstable regime, we have shown that initial disturbances can grow
algebraically before the most unstable mode alone emerges. While it is impractical to perform
an optimization over all wavenumbers and time, we can deal with a more tractable problem by
specifying a target time Ttar, where we are interested in the initial condition yielding the largest gain.
Beyond a particular target time τ ∗, the initial condition that gives the best gain in comparison to when
the unstable mode is alone introduced becomes invariant. This suggests τ ∗ defines a window where
nonmodal behavior prevails before the unstable mode becomes dominant. For a wide range of values
of Ro within the unstable regime, this algebraic gain suggests that linear nonmodal mechanisms are
still important as they raise the energy of the unstable mode and accelerate the transition process.

We solve the incompressible Navier-Stokes equations using direct numerical simulations for
better understanding the processes in the modally unstable regime. When the rotation rate is low,
both modally stable and unstable, we have shown that transition occurs similarly to the subcritical
manner of the nonrotating case. The transient amplification of the disturbance triggers nonlinearity,
and transition ensues. Vortical structures fill the entire domain, and the nonlinear statistical steady
states obtained resemble that of the turbulent nonrotating channel flow. This behavior os observed
over a wide range of initial disturbance amplitudes, except at extremely low initial energy of the
disturbance where the unstable mode emerges after the transients boost the disturbance energy, and
the secondary flow grows exponentially until the nonlinear terms become important. Similar features
in Görtler flow have also been observed where transition can be aided by the boosting of the unstable
mode energy by algebraic mechanisms [54,55]. This suggests that algebraic nonmodal mechanisms
are likely to be relevant even when exponential instabilities exist in certain parameter regimes due
to the inherent nonnormal nature of the dynamics in shear flows.

On increasing the rotation rate to moderate levels (Ro ∼ 0.2), the Coriolis force expectedly
manifests itself in a more pronounced manner. Initial disturbances rapidly evolve into the most
unstable eigenmode, and the resulting transitioned flow is strongly vortical with no characteristic
structure or organization. This is in sharp contrast to the elongated structures seen at both lower
and higher rotation rates. With further increase in rotation rate, the secondary (chaotic) flow is
increasingly localized toward one wall, becoming smaller until it finally disappears. At high rotation
rates, the base flow is extremely stable to nonmodal disturbances, as expected. At such values of
Ro, the effect of algebraic processes is negligible.

In summary, for the rotating channel flow, we have shown distinct behavior patterns at low,
intermediate, and higher rotation rates, and the switchover between these is gradual with change in
rotation rate. It is clear that algebraic growth can contribute decisively toward the transition in the
rotating channel flow in a range of rotation rates.
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Abstract

The dynamics of viscous flow through a rotating pipe is considered. Small-
amplitude stability characteristics are obtained by linearizing the Navier–
Stokes equations around the base flow and solving the resulting eigenvalue
problems. For linearly unstable configurations, the dynamics leads to fully
developed finite-amplitude perturbations that are computed by direct numer-
ical simulations of the complete Navier–Stokes equations. By systematically
investigating all linearly unstable combinations of streamwise wave numberk
and azimuthal mode numberm, for streamwise Reynolds numbersRe 500z -

and rotational Reynolds numbersRe 500-8 , the complete range of nonlinear
travelling waves is obtained and the associated flow fields are characterized.

Keywords: pipe flow, instabilities, nonlinearity, rotation

(Some figures may appear in colour only in the online journal)

1. Introduction

The axial flow through a rotating pipe has been studied over decades, both for its fundamental
importance and for its wide application in turbomachinery and other fluid machines. Rotation
changes the basic nature of the instability of the laminar Hagen–Poiseuille flow (Pedley 1968, 1969,
Mackrodt 1976, Cotton and Salwen 1981, Fernandez-Feria and del Pino 2002, Rusak and
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Wang 2014, Miranda-Barea et al 2016) and the subsequent route towards turbulence. The final
turbulent state too is rather different from that in the non-rotating pipe (Imao et al 1996).

The laminar flow through a non-rotating pipe is linearly stable at all Reynolds numbers in
that all eigenmodes are exponentially decaying. The transition to turbulence takes place by means
of a subcritical route, due to the non-normality of the stability operator, and the consequent
algebraic growth of disturbances. In contrast, when the pipe wall is in rotation about the pipe axis,
exponentially growing disturbances are supported, and the nonlinear evolution is supercritical.
Pedley (1968) showed that the inviscid flow in the limit of strong pipe rotation and weak axial
flow is linearly unstable to long wave disturbances. He extended his study to viscous flow in the
following year (Pedley 1969) to show that rotating Hagen–Poiseuille flow (RHPF) in the same
strong rotation limit is linearly unstable to long waves above a critical Reynolds number of 82.9.
The mode that was found to be least stable was a corkscrew mode which propagates axially in the
direction of the flow but rotates in a sense opposite to that of the walls of the pipe. Given the
symmetries in the problem, this mode is equivalent to one which propagates axially in a sense
opposite to the axial mean flow but rotates in the same sense as the pipe. Mackrodt (1976)
extended this study to lower rotation rates and showed that the flow can still be linearly unstable at
fairly low rotation rates. This work also showed experimentally that residual swirl in the entry
region can trigger instabilities. A comprehensive study of the linear stability of the RHPF was
carried out by Cotton and Salwen (1981), extending the earlier results to higher axial wave-
numbers and a range of azimuthal mode numbers. By deriving neutral stability curves, they
noticed that the critical Reynolds number is only weakly dependent on the rotation number
provided that the latter is large enough, and that similarly the critical rotation number is only
weakly dependent on the Reynolds number provided that the Reynolds number is large enough.
In other words, the unstable region is approximately delimited by lines of either constant Rey-
nolds number or constant rotation number. An asymptotic theory for the draining bathtub vortex
was given by Foster (2014), and there are a host of such studies of swirling flows where the pipe
walls are stationary, which we do not discuss here. Analogously, Rusak and Wang (2014)
conducted an inviscid study of solid body rotation accompanied by uniform axial flow and found
a critical swirl ratio, above which there are two kinds of nonlinear states.

Given that a Hagen–Poiseuille flow through a stationary pipe is linearly stable to all
convective modes, this flow can obviously never be absolutely unstable. In contrast, RHPF
can display modes of absolute instability, as was shown by Fernandez-Feria and del Pino
(2002). These modes of absolute instability were obtained experimentally in the recent study
of Miranda-Barea et al (2016). They applied a spin-down to the pipe and could thus obtain the
critical rotation rate for the switch from absolute instabilities to convective.

Some studies of the nonlinear evolution of disturbances have been carried out on the RHPF.
Toplosky and Akylas (1988) resolved a controversy as to whether the nonlinear evolution is
supercritical or subcritical, and found no subcritical nonlinearities. All subsequent nonlinear studies
to our knowledge, and also the present study, find only supercritical growth of perturbations in the
nonlinear regime. In fact the boundary of linear neutral stability also marks the onset of nonlinear
evolution of wave trains. This was seen explicitly in the study of Yang and Leibovich (1991) which
focused on the close vicinity of the neutral stability boundary. The predicted linear and nonlinear
modes were confirmed qualitatively in the experiments of Imao et al (1992). Furthermore, these
experiments have shown how the initially sinusoidal perturbations adopted a saw-tooth form in their
nonlinear state. Far downstream, perturbations other than the least stable linear mode were trig-
gered, and the disturbance spectrum became broadband. Landman (1990) imposed the constraint of
helical symmetry, and demonstrated that the nonlinear state goes through several bifurcations and
results in a time-dependent flow. Barnes and Kerswell (2000) found three-dimensional travelling
waves which appeared after a bifurcation from the solutions found by Toplosky and Akylas (1988).
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A range of studies focus on pipes where the flow is not streamwise independent. One
situation is of course when the pipe is finite, so entry and exit flows dictate the dynamics, see
e.g. Sanmiguel-Rojas and Fernandez-Feria (2005). Dennis et al (2014) created a vortex
breakdown in a pipe where one part was rotating faster than a critical rate. The fully turbulent
flow through a rotating pipe is not a topic of the present study, but it is of interest to note that
while rotation acts to destabilise the laminar flow and provide a supercritical route to tur-
bulence, the resulting turbulence may be suppressed by rotation (Imao et al 1996).

The objective of the present investigation is to systematically derive and characterize the
family of nonlinear travelling-wave solutions sustained in RHPF. Therefore we study the
nonlinear evolution of a class of travelling waves over a range of the relevant parameters in a
periodic box. We show that the dynamics saturates into a nonlinear state of a system of
travelling waves. In all cases, the most energetic nonlinear state has longer wavelength than
that of the corresponding fastest growing linear eigenmode.

2. Problem formulation

In this study, the fluid flow is described by a vector velocity field tu x,( ) and a scalar pressure
field p tx,( ) that depend on positionx and timet and are governed by the incompressible
Navier–Stokes equations

t
p

u
u u u , 1O

s

s
� � � % � �( · ) ( )

u 0, 2� �· ( )
where ν is the kinematic viscosity of the fluid, and the pressure has been redefined to eliminate
the constant fluid density from the equations. The flow occurs inside a pipe of radiusR which is
rotating at rateΩ about its axis and no-slip boundary conditions prevail along the pipe walls. A
fixed cylindrical coordinate system will be used where r, θ and z denote radial, azimuthal and
axial coordinates respectively, and r=0 coincides with the pipe axis.

In the RHPF configuration, the flow is driven by the combination of two factors: a constant
axial pressure gradient and the rotating pipe walls. The resulting steady, axisymmetric and
axially invariant base flow is then an exact superposition of an axial parabolic velocity profile
Uz and an azimuthal solid-body rotationUθ depending only on the radial coordinater as

U r U
r

R
U r r2 1 and , 3z

2

2
� � � 8R

⎛

⎝
⎜

⎞

⎠
⎟( ) ¯ ( ) ( )

where Ū is the mean axial velocity, associated with an axial pressure gradient of magnitude
G U R8z

2O� ¯ . This flow is governed by two non-dimensional control parameters, the
streamwise and azimuthal (or rotational) Reynolds numbers defined as

Re UR Re R2 and 2 4z
2O Ow w 88

¯ ( )
respectively. With this definition, the ratio Re Rez8 corresponds to the ratio of the azimuthal
pipe wall velocity to the mean axial flow velocity. In the sequel, units used for giving
numerical results are based on the pipe diameter 2R and the mean axial velocityŪ .

Throughout this investigation, the total instantaneous flow fields are separated into basic
and perturbation quantities as

u r z t u r z t, , , , , , , 5r r
tot

R R�( ) ( ) ( )
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u r z t U r u r z t, , , , , , , 6tot
R R� �R R R( ) ( ) ( ) ( )

u r z t U r u r z t, , , , , , , 7z z z
tot

R R� �( ) ( ) ( ) ( )
p r z t G z p r z t, , , , , , , 8z
tot R R� � �( ) ( ) ( )

whether the perturbation is of small amplitude or not. Replacing these expansions into the
Navier–Stokes equations (1) and (2) then yields the governing equations for the perturbation
flow fields ur, uθ, uz andp.

Figure 1. Temporal growth rate ωi in Re k,z( )-plane for (a)m=−1, Re 60�8 ,
(b)m=−1, Re 100�8 , (c)m=−1, Re 200�8 , (d)m=−1, Re 500�8 ,
(e)m=−2, Re 200�8 , (f)m=−2, Re 500�8 , (g)m=−3, Re 200�8 and
(h)m=−3, Re 500�8 . Thick black lines correspond to the marginal curve ωi=0
and thin coloured lines to positive growth rates ωi=0.1, 0.2, 0.3, 0.4,K
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When analysing the dynamics of small-amplitude perturbations, the disturbances may be
written in normal-mode form as

u r z t u r kz m t, , , exp i , 9r rR R X� � �( ) ˆ ( ) ( ) ( )
u r z t u r kz m t, , , exp i , 10R R X� � �R R( ) ˆ ( ) ( ) ( )
u r z t u r kz m t, , , exp i , 11z zR R X� � �( ) ˆ ( ) ( ) ( )
p r z t p r kz m t, , , exp i , 12R R X� � �( ) ˆ ( ) ( ) ( )

where k is an axial wave number, m an azimuthal mode number and ω a (complex) frequency.
Linearization of the governing equations then leads to eigenvalue problems, the solution of
which yields the ω-eigenvalue spectrum together with the associated eigenfunctions u rrˆ ( ),
u rRˆ ( ), u rzˆ ( ) and p rˆ ( ), for each setting of k, m, Rez and Re8. Usually, the spectrum is
dominated by a single eigenvalue and its identification then yields the linear dispersion
relation as

k m Re Re, ; , . 13z
linX X� 8( ) ( )

In unstable situations, characterized by positive growth rates ImiX Xw , an initial spa-
tially periodic small-amplitude perturbation may be exponentially amplified in time and
eventually reach finite amplitudes, thus be governed by the full nonlinear equations. The
resulting nonlinear dynamics is then investigated by using spatial Fourier series of the form

Figure 2. Neutral curves in Re Re,z 8( )-plane for m=−1, −2, −3.

Figure 3. Temporal evolution of E( n), kinetic energy contained in each spatial Fourier
component, and of total Enl, resulting from a small-amplitude initial perturbation at
k=1 and m=−1 for Re 250z � and Re 200�8 , plotted on (a)logarithmic and
(b)linear scales.
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u r z t u r t n kz m, , , , exp i , 14r

n

r
n
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u r z t u r t n kz m, , , , exp i , 15
n

n
�R R� �R R
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p r z t p r t n kz m, , , , exp i , 17
n
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and integrating in time the nonlinear temporal evolution problem consisting in a system of
coupled partial differential equations for the components u r t,r

n ( )( ) , u r t,n
R

( )( ) , u r t,z
n ( )( ) and

p(n)
(r, t). This is equivalent to considering a finite domain with periodic boundary conditions

and investigating the dynamics of finite-amplitude disturbances at prescribed total axial
pressure gradient. The numerical implementation of this time-marching problem uses a
second-order accurate predictor–corrector fractional-step method, similar to the one described
in detail in Pier and Schmid (2017). Complete expressions and derivations of the linear and
nonlinear governing equations as well as numerical solution methods may be found in
Pier (2015).

It should be emphasized that the use of single spatial Fourier series in expansions
(14)–(17), instead of double series using terms of the form nkz lmexp i R�( ) with n lv , is
motivated by our objective of computing primary nonlinear travelling wave solutions, rather
than studying their stability with respect to secondary perturbations. Indeed, starting from a
linearly unstable small-amplitude initial perturbation of the form kz mexp i R�( ), the non-
linearities of the Navier–Stokes equations only promote spatial harmonics of the form

n kz mexp i R�( ), while terms of the form nkz lmexp i R�( ) with n lv would only be
generated by secondary instabilities.

3. Results

3.1. Linear dynamics

The dynamics of small-amplitude perturbations is governed by the dispersion relation(13)
derived from a normal-mode analysis of the Navier–Stokes equations linearized around the
base flow(3). In this subsection we repeat some of the results obtained by previous authors to

Figure 4. Temporal evolution of instantaneous frequency ir iX X X� � from the linear
growth phase ( i0.42 0.44linX � � � ) to the saturation regime ( 0.56nlX � � ). Same
configuration as figure 3.
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validate our approach and identify the parameter space of interest for the subsequent
investigation of nonlinear travelling-wave solutions.

Temporal growth rates ωi corresponding to the most unstable mode are shown in figure 1
over the Re k,z( )-plane for Re 500z - and different values of Re8 and m. For m=−1
(figures 1(a)–(d)), the RHPF becomes already unstable at Re 60�8 , while higher values of
Re8 are required for m=−2 (figures 1(e)–(f)) and m=−3 (figures 1(g)–(h)). These results
fully agree with those obtained by Cotton and Salwen (1981).

The critical curves for onset of instability in the Re Re,z 8( )-plane are shown in figure 2 for
m=−1, −2 and −3. As already noticed by Cotton and Salwen (1981), these critical curves
asymptote towards constant values of Rez or ofRe8. Except for low values of both Rez and
Re8, onset of instability thus only depends on the lowest of these two control parameters. For
parameter values within the linearly unstable regions, growing perturbations lead to a fully
developed regime, analysed in detail in the rest of this paper.

Figure 5. Velocity fields of saturated nonlinear travelling wave at k=1 and m=−1
for Re 250z � and Re 200�8 : (a), (b)axial component and (c), (d) in-plane velocity
for ((a), (c))perturbation and ((b), (d))total flow. In (a), coloured lines correspond to
negative velocities −0.2, −0.4 and −0.6. In (b), coloured lines correspond to positive
velocities 0.2, K, 1.6. Black lines indicate vanishing values.
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3.2. Nonlinear travelling waves

In configurations where the base flow displays linear temporal instability, a small-amplitude
perturbation with a positive growth rate is exponentially amplified and eventually reaches
finite-amplitude levels. The nonlinear terms in the Navier–Stokes equations can then no
longer be neglected and the dynamics is governed by the complete nonlinear equations. The
aim of this investigation is to systematically derive and characterize the resulting fully
developed travelling wave solutions for Re 500z - and Re 500-8 .

The approach is here based on temporal evolution problems investigated by direct
numerical simulations of the Navier–Stokes equations. Starting from a small-amplitude initial
perturbation, the evolution is first dictated by linear dynamics before nonlinear effects come
into play. In the absence of secondary instabilities, a fully developed regime is reached with
spatial periodicity imposed by the prescribed values of streamwise wave numberk and azi-
muthal mode numberm. As already mentioned in the Introduction, no sign of a subcritical
transition has been found. This approach is therefore deemed to yield all nonlinear wave
solutions that may prevail in the RHPF, for the control-parameter region under consideration.

A typical scenario may be illustrated by considering the temporal evolution of a pertur-
bation at k=1 and m=−1 for Re 250z � and Re 200�8 . At these parameter values the
linear dispersion relation yields a complex frequency of i0.42 0.44linX � � � , with a positive
temporal growth rate. Figure 3 shows the temporal evolution of the energyE(n) contained in
each spatial harmonic together with the total E En

nnl
0.w � ( ), both on logarithmic and linear

scales; the energy E(n) is here defined as the spatially averaged kinetic energy per unit volume
associated with the Fourier component corresponding to n and −n of the expansions(14)–(16).

In the first stage of the evolution, here approximately for t<0.15, the perturbation is
seen to grow exponentially: the energy E(1)

(t) in the fundamental component is amplified as
e t2 iX , while the higher harmonics (n 2. ) are slaved by nonlinear interaction to the funda-
mental as E t E tn n1r( ) [ ( )]( ) ( ) and the mean-flow correction as E t E t0 1 2r( ) [ ( )]( ) ( ) , see
figure 3(a). The nonlinearities are stabilizing and therefore lead to saturation at finite

Figure 6. (a)Axial and (b)azimuthal mean velocity profiles prevailing for the fully
developed nonlinear travelling wave: comparison of base profile (solid), mean flow
correction (dotted) and total mean profile (dashed). Same parameter settings as in
figures 3 and 5.
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amplitude levels. In the absence of secondary instabilities, a fully nonlinear travelling-wave
solution is then reached in the long-time limit with spatial periodicity imposed by the pre-
scribed values of k andm and constant energy levels, see figure 3(b). For the final pertur-
bation velocity and pressure fields(14)–(17) associated with this nonlinear travelling
solution, each of the nth spatial Fourier components is found to depend on time as

n texp i nlX�( ) for some real frequency nlX . This means that the flow fields are 2π-periodic
functions of kz m tnlR X� � , which is characteristic of three-dimensional solutions that travel
without deforming. The nonlinear frequency nlX is related to the axial wave propagation
speed as knlX and to the azimuthal wave rotation rate as mnlX . Its value is obtained by the
numerical simulations, which therefore yield the nonlinear dispersion relation

k m Re Re, ; , . 18z
nlX 8( ) ( )

In the example illustrated here, 0.56nlX � � . Monitoring the temporal evolution of the
instantaneous complex frequency, figure 4 shows how the growth rate varies from 0.44iX �

in the linear growth phase to a vanishing value in the saturation regime, while the real part of
the frequency decreases from 0.42rX � � to ωr=−0.56. As shown below (see figure 6(a)),
this frequency reduction in the nonlinear régime is associated with the development of a
negative mean-flow correction.

Figure 7. Levels of total disturbance energyEnl in the Re k,z( )-plane for (a)m=−1,
Re 100�8 , (b)m=−1, Re 200�8 , (c)m=−2, Re 200�8 , (d)m=−2,
Re 500�8 , (e)m=−3, Re 200�8 , (f)m=−3, Re 500�8 . Thick black lines
correspond to the marginal curve and thin coloured lines to levels E 0.005nl � , 0.010,
0.015,K
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Note that the fully developed nonlinear travelling waves could have been obtained by an
iterative Newton–Raphson search procedure, a technique that we have used and implemented
in a similar context for the three-dimensional rotating-disk boundary layer (Pier 2007). For
the RHPF, however, that was not necessary since for the parameter space under consideration
the time-marching procedure outlined insection 2 was always found to converge towards the
desired finite-amplitude travelling wave solutions and, moreover, provides information about
the transition from the linear growth phase to the saturated regime.

The velocity fields of this nonlinear travelling-wave solution are given in figure 5. Iso-
lines of the axial velocity are shown in figures 5(a) and (b) for the nonlinear perturbation and
the total flow respectively. The velocity field in a cross-section of the pipe is shown in
figures 5(c) and (d), again for the perturbation and total flow. Due to the travelling-wave
structure of this solution, plots at a different axial positionz or different timet only differ
from those shown in figure 5 by rotation inθ. The axial disturbance velocity component
(figure 5(a)) is mostly negative and non-axisymmetric. Thus the resulting total axial velocity
(figure 5(b)) is significantly reduced in comparison with the base Poiseuille profile and
displays a maximum value slightly in excess of 1.6 off axis. Recall that the maximum axial
Poiseuille velocity is2 since the mean velocityŪ is used as unit.

Figure 8. Relative axial mean flow-rate corrections for (a)m=−1, Re 100�8 ,
(b)m=−1, Re 200�8 , (c)m=−2, Re 200�8 , (d)m=−2, Re 500�8 ,
(e)m=−3, Re 200�8 , (f)m=−3, Re 500�8 . Thick black lines correspond to
the marginal curve and thin coloured lines to levelsQ Q 0.05bf � � , −0.10, −0.15,K
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The development of nonlinearities produce higher harmonics as well as an axisymmetric
mean flow correction associated with the non-periodic component of the perturbation.
Figure 6 compares the mean profiles prevailing in the fully developed regime with those of
the unperturbed base flow, both for the axial (figure 6(a)) and the azimuthal (figure 6(b))
components. The effect of this mean flow correction is to reduce the total axial flow rateQtot

as well as the total angular momentumMtot of the flow: here Q Q 0.88tot bf � and
M M 0.97tot bf � , where Qbf and Mbf refer to flow rate and momentum prevailing for the
unperturbed base flow.

By varying the disturbance wave numbers k and m and the base flow control parameters
Rez and Re8, the complete set of nonlinear travelling waves may be systematically computed.
In the present investigation we have covered the full range of nonlinear solutions for
Re 500z - and Re 500-8 .

Isolines of the total disturbance energyEnl associated with the nonlinear travelling waves are
plotted in figure 7 in the Re k,z( )-plane for selected values of m andRe8. For m=−1 and
Re 100�8 , comparison of the linear temporal growth rates shown in figure 1(b) with the energy
levels of the nonlinear saturated travelling waves shown in figure 7(a) clearly demonstrates the
supercritical nature of the nonlinearities: the amplitude of nonlinear travelling waves vanishes as
the critical curve for instability is approached. However, the largest values ofEnl do not coincide

Figure 9. Relative mean angular momentum corrections for (a)m 1� � , Re 100�8 ,
(b)m=−1, Re 200�8 , (c)m=−2, Re 200�8 , (d)m=−2, Re 500�8 ,
(e)m=−3, Re 200�8 , (f)m=−3, Re 500�8 . Thick black lines correspond to
the marginal curve and thin coloured lines to levels M M 0.01bf � � , −0.02, −0.03K
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with the strongest linear temporal growth rates. Indeed, for a given value ofRez, the strongest
temporal growth rate occurs approximately in the centre of the unstable k-range, while the largest
nonlinear amplitudes are found towards lower values ofk. Similar conclusions hold for all
configurations investigated here, comparing figures 1(c) with 7(b), 1(e) with 7(c), 1(f) with 7(d),
1(g) with 7(e) and 1(h) with 7(f), respectively.

The mean axial flow rate corrections and angular momentum corrections due to the fully
developed nonlinear travelling waves are shown in figures 8 and 9, respectively. In these
figures, mean-flow-correction quantities are shown relative to the values prevailing for the
underlying base flows.

As expected by the supercritical nature of the instabilities, the flow-rate correction curves
shown in figure 8 follow very similar trends to the energy curves of figure 7. Comparison of
panels corresponding to the same settings of m andRe8 reveals that the largest flow-rate
corrections approximately correspond to the largest disturbance energy levels.

Monitoring the mean angular momentum corrections as the control parameters are varied
a slightly different pattern emerges (figure 9): while the values obviously still decay towards
the critical curves, it is found that largest contributions prevail for axial wavenumbers in the
centre of the unstable k-range. These computations thus reveal that the strength of axial and
azimuthal mean-flow corrections significantly depend on the wavenumberk and that the axial
corrections are more important for long wavelength perturbations. Thus the evolution of the
relative angular momentum shown in figure 9 more closely follows that of the linear temporal
growth rate (figure 1) than that of the saturated energy levels (figure 7). Unlike the linear
temporal growth rates that display a maximum when Rez is varied (see figure 1), both the
flow-rate and angular momentum corrections continue to increase with the axial Reynolds
numberRez over the range investigated (see figures 8 and 9).

Finally, the frequencies of the linear and nonlinear travelling waves are compared in
figure 10. For linear waves, the real part of the complex frequency r

lin
X is derived from the

Figure 10. Frequencies of linear(solid coloured lines) and nonlinear(dashed lines)
waves in the Re k,z( )-plane for (a)m=−1, Re 300�8 , (b)m=−1, Re 500�8 ,
(c)m=−2, Re 300�8 , (d)m=−3, Re 300�8 . The thick black lines indicate the
curve of marginal stability.
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linear dispersion relation(13) over the entire Re k,z( )-plane, and plotted with solid coloured
lines in the panels of figure 10. Nonlinear waves exist within the regions of linear instability
(delimited by thick black curves), and the dashed coloured lines indicate their associated
frequency nlX (18). These results show that the nonlinear waves always display a lower
frequency than their linear counterparts. Due to the supercritical nature of the present
instabilities, linear and nonlinear frequencies converge to the same values along the curves of
marginal stability. The departure between linear and nonlinear frequencies is seen to increase
with Rez and to be most significant towards the larger values ofk.

4. Conclusions

In this paper, we have systematically investigated the fully developed dynamics prevailing in
RHPF, for streamwise Reynolds numbers up toRe 500z � and azimuthal Reynolds numbers
up toRe 500�8 .

In the small-amplitude regime, perturbations are governed by the Navier–Stokes
equations linearized about the steady axisymmetric base flow and the relevant linear stability
characteristics are derived by solving the associated eigenvalue problems for given values of
the streamwise wavenumberk and azimuthal modenumberm. The resulting dispersion
relation has confirmed previously known results.

In unstable situations, small-amplitude perturbations may display exponential temporal
growth and the resulting saturated fully developed regimes have been computed by direct
numerical simulations of the complete Navier–Stokes equations. Over the entire control
parameter space considered in this study, Re 500z - and Re 500-8 , the flow fields have
been found to evolve towards a nonlinear regime consisting of finite-amplitude travelling
(i.e. spiralling) waves, characterised by constant values of energy levels, axial mean flow
corrections and mean angular momentum corrections. The general effect of nonlinearities is to
reduce the mean flow as well as the angular momentum. The strength of the axial mean-flow
correction is directly related to the perturbation energy levels, and the highest levels occur for
axial wavenumbers below those exhibiting strongest linear instability. The development of
nonlinearities has always been found to result in a lower (or more negative) frequency of the
nonlinear waves than of their linear counterparts.

Some secondary instabilities have been observed at larger values of Rez or Re8 than those
reported here. However, a complete study of secondary instability features is left for future
investigation. Such secondary stability properties could be investigated by implementing a
Floquet analysis similar to that used for the rotating-disk boundary-layer flow (Pier 2007), and
the resulting dynamics could be computed by simulations allowing for more degrees of
freedom, e.g., replacing the single Fourier series in(14)–(17) by a double series expansion in
both axial and azimuthal coordinates for the flow fields.

Since the RHPF is known to display absolute instabilities (Fernandez-Feria and del
Pino 2002), it would also be interesting to consider domains of large streamwise extent as
Sanmiguel-Rojas and Fernandez-Feria (2005) to analyse the development of nonlinear global
modes in terms of local nonlinear spiralling waves or for comparison with experimental
observations (Miranda-Barea et al 2016). Carrying out direct numerical simulations in axially
extended domains would also allow a detailed investigation of inlet conditions and entry flow
properties, which are known to have non-trivial effects for the non-rotating case (Sahu and
Govindarajan 2007). Presumably, an approach similar to that presented in Juniper and Pier
(2015) could also shed light on how the global dynamics is influenced by the entry flow
region.
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Pulsatile channel and pipe flows constitute a fundamental flow configuration with
significant bearing on many applications in the engineering and medical sciences.
Rotating machinery, hydraulic pumps or cardiovascular systems are dominated by
time-periodic flows, and their stability characteristics play an important role in their
efficient and proper operation. While previous work has mainly concentrated on the
modal, harmonic response to an oscillatory or pulsatile base flow, this study employs a
direct–adjoint optimisation technique to assess short-term instabilities, identify transient
energy-amplification mechanisms and determine their prevalence within a wide parameter
space. At low pulsation amplitudes, the transient dynamics is found to be similar to
that resulting from the equivalent steady parabolic flow profile, and the oscillating flow
component appears to have only a weak effect. After a critical pulsation amplitude is
surpassed, linear transient growth is shown to increase exponentially with the pulsation
amplitude and to occur mainly during the slow part of the pulsation cycle. In this latter
regime, a detailed analysis of the energy transfer mechanisms demonstrates that the huge
linear transient growth factors are the result of an optimal combination of Orr mechanism
and intracyclic normal-mode growth during half a pulsation cycle. Two-dimensional
sinuous perturbations are favoured in channel flow, while pipe flow is dominated by
helical perturbations. An extensive parameter study is presented that tracks these flow
features across variations in the pulsation amplitude, Reynolds and Womersley numbers,
perturbation wavenumbers and imposed time horizon.
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1. Introduction

Pulsatile flows are a common phenomenon in a variety of engineering flows, and they are
ubiquitous in physiological configurations. The pulsatile flow through tubular geometries
plays a key role in the haemodynamic system of many species as it is responsible for
the transport of oxygenated blood to the organs and muscular tissue (Ku 1997; Pedley
2000). While in many of these configurations inertial effects are too weak to cause and
sustain turbulent fluid motion, a variety of cardiovascular diseases can be linked to flow
instabilities in the arteries (Chiu & Chien 2011). In addition, geometric modifications
of the standard fluid-carrying vessels, such as stenoses, aneurysms or other pathologies,
further amplify adverse flow effects and aggravate physiological consequences. For these
reasons, a better understanding of pulsatile flows, and the perturbation dynamics they
support, would be beneficial, if not mandatory, for improved diagnostics as well as the
design of advanced medical devices.

Despite their importance in medical and engineering applications, pulsatile flows –
and in particular their stability characteristics – have received far less attention than
their steady analogues. Pulsatile flows comprise a steady as well as a time-periodic
component. This is in contrast to oscillatory flows which consist of a harmonic part,
but lack a steady background flow. The periodic time dependence precludes a standard
modal approach, based on temporal Fourier normal modes, and instead calls for more
complex methods, such as Floquet analysis. Furthermore, pulsatile flows are governed
by a far larger suite of parameters than steady flows: besides the common Reynolds
number Re and the wavenumbers of the perturbations, pulsatile flows depend on the
pulsation amplitudes and the non-dimensional frequency (the Womersley number Wo). For
a non-modal analysis, the time horizon over which growth or decay is measured and the
phase shift of the perturbation within a base-flow cycle have to be accounted for as well.
Within this high-dimensional parameter space, a rich and varied perturbation dynamics
can be observed, with important transitions between distinct flow behaviours.

The stability of pulsatile flow has been addressed by a few key studies that laid
the foundation for our current understanding of its perturbation dynamics. An account
of the pertinent body of literature has been presented in Pier & Schmid (2017) with
emphasis on the modal treatment via Floquet analysis. A resume of earlier work on
general time-periodic flows has been presented in Davis (1976). Further notable work
by von Kerczek (1982) has built on this foundation and established a framework for the
analysis of flows with a harmonic base flow. Generic configurations such as a Stokes
layer (Blennerhassett & Bassom 2002) or channel and pipe flow with time-periodic
pressure gradients (Thomas et al. 2011), have been investigated with modal techniques
and have been mapped out as to their stability characteristics across a range of governing
parameters. The influence of wall modifications, such as stenoses or aneurysms, on
the overall stability behaviour has been addressed via numerical simulations (see, e.g.
Blackburn, Sherwin & Barkley 2008; Gopalakrishnan, Pier & Biesheuvel 2014).

The role of pulsation in the transition from laminar to turbulent pipe flow has been
recently investigated by Xu et al. (2017) and Xu & Avila (2018). These studies in particular
concentrated on the emergence and life cycle of localised ‘puffs’, together with their role in
triggering transition in the presence of a pulsating flow component, since the occurrence
of turbulent bursts in each cycle has been found to be sensitive on flow parameters and
configuration details. A strong influence of the Womersley number has been reported, and
a distinct regime-switching across three proposed parameter regions has been observed
(Xu et al. 2017). These experimental findings have been further corroborated by direct
numerical simulations initiated by a localised perturbation (Xu & Avila 2018). The earlier
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numerical study by Tuzi & Blondeaux (2008) concluded that at moderate but subcritical
Reynolds numbers only parts of the harmonic cycle (around flow reversal) support
turbulent flow via an instability and an associated break of the flow’s symmetry.

While the early body of literature on time-periodic flows has concentrated on a modal
(Floquet) approach, more recent studies have employed an initial-value perspective on the
analysis of perturbation dynamics and energy growth. Biau (2016) has analysed the generic
oscillatory Stokes layer as to its potential to support transiently growing perturbations
over a forcing cycle. This study isolated the Orr mechanism as the dominant process by
which energy amplification could be achieved efficiently for sufficiently high unsteady
amplitudes. In particular the decelerating part of the forcing cycle has been identified as
prone to strong non-modal growth. Complementary nonlinear simulations further verified
that triggering by these mechanisms can yield subcritical transition to turbulence. A
similar technique has been applied in a recent study by Xu, Song & Avila (2021) for
oscillatory and pulsating pipe flow. Among others, they have reported that pulsating pipe
flows are generally dominated by helical perturbations. In accordance with Biau (2016),
a strong Orr-type mechanism has been found to dominate, once a threshold pulsation
amplitude has been exceeded. Again, only half of the forcing cycle supported growth of
the kinetic perturbation energy; disturbances have been observed to rapidly reach energy
levels that facilitate a transition to turbulent fluid motion, often via localised disturbances.

These latter studies advocate the treatment of pulsatile flow as a generally
time-dependent flow, distinct from a periodic Floquet ansatz. Over the past decades, the
application of these non-modal techniques to hydrodynamic stability calculations has
resulted in a more complete understanding of shear-driven instability phenomena. The
generality of this approach (Schmid 2007) is well-suited for assessing pulsatile flow over a
range of time scales, thus mapping out the optimal perturbation dynamics over partial and
multiple pulsation cycles. This non-modal approach for time-dependent flows is based on a
variational principle arising from a partial-differential-equation-constrained optimisation
problem. It results in a direct–adjoint system of equations (Luchini & Bottaro 2014) that
produce the maximum energy growth of perturbations over a prescribed time horizon.
Time-dependent base flows are treated naturally within this formalism, and short-term
energy amplification mechanisms, for example over a partial pulsation cycle, can be
detected and extracted effectively. Over the past years, this computational framework has
been successfully brought to bear on a variety of complex flow configurations (see, e.g.
Magri (2019) and Qadri et al. (2021) for applications in reactive flows), and has furnished
quantitative stability measures beyond the time-asymptotic limit and without the need for
simplifying assumptions.

This article follows up on and extends earlier work (Pier & Schmid 2017) that
demonstrated the influence of a pulsating flow component on the stability of channel
flow via a linear (Floquet) and nonlinear analysis. In this present study, we focus on
non-modal effects and the occurrence of transient energy amplification mechanisms under
conditions that are asymptotically stable, both for rectangular channel and cylindrical
pipe flows. The unsteady nature of the base flow lends itself to a formulation as a
partial-differential-equation-constrained optimisation problem for the maximum energy
gain which is subsequently solved by a variational approach based on direct–adjoint
looping.

The main finding, and significance, of our investigation consists of the quantification
of extremely large transient growth, brought on by the unsteady nature of the base
flow. By considering both channel and pipe flows and carefully studying energy transfer
mechanisms, we identify the fundamental mechanisms responsible for this huge growth,
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common to both geometries. This amplification potential translates directly into a strong
sensitivity for the rise of coherent structures over one or many pulsatile cycles. While
this feature of pulsatile flows has been observed and reported in previous studies, an
encompassing treatment of this phenomenon, including its presence in parameter space
and its manifestation in dominant spatial structures, is still missing in the literature
on unsteady flows. Our findings also have a direct connection to classifying transition
scenarios in wall-bounded flows under the influence of cyclic base flow variations, thus
extending the classical scenarios for steady flows and potential routes for the transition to
turbulence occurring during part of the cycle.

Despite our attempt to analyse pulsating channel and pipe flows comprehensively,
judicious choices had to be made to arrive at an emerging picture for the perturbation
dynamics prevailing in these configurations. The ensuing parameter ranges have been
selected to capture the most compelling and representative flow phenomena, while limiting
our focus to flows encountered in physiological and medical situations. Haemodynamic
applications, across a range of blood vessel geometries, are well covered by our choice
of parameters. Nonetheless, configurations outside this parameter range are touched upon
as well, to establish continuity or bifurcations in flow behaviour and to connect to other
studies that investigate such parameter regimes in more detail, e.g. Xu et al. (2021).

The present paper represents the culmination of several years of work; a preliminary
version of the main results has been presented at the 12th European Fluid Mechanics
Conference in Vienna (Pier & Schmid 2018).

2. Flow configurations and governing equations

This investigation considers viscous incompressible flow through infinite channels and
pipes of constant diameter. In this context, a flow is characterised by a velocity vector
field u(x, t) and a scalar pressure field p(x, t) that depend on position x and time t and are
governed by the Navier–Stokes equations

∂u

∂t
+ (u · ∇)u = ν∆u − ∇p, (2.1)

0 = ∇ · u, (2.2)

where ν is the kinematic viscosity of the fluid, and the pressure has been redefined to
eliminate the constant fluid density.

The channel-flow configuration calls for a formulation using Cartesian coordinates,
while cylindrical coordinates are appropriate for pipe flows. In order to address both
configurations with similar mathematical and numerical tools, we adopt a general
formalism using three spatial coordinates x0, x1, x2 and associated velocity components
u0, u1, u2. When analysing channel flow with respect to a Cartesian reference frame,
the variables x0, x1 and x2 denote wall-normal, streamwise and spanwise coordinates,
respectively, while they stand for radial, streamwise and azimuthal coordinates when
studying pipe flow in a cylindrical setting. Whatever the configuration, the flow domain
corresponds to |x0| < D/2 where D is the channel or the pipe diameter, and no-slip
boundary conditions prevail along the solid walls at |x0| = D/2.

A formulation of the incompressible Navier–Stokes equations ((2.1) and (2.2))
in cylindrical coordinates comprises more terms than one in Cartesian coordinates.
Nevertheless, the resulting equations have a very similar structure, and the above notations
allow us to cast the governing equations into a single general system of partial differential
equations, pertaining to both channel and pipe configurations, the details of which are
given in Appendix A.
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3. Base flows and non-dimensional control parameters

Pulsatile base flows driven by a spatially uniform and temporally periodic streamwise
pressure gradient are obtained as exact solutions of the Navier–Stokes equations and
consist of a velocity field in the streamwise x1-direction with profiles that only depend on
time t and on the wall-normal/radial coordinate x0. Denoting by Ω the pulsation frequency,
the base velocity profiles may be expanded as temporal Fourier series,

U1(x0, t) =
∑

n

U(n)
1 (x0) exp(inΩt), (3.1)

and are associated with a periodic flow rate

Q(t) =
∑

n

Q(n) exp(inΩt). (3.2)

In the above expressions, the conditions Q(−n) = [Q(n)]⋆ and U(−n)
1 (x0) = [U(n)

1 (x0)]⋆

ensure that all flow quantities are real (with ⋆ denoting a complex conjugate).
By invariance of these base flows in the streamwise x1-direction, the different

harmonics in the expansion (3.1) are not coupled through the nonlinear terms of
the Navier–Stokes equations and the velocity components U(n)

1 (x0) are analytically
obtained by solving simple differential equations derived for each harmonic component.
The mean-flow component U(0)

1 (x0) displays a parabolic Poiseuille profile. For n /= 0,
following Womersley (1955), the profiles U(n)

1 (x0) are obtained in terms of Bessel
functions in cylindrical coordinates corresponding to pipe flows, while they are obtained
in terms of exponential functions in Cartesian coordinates corresponding to channel flows.

Pulsatile channel or pipe flows are characterised by the Womersley number

Wo ≡
D
2

√

Ω

ν
, (3.3)

which is a non-dimensional measure of the pulsation frequency, and may be interpreted
as the ratio of the pipe radius (or the channel half-diameter) to the thickness δ =

√
ν/Ω

of the oscillating boundary layers developing near the walls. A pulsatile base flow is then
completely specified by the Fourier components Q(n) of its flow rate (3.2), and the velocity
profiles of the different harmonics (3.1) are obtained as

U(n)
1 (x0) =

Q(n)

A
W

(

x0

D/2
,
√

nWo
)

. (3.4)

In the above expression, A denotes the relevant measure of the cross-section (A = D for
channels and A = πD2/4 for pipes) and the function W is the normalised velocity profile
pertaining to each harmonic component. The analytic expressions of W for channel and
pipe flows are given in Appendix B.

In this investigation, we only consider pulsatile flows with a non-vanishing mean flow
rate Q(0). Thus, the definition of the Reynolds number may be based on mean velocity
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Q(0)/A, diameter D and viscosity ν, leading to

Re ≡
Q(0)

ν
for channels and Re ≡

Q(0)

ν

4
πD

for pipes. (3.5)

Moreover, using Q(0) as reference, the flow rate waveform is completely determined by the
non-dimensional ratios

Q̃(n) ≡
Q(n)

Q(0)
, (3.6)

corresponding to the amplitude (and phase) of the oscillating flow rate components (n > 0)
relative to the mean flow.

In order to reduce the dimensionality of the control-parameter space for the rest of this
paper, we will only consider base flow rates with a single oscillating component

Q(t) = Q(0)(1 + Q̃ cos Ωt), (3.7)

where the pulsation amplitude Q̃ ≡ 2Q̃(1) may be assumed real without loss of generality.
Note that the theoretical and numerical methods developed for the present investigation
are also suitable for studying the dynamics of pulsating base flows with higher harmonic
content.

4. Mathematical formulation

This entire study considers the dynamics of small-amplitude perturbations developing
in the basic pulsatile channel and pipe flows specified in the previous section. The
incompressible Navier–Stokes equations are, therefore, linearised about these base flows.
Considering that the base flows do not depend on the streamwise coordinate x1 nor
on the spanwise/azimuthal coordinate x2, infinitesimally small velocity and pressure
perturbations may thus be written as spatial normal modes of the form

ud(x0, t) exp i(α1x1 + α2x2), (4.1)

pd(x0, t) exp i(α1x1 + α2x2), (4.2)

where α1 and α2 are streamwise and spanwise/azimuthal wavenumbers, respectively.
Separation of total flow fields into basic and perturbation quantities and substitution of the
expansions (4.1) and (4.2) into the governing equations (2.1) and (2.2) linearised about the
relevant time-periodic base flow then yields a system of coupled linear partial differential
governing equations of the form

A∂tq(x0, t) = L(x0, t)q(x0, t), (4.3)

where

q(x0, t) ≡













ud
0(x0, t)

ud
1(x0, t)

ud
2(x0, t)

pd(x0, t)













and A ≡











1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0











. (4.4a,b)

Here, the superscript d refers to components of the direct problem, to be distinguished
from the adjoint variables below (4.6). The spatial differential operator L(x0, t) in (4.3) is
a 4-by-4 matrix and its coefficients involve ∂0-differentiation, depend on the wavenumbers
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α1 and α2 as well as on the base velocity profiles U1(x0, t); see Appendix C for explicit
expressions of all these terms.

When studying transient growth effects and searching for optimal initial perturbations
that are maximally amplified over a finite-time horizon, it is necessary to choose an
appropriate measure of disturbance size (Schmid 2007). Using a classical energy-based
inner product, the adjoint governing equations associated with the direct problem (4.3) are
routinely obtained as

A∂tq
†(x0, t) = L†(x0, t)q†(x0, t), (4.5)

and the adjoint differential operator L†(x0, t) is explicitly given in Appendix D. In contrast
with the direct (4.3), the adjoint equations (4.5) have negative diffusion coefficients and
the adjoint fields

q†(x0, t) ≡











ua
0(x0, t)

ua
1(x0, t)

ua
2(x0, t)

pa(x0, t)











, (4.6)

are integrated backwards in time.
Denoting by {q(x0, ti), |x0| < D/2} an initial perturbation at time ti, the evolution of this

disturbance at subsequent times t > ti and the associated perturbation energy E(t) are then
obtained by solving the initial-value problem corresponding to (4.3) with q(x0, ti) specified
for |x0| < D/2. The temporal evolution of the perturbation amplitude is then characterised
by the ratio E(t)/E(ti), for t > ti.

The maximum possible amplification of a disturbance over the interval ti < t < tf is
obtained as

G(ti, tf ) = max
{q(x0,ti)}

E(tf )
E(ti)

, (4.7)

by optimising over all possible initial conditions at t = ti. Note that, since the base flow
is time-periodic, the amplification factor depends not only on the duration tf − ti of the
temporal evolution but also on the phase of its starting point ti within the pulsation cycle.

The particular initial condition at t = ti that achieves the largest amplification at t = tf
is referred to as the optimal perturbation and the resulting flow fields at t = tf as the
optimal response. In practice, the amplification factors G(ti, tf ) and associated optimal
perturbations and responses are iteratively computed by successive direct–adjoint loops,
consisting of temporal integration of the direct (4.3) from ti to tf and of the adjoint
equations (4.5) from tf to ti, using the numerical methods described in the next section.

In linearly stable configurations, all perturbations eventually decay and the maximal
transient growth for given wavenumbers α1 and α2,

Gmax(α1, α2) = max
ti,tf

G(ti, tf ;α1, α2), (4.8)

is well defined and takes finite values. Obviously, Gmax(α1, α2) also depends on the base
flow configuration and its control parameters. For a given pulsating base flow, the largest
possible transient amplification that may be achieved is obtained as

Gmax
max = max

α1,α2
Gmax(α1, α2), (4.9)

by considering all possible wavenumbers.
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5. Numerical implementation

The direct and adjoint temporal evolution problems (4.3) and (4.5) are first order in time
and involve spatial differential operators in the wall-normal x0-coordinate.

For spatial discretisation we use a Chebyshev spectral method with collocation points
spanning the whole diameter of the channel or the pipe. Whether considering channel
or pipe flows, all computations are restricted to half of the domain, 0 ≤ x0 ≤ D/2, by
taking into account the symmetry or antisymmetry of the different flow fields and using
the associated discretised differential operators of corresponding symmetry. For channel
flow calculations carried out in Cartesian coordinates, the parity of the different flow
fields depends on the sinuous or varicose nature of the perturbation under consideration.
Note that for all the channel flow configurations considered in this paper, the dynamics is
dominated by sinuous perturbations. For pipe flow calculations carried out in cylindrical
coordinates, it is the value (even or odd) of the azimuthal mode number that determines
the parity of each of the different flow fields. Note that the singularities in the differential
operators at the pipe axis (x0 = 0) are only ‘apparent’ (Boyd 2001): the exact solution is
analytic at the axis even though the coefficients of the differential equations are not. Thus
a consistent implementation of the symmetry/antisymmetry conditions at the axis removes
any apparent singularities and guarantees that the spectral method yields smooth solutions.

Time-marching of the direct and adjoint incompressible Navier–Stokes equations uses
a second-order accurate predictor–corrector fractional-step method, derived from Raspo
et al. (2002). In classical fashion, the maximal gain G(ti, tf ), together with optimal initial
perturbation and final response, is then obtained by direct–adjoint loops, maximising the
energy growth from t = ti to t = tf . All subsequent quantities Gmax and Gmax

max are derived
from the gain G, by maximising over ti and tf , and over α1 and α2.

Resorting to the general formulation of the governing equations detailed in the
Appendix A and taking advantage of the relevant symmetry properties of the different flow
fields thus leads to a numerical implementation capable of handling all configurations of
the present investigation.

This entire numerical solution procedure is a generalisation of an approach already used
in our previous investigation (Pier & Schmid 2017), and its implementation in C++ is based
on the ‘home-spun’ PackstaB library (Pier 2015, § A.6). The interested reader is referred
to these references for further details of the general method.

6. Pulsating channel flow

The objective of the present section, which is the core part of the paper, is to investigate
how the well known transient-growth properties of steady channel flow are modified by the
presence of a pulsating base flow component. Starting with a steady Poiseuille flow, the
approach consists of studying the influence of pulsation as the amplitude Q̃ is increased
from 0 for different values of the Womersley number Wo.

First, we consider the growth rates G of streamwise-invariant and spanwise-periodic
streaks since they display the largest transient growth for Poiseuille flow. Then, the
strikingly different behaviour observed for two-dimensional (spanwise-invariant) flows
calls for a systematic computation of all possible three-dimensional perturbations. Having
established the optimal amplification rates Gmax that prevail over the whole wavenumber
plane, we are then in a position to derive the maximal achievable energy amplification
Gmax

max for a given pulsating base flow and to document its dependence on the pulsation
amplitude Q̃, the Womersley number Wo and the Reynolds number Re. Finally, a detailed
discussion of the energy transfer mechanisms allows us to highlight the various growth
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mechanisms that come into play during the different stages of the evolution and to
explain the huge growth factors that are observed for pulsating flows, already for moderate
pulsation amplitudes. We recall that sinuous perturbations prevail for all the situations
investigated here; thus, all the results presented in this section correspond to flow fields of
sinuous symmetry.

The vast parameter space of the problem requires a systematic exploration of the flow
physics and a concentration on essential characteristics by a progressive compression of
the governing parameters. To this end, we successively investigate the growth of streaks,
two-dimensional and three-dimensional disturbances, before focusing on transient energy
growth and the energy transfer mechanisms that accompany the observed amplifications.
We conclude by isolating the shape and dynamics of the two- and three-dimensional
structures that optimally exploit the unsteady background flow and thus exhibit maximal
energy growth. Along this analysis, we present a sequential reduction of the parameter
space, starting from the effect of cycle length and cycle phase, via spatial scales to the
time horizon for optimal growth. Within each step, the essential features of the transient
instability will be presented, before reducing the parameter dependency for the subsequent
analysis. This section then culminates in the detailed examination of the most amplified
disturbances, for the two- and three-dimensional case, under the influence of a pulsatile
background flow.

6.1. Growth of streaks
In steady channel Poiseuille flow, largest transient growth is known to occur for initial
conditions which are spanwise periodic and consist of streamwise aligned vortices, thus
corresponding to perturbations with α1 = 0 and α2 /= 0. Figure 1(a) shows the optimal
transient amplification at Re = 1000, 2000, . . . , 5000 computed for α2 = 4, which is near
the most transiently amplified spanwise wavenumber. (Throughout this paper, length
scales are non-dimensionalised with respect to the channel (or pipe) diameter D.) For a
steady base flow, the energy growth factor G(ti, tf ) only depends on the duration tf − ti,
here measured in mean-flow advection units τQ ≡ D2/Q(0). Replotting these data for
G/Re2 and measuring the duration tf − ti in diffusion units τν ≡ D2/ν = ReτQ, the curves
in figure 1(b) confirm the known scaling laws, leading to a maximum transient growth of
Gmax ≃ 1.1 × 10−4Re2 at tmax/τQ ≃ 1.9 × 10−2Re.

Adding to this steady base flow a pulsatile component of given amplitude and frequency,
the transient growth properties are characterised by G(ti, tf ) which then depends both on
the phase of the initial perturbation ti within the pulsation period T ≡ 2π/Ω and on the
duration tf − ti of the temporal evolution. For Re = 2000 and Re = 5000, figure 2 shows
plots of the growth factors G(ti, tf ) for pulsation amplitudes Q̃ = 0.4 and 1.0 at Wo = 10.
It is found that the amplitude Q̃ of the base flow modulation only weakly influences the
streak growth. Even increasing Q̃ to values larger than unity (corresponding to negative
flow rates during part of the pulsation cycle), does not significantly alter the distribution
of G(ti, tf ): the maximum amplification remains at the same level and the growth hardly
depends on the phase ti/T . Thus streamwise-invariant (α1 = 0) perturbations appear to
be almost unaffected by the time-dependent component of the base flow and to display a
dynamics predominantly dictated by the time-averaged base flow. The discussion of energy
transfer mechanisms in § 6.5 below will shed further light on this observation. Comparing
figure 2(a) with 2(c), and 2(b) with 2(d), the similarity observed between plots at different
Re and same Q̃ also indicates that the scaling of G with Re2 remains valid for the transient
growth of streaks in pulsating base flows.
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Figure 1. Optimal energy growth for streaks with α2 = 4 and α1 = 0 in steady channel Poiseuille flow at
Re = 1000, 2000, . . . , 5000. (a) Duration tf − ti of growth phase measured in mean-flow advection time scale
τQ. (b) Rescaled growth factors G/Re2 and tf − ti measured in diffusion time scale τν = ReτQ.
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Figure 2. Optimal transient amplification for streaks with α2 = 4 and α1 = 0 at (a,b) Re = 2000 and
(c,d) Re = 5000. Pulsating channel flow at Wo = 10 and (a,c) Q̃ = 0.4 and (b,d) Q̃ = 1.0.

6.2. Growth of two-dimensional perturbations
Two-dimensional spanwise invariant perturbations, corresponding to α2 = 0 and α1 /= 0,
exhibit much weaker transient amplification than streaks for the same steady Poiseuille
flow. Figure 3 plots the transient growth properties prevailing for Poiseuille flow at Re =
1000, 2000, . . . , 5000 for perturbations with α1 = 2 and α2 = 0, near the most unstable
two-dimensional perturbation. Here, the maximal amplification Gmax scales linearly with
the Reynolds number and reaches much lower values than those corresponding to streaks
(see figure 1a); note that this maximal amplification is also reached for a much shorter
time horizon.

926 A11-10



Optimal energy growth in pulsatile channel and pipe flows

5 10 15 200

10

20

30

Re = 5000

4000

3000

2000

1000

G

(tf – ti)/τQ

Figure 3. Optimal energy growth for two-dimensional perturbations α1 = 2 and α2 = 0 in channel Poiseuille
flow at Re = 1000, 2000, . . . , 5000.

The evolution of two-dimensional transient growth properties as the amplitude Q̃ of
the pulsating component is increased is given in figure 4. After increasing Q̃, a second
maximum emerges in the plot of G, located around ti/T = 0.2 and (tf − ti)/T = 0.5. In
contrast with the situation prevailing for streaks, this second maximum is seen to rapidly
grow with Q̃ and to become the dominant feature, here already for Q̃ ≃ 0.1. While streaks
display much larger transient growth for steady Poiseuille flow, these two-dimensional
perturbations are found to become the most efficient optimal perturbations for pulsatile
base flows, beyond some threshold value of the pulsating amplitude Q̃. This overwhelming
growth of two-dimensional perturbations for pulsatile conditions will be explained in
§ 6.5, below, by detailed monitoring of the amplification process in comparison with the
dynamics of temporal Floquet eigenmodes.

6.3. Growth of three-dimensional perturbations
The very different transient growth behaviour observed for streaky and two-dimensional
perturbations calls for a systematic investigation in the entire (α1, α2)-wavenumber plane.
For a given pulsating base flow, the optimal energy amplification Gmax(α1, α2) (4.8) is
obtained by maximising the transient growth G(ti, tf ;α1, α2) over all values of ti and tf
at each prescribed wavenumber. We have systematically explored the control-parameter
space spanning the ranges 1000 ≤ Re ≤ 5000, 5 ≤ Wo ≤ 15 and 0 ≤ Q̃ ≤ 1, and a few
characteristic results are presented below.

The plot of Gmax for steady Poiseuille flow (Q̃ = 0) at Re = 4000 (figure 5a) confirms
that strongest transient growth occurs for streaks (with α1 = 0) and that the largest value
of Gmax ≃ 1763 is reached at α2 ≃ 4.09 (indicated by a black dot). Two-dimensional
perturbations (with α2 = 0) experience growth factors that are two orders of magnitude
smaller, with Gmax ≃ 30 for α1 = 3.1.

The distribution of maximal amplification factors Gmax in the (α1, α2)-plane evolves
significantly as the amplitude Q̃ of the pulsating component is increased for a given
pulsation frequency. Figure 5(b–g) reveal that, as Q̃ is increased, the maximum energy
growth (indicated by a black dot) rapidly switches over from streaks to two-dimensional
perturbations that experience growth factors sharply increasing with Q̃ while those
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Figure 4. Optimal transient amplification for two-dimensional perturbations with α2 = 0 and α1 = 2 at (a–c)
Re = 2000 and (d–f ) Re = 5000. Pulsating base flow at Wo = 10 and (a,d) Q̃ = 0.04, (b,e) Q̃ = 0.10 and (c, f )
Q̃ = 0.20.

experienced by streaks (along the α2-axis) do not much depend on Q̃ nor on Wo.
Comparison of the results obtained with Wo = 8 (figure 5b,c), Wo = 10 (figure 5d,e)
and Wo = 12 (figure 5f,g) demonstrates that the rate of increase of Gmax with Q̃ varies
significantly with Wo and is larger for lower values of the Womersley number.

Figures 5(h–j) illustrate the behaviour at Re = 2000. For steady Poiseuille flow
(figure 5h), the isolines of Gmax display a similar structure as for Re = 4000 (figure 5a)
but with lower levels. After increasing the amplitude Q̃ of the pulsating flow component at
Wo = 10, figures 5(i,j) show that two-dimensional perturbations again eventually dominate
the response. However, at this lower Reynolds number, a larger value of Q̃ is required for
the two-dimensional perturbations to emerge, and the increase of Gmax with Q̃ also occurs
at a lower rate. Thus Gmax is found to reach values of the order of 105 at Re = 2000 for
Q̃ = 0.5 and Wo = 10 (figure 5j), while at Re = 4000 values in excess of 1011 are observed
(figure 5e).

6.4. Maximal transient growth
The maximal transient energy amplification achievable for a given base flow has been
defined as Gmax

max (4.9) and is derived by maximising Gmax(α1, α2) over the entire
wavenumber plane.
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Figure 5. Isolines of maximum energy growth Gmax in (α1, α2)-wavenumber plane for base flows with Re =
4000 (a–g) and Re = 2000 (h–j). (a,h) Steady Poiseuille flow (Q̃ = 0), (b,d, f,i) pulsating base flows with
Q̃ = 0.2, (c,e,g,j) pulsating base flows with Q̃ = 0.5. Womersley numbers: Wo = 8 in panels (b,c), Wo = 10
in panels (d,e,i,j), Wo = 12 in panels ( f,g). The black dots indicate the wavenumbers where Gmax reaches its
largest value.

Figure 6 plots the evolution of Gmax
max as the pulsation amplitude Q̃ is continuously

increased for Womersley and Reynolds numbers in the range 5 ≤ Wo ≤ 15 and 1000 ≤
Re ≤ 5000, respectively. At low values of Q̃, the pulsating flow component has a very weak
influence and Gmax

max remains near the value prevailing for steady Poiseuille flow at the same
Reynolds number. For these low pulsation amplitudes, the optimal initial perturbation
corresponds to streaks (with α1 = 0) and the associated growth duration tf − ti remains
very close to that prevailing for the equivalent mean Poiseuille flow (see also figure 8,
below).
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Figure 6. Evolution of maximal transient energy amplification Gmax
max with Q̃ for 5 ≤ Wo ≤ 15 at

(a) Re = 1000, (b) Re = 2000, (c) Re = 4000 and (d) Re = 5000.

Beyond some critical value of Q̃, the amplification factor Gmax
max starts to increase

exponentially with Q̃, as illustrated by the nearly constant slopes in the logarithmic plots
of figure 6 (note the different vertical scale used in figure 6a for Re = 1000). This critical
value Q̃c of the pulsation amplitude depends on Wo and Re as shown in figure 7(a):
increasing the Reynolds number is found to promote the two-dimensional perturbations
which become the dominant feature already for Q̃ > 0.1 around Re = 5000. For Q̃ > Q̃c,
the rate of the exponential growth of Gmax

max with Q̃ corresponds to the slopes seen in figure 6
and significantly increases as the Womersley number decreases. As a result, Gmax

max rapidly
reaches ‘astronomical’ values, several orders of magnitude beyond the amplification rates
prevailing for the corresponding steady Poiseuille flows. These exponential rates have been
computed as

κ ≡
1

Gmax
max

∂Gmax
max

∂Q̃
, (6.1)

and their variation with Re and Wo is given in figure 7(b). In this plot the values of κ

have been computed by taking the average over Q̃c < Q̃ < Q̃c + 0.1, but note that the
growth rate remains nearly constant over much larger intervals of Q̃ in the two-dimensional
regime. Obviously, the growth rates are enhanced with the Reynolds number and they
also significantly increase towards the lower Womersley numbers, corresponding to longer
pulsation periods.

The regime change in the transient growth behaviour occurring for Q̃ = Q̃c is
further illustrated in figure 8 at Re = 4000. The evolution with pulsation amplitude
Q̃ of the streamwise α1 and spanwise α2 wavenumbers associated with the maximally
amplified optimal perturbations display a sharp transition from streaky (α1 = 0, α2 /= 0)
to two-dimensional (α1 /= 0, α2 = 0) perturbations. For Wo = 6 and 8, the spanwise
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Figure 7. (a) Critical values Q̃c for transition between streaky and two-dimensional maximally amplified
perturbations. (b) Exponential growth rate κ of Gmax

max with Q̃ in the two-dimensional regime.

wavenumber here directly switches from α2 ≃ 4 to 0. For higher values of Wo, however,
a small range in Q̃ is observed where the maximally amplified perturbations consist of
oblique waves with small but finite values of α2. This corresponds to configurations where
the amplification of two-dimensional perturbations is still in competition with streaks,
so that the maximum of Gmax in the (α1, α2)-plane occurs slightly off the α1-axis, as
illustrated by the black dot in figure 5( f ) and corresponding dots in figure 8(a,b). It is then
only for higher values of Q̃ that purely two-dimensional (α2 = 0) perturbations prevail.

The transition from streaky to two-dimensional maximally amplified perturbations is
also accompanied by a significant change in the duration of the growth phase tf − ti,
shown in figure 8(c) in mean-flow advection units τQ and in figure 8(d) in units of
the pulsation period T . These two time scales are associated with different dynamical
features and related as Wo2T = (π/2)ReτQ. At weak pulsation amplitudes Q̃, the duration
tf − ti remains very close to the value prevailing for streaks developing in the equivalent
steady Poiseuille flow, here approximately 75τQ at Re = 4000 (compare with figure 1).
At higher pulsation amplitudes, when two-dimensional perturbations dominate, maximal
amplification occurs over intervals tf − ti that approximately correspond to half a pulsation
period, T/2. Thus, the transition from streaky to two-dimensional perturbations also
coincides with a change in the dynamical time scale: from streak growth essentially
dictated by the mean flow to two-dimensional perturbations strongly amplified over half a
pulsation cycle.

6.5. Discussion of energy transfer mechanisms
In this final subsection on channel flows, we investigate the energy production and
dissipation mechanisms in order to explain the different transient-growth scenarios that
have been identified.

Following the notations introduced in § 4, we consider a perturbation of the form

u(x0, t) exp i(α1x1 + α2x2) + c.c. with u(x0, t) ≡







u0(x0, t)
u1(x0, t)
u2(x0, t)






, (6.2)
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Figure 8. Characterisation of the maximally amplified optimal perturbations as the pulsation amplitude Q̃ is
increased for Wo = 6, 8, 10, 12, 14 at Re = 4000. (a) Streamwise wavenumber α1, (b) spanwise wavenumber
α2, (c) duration of transient growth tf − ti measured in mean-flow advection units τQ and (d) in pulsation
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using a complex-valued three-dimensional velocity vector u(x0, t). Such a perturbation is
associated with an instantaneous kinetic energy per unit volume of

E(t) =
1
D

∫ +D/2

−D/2
e(x0, t) dx0, (6.3)

where
e(x0, t) = ‖u(x0, t)||2 ≡ u(x0, t) · [u(x0, t)]⋆, (6.4)

represents the local energy density. Thus, the temporal energy variation,

dE(t)
dt

=
1
D

∫ +D/2

−D/2
(∂tu(x0, t) · [u(x0, t)]⋆ + u(x0, t) · [∂tu(x0, t)]⋆) dx0, (6.5)

follows from the dynamics of u(x0, t), governed by the Navier–Stokes equations linearised
about the pulsating base flow (4.3). Separating terms due to interaction with the base flow
from those involving viscous dissipation leads to

dE(t)
dt

= Π(t) − Θ(t), (6.6)

where

Π(t) =
1
D

∫ +D/2

−D/2
π(x0, t) dx0 and Θ(t) =

1
D

∫ +D/2

−D/2
θ(x0, t) dx0, (6.7a,b)
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with

π(x0, t) = −
∂U1(x0, t)

∂x0
(u0(x0, t)[u1(x0, t)]⋆ + [u0(x0, t)]⋆u1(x0, t)) (6.8)

and
θ(x0, t) = 2ν(‖∂0u(x0, t)‖2 + (α2

1 + α2
2)‖u(x0, t)‖2). (6.9)

The term π(x0, t) accounts for energy transfer between the pulsating base flow and
the perturbation: it essentially represents energy production due to base-flow shear, but
negative values may occur and its profile across the channel crucially depends on the
relative phases of u0(x0, t) and u1(x0, t).

Another quantity of interest is the instantaneous growth rate

σ(t) ≡
1

2E(t)
dE(t)

dt
=

Π(t) − Θ(t)
2E(t)

, (6.10)

particularly relevant during phases of near-exponential amplification.
Close monitoring of the spatiotemporal development of the base-flow interaction

π(x0, t) and the dissipation θ(x0, t) terms will clarify the amplification mechanisms that
govern the different stages of the dynamics.

We focus on two characteristic configurations that have already been discussed:
pulsating base flows at Re = 4000 and Wo = 10 with two different pulsation amplitudes,
Q̃ = 0.1 and Q̃ = 0.2, associated with streaky and two-dimensional maximally amplified
perturbations, respectively.

6.5.1. Streaky maximally amplified optimal perturbation
For the lower pulsation amplitude of Q̃ = 0.1, a maximal amplification of Gmax

max =
1.77 × 103 is achieved from ti = 0.166T to tf = 1.389T for streamwise invariant and
spanwise periodic perturbations with α1 = 0 and α2 = 4.073. The associated temporal
evolution of the perturbation energy E(t) is shown in figure 9(a), with the corresponding
instantaneous growth rate σ(t) in figure 9(b). Here, the transient growth is seen to
follow the classical pattern prevailing for steady Poiseuille flow: a strong and very short
initial boost for ti < t < t⋆ = 0.175T (blue parts of the curves), followed by a phase of
gradually weakening growth for t⋆ < t < tf (in red) towards the maximum response. And
indeed, these curves in figure 9(a,b) are almost identical to the accompanying insets
that correspond to the maximally amplified perturbations for steady Poiseuille flow at
the same Reynolds number, characterised by α1 = 0, α2 = 4.088, Gmax

max = 1.76 × 103.
This evolution is the result of energy production Π(t) and dissipation Θ(t), shown in
figure 9(c). As can be seen by plotting these quantities relative to the instantaneous
energy in figure 9(d), viscous dissipation plays here a minor part in the transient growth
throughout the entire process from ti to tf .

The temporal evolution of the spatial structure of the maximally amplified streaky
perturbation is illustrated in figure 10. Selected snapshots correspond to the thick black
dots in figure 9: ti = 0.166T optimal initial perturbation (thick blue curves); t = 0.169T
(thin blue curves); t⋆ = 0.175T at maximal instantaneous growth (thick green curves);
t = 0.500T (thin red curves); tf = 1.389T optimal response (thick red curves). In order
to enable comparison of these profiles throughout the temporal evolution, they have here
all been normalised to unit total energy. As expected, the initial perturbation consists in
streamwise aligned vortices, that fill the entire channel cross-section, with a vanishing
streamwise velocity component: see thick blue curves in figure 10(a–c) and corresponding
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Figure 9. Temporal development of maximally amplified perturbation at Re = 4000, Wo = 10 and Q̃ = 0.1.
Optimal perturbation is streamwise invariant with α1 = 0 and α2 = 4.073. (a) Evolution of energy E(t) from
ti = 0.166T to tf = 1.389T , leading to Gmax

max = 1.77 × 103. (b) Corresponding instantaneous growth rate σ(t).
(c) Energy production Π(t) (solid line) and dissipation Θ(t) (dashed line). (d) Production and dissipation
terms relative to instantaneous energy. Insets in panels (a) and (b) correspond to maximally amplified streaks
for steady Poiseuille flow at same Reynolds number.

vector plot in figure 10(e). Transient amplification promotes streamwise velocity while
reducing wall-normal and spanwise velocity components, leading to a final response
that solely consists of streamwise velocity: see thick red curves in figure 10(a–c) and
u1-isolines in figure 10( f ). The energy production profiles π shown in figure 10(d) result
from the interaction of base flow shear with u0 and u1, and are therefore significant
only around t⋆ = 0.175T (green curve), while displaying vanishing levels near ti and tf .
Dissipation profiles θ (not shown) remain at small values throughout the entire evolution.

Clearly, in this regime, the oscillating component of the base flow has a very weak
influence, the amplification process operates as for the equivalent steady Poiseuille flow
by redistributing streamwise momentum by streamwise vortices, and the dynamics is
essentially dictated by the lift-up effect. This insensitivity to the pulsating base-flow
component explains why the maximal growth factors Gmax

max prevailing for streaky optimal
perturbations remain at nearly constant level as Q̃ is increased, as observed in figure 6.

6.5.2. Two-dimensional maximally amplified optimal perturbation
A markedly different scenario prevails at higher pulsation amplitudes when the largest
transient amplification is achieved for two-dimensional (streamwise periodic and spanwise
invariant) perturbations.

As already shown in figure 5(d), for a pulsation amplitude of Q̃ = 0.2, the maximally
amplified optimal initial perturbation at Re = 4000 and Wo = 10 occurs for α1 = 2.619
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Figure 10. Evolution of spatial structure of maximally amplified streaks for Re = 4000, Wo = 10 and Q̃ = 0.1.
Spatial profiles of flow fields (normalised to unit total energy) over half-channel 0 ≤ x0 ≤ D/2 at different
snapshots: ti = 0.166T optimal initial perturbation (thick blue lines); t = 0.169T (thin blue lines); t⋆ = 0.175T
at maximum growth rate (thick green lines); t = 0.500T (thin red lines); tf = 1.389T optimal response (thick
red lines). Envelope of (a) wall-normal |u0(x0, t)|, (b) streamwise |u1(x0, t)| and (c) spanwise |u2(x0, t)|
velocity perturbations. (d) Energy production π(x0, t) terms. Snapshots of velocity fields in half-channel
over two spanwise wavelengths (λ2 = 2π/α2): (e) vector plot of (u0, u2) for initial perturbation at ti and
( f ) equispaced isolines of streamwise component u1 of response at t = tf .
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Figure 11. Temporal development of maximally amplified perturbation at Re = 4000, Wo = 10 and Q̃ = 0.2.
Optimal perturbation is two-dimensional with α1 = 2.619 and α2 = 0. (a) Evolution of energy E(t) from
ti = 0.168T to tf = 0.698T , leading to Gmax

max = 5.48 × 104. (b) Corresponding instantaneous growth rate σ(t).
(c) Energy production Π(t) (solid line) and dissipation Θ(t) (dashed line). (d) Production and dissipation terms
relative to instantaneous energy. Growth occurs in two stages: phase I (in blue) for ti < t < t⋆ and phase II (in
red) for t⋆ < t < tf , separated by stall at t⋆ = 0.251T (green vertical line).

and α2 = 0 and leads to an amplification of Gmax
max = 5.48 × 104 from ti = 0.168T to

tf = 0.698T . The temporal evolution of the perturbation energy is given in figure 11(a),
with the associated instantaneous growth rate in figure 11(b). The transient growth that
occurs over the interval ti < t < tf is here seen to develop in two stages: first a relatively
short period (phase I, blue curves) of rapid growth followed by a longer interval (phase
II, red curves) of weaker but almost constant growth. Between these two stages, the
amplification stalls and the instantaneous growth displays a minimum value, which is here
slightly negative around t⋆ = 0.251T . This two-stage evolution results from production
and dissipation contributions, as illustrated in figure 11(c,d): a first peak in Π(t) during
phase I is responsible for the rapid growth of the perturbation, followed by a sustained
nearly exponential increase during phase II. The contribution of the relative dissipation
Θ(t)/2E(t) is significant only at the very beginning, before rapidly dropping to low values.

The mechanisms responsible for the growth of the perturbation differ in both phases,
as illustrated by the profiles in figure 12. These plots show the evolution of the spatial
distribution of various fields by selected snapshots, corresponding to the thick black dots
in figure 11. Note that the perturbation profiles have again been normalised to unit total
energy. The envelopes of wall-normal |u0| and streamwise |u1| velocity components in
figure 12(a,b) show that the initial perturbation at ti (thick blue curves) is localised toward
the wall with maximum amplitude around x0 = 0.4D, before spreading over the entire
channel cross-section in the subsequent evolution. The spatial distribution of the base-flow
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Figure 12. Evolution of spatial structure of maximally amplified (two-dimensional) optimal perturbation
for Re = 4000, Wo = 10 and Q̃ = 0.2. Spatial profiles of flow fields (normalised to unit total energy) over
half-channel 0 ≤ x0 ≤ D/2 at different snapshots: ti = 0.168T optimal initial perturbation (thick blue lines);
t = 0.186T and t = 0.210T in phase I (thin blue lines); t⋆ = 0.251T at stall (thick green lines); t = 0.300T
and t = 0.500T in phase II (thin red lines); tf = 0.698T optimal response (thick red lines). (a) Envelope of
wall-normal |u0(x0, t)| and (b) streamwise |u1(x0, t)| velocity perturbations. (c) Energy production π(x0, t)
and (d) dissipation θ(x0, t) terms. Snapshots of (u0, u1) velocity fields in half-channel over two streamwise
wavelengths (λ1 = 2π/α1): (e) initial perturbation at t = ti and ( f ) response at t = tf .

interaction terms π(x0, t) (shown in figure 12c) reveals that the driving mechanism is
strong and concentrated around x0 = 0.4D in phase I (blue curves) while weaker and
evenly spread out in phase II (red curves). In contrast, plots of θ(x0, t) (figure 12d) show
that dissipation is only significant in the initial stages for t ≃ ti and reduced to a very thin
boundary layer near the wall throughout the rest of the evolution. The vector plot of the
initial perturbation in a streamwise channel cross-section (figure 12e) highlights the flow
structures concentrated near the wall and characteristically tilted upstream. In contrast, the
final response (figure 12f ) fills the entire channel.

926 A11-21



B. Pier and P.J. Schmid

10−4

10−2

100

E 102

104

106

I

ti tf tt
⋆

II

Gmax
max

Gnm

µ2
F

Figure 13. Temporal energy evolution of maximally amplified perturbation (blue and red curves) compared
with least stable normal mode (thick black curve), at Re = 4000, Wo = 10 and Q̃ = 0.2, for α1 = 2.619.
Normal-mode energy exponentially decays in the long term, according to a Floquet multiplier of µF = 0.0766,
but displays intracyclic amplification by a factor of Gnm = 4.30 × 103, approximately during half a pulsation
period. Optimal perturbation is amplified by Gmax

max = 5.48 × 104. Phase II (in red) closely follows normal mode
while phase I (in blue) is very similar to optimal growth prevailing for steady Poiseuille flow at same parameters
(inset). Grey sinusoidal curve represents base flow rate Q(t) (not to scale).

Finally, we compare the dynamics of the present maximally amplified optimal
perturbation with the development of the temporal normal mode prevailing for the same
pulsating base flow at the same spatial wavenumbers. Such normal modes have been
extensively computed and characterised in our previous investigation (Pier & Schmid
2017), using both Floquet eigenproblems and linearised direct numerical simulations.

All pulsatile base flows under consideration here are linearly stable so that temporal
eigenmodes decay in the long term. The thick black curve in figure 13 shows the temporal
evolution of perturbation energy for the least stable normal mode at Re = 4000, Wo = 10
and Q̃ = 0.2, with α1 = 2.619 and α2 = 0. The negative mean slope in this logarithmic
plot confirms the decay, governed by a Floquet multiplier of µF = 0.0766. Thus, the
perturbation energy of this normal mode is reduced by a factor of µ2

F after each
pulsation period. However, within each pulsation cycle, significant modulation occurs.
This intracyclic growth and decay has been shown to approximately coincide with
base-flow deceleration and acceleration phases (Pier & Schmid 2017), as indicated by
the grey sinusoidal line representing Q(t). Here, the normal mode displays an intracyclic
amplification of Gnm = 4.30 × 103.

Comparison of optimal-perturbation and normal-mode energy curves reveals that,
during phase II (t⋆ < t < tf , red part of curve in figure 13), the optimal perturbation closely
follows the normal-mode dynamics. And, indeed, optimal perturbation and normal mode
also display very similar flow fields during that interval.

In the initial phase I (ti < t < t⋆, blue part of curve in figure 13), however, the maximally
amplified perturbation takes advantage of the optimal initial condition responsible for the
initial boost in the response through the Orr mechanism. The amplification during phase I
is almost identical to the maximal growth experienced by a two-dimensional optimal initial
condition for steady Poiseuille flow at the same Reynolds number and same streamwise
wavenumber, shown in the inset in figure 13.

These considerations reveal that the maximally amplified two-dimensional perturbation
is an optimal combination of Orr mechanism (phase I) and intracyclic normal-mode
growth over half a pulsation cycle (phase II). Growth during phase I is essentially
determined by the equivalent steady Poiseuille base flow: the resulting amplification factor
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therefore scales approximately linearly on Re while being largely independent of Wo and
Q̃. In contrast, growth during phase II closely follows the intracyclic amplification of the
associated temporal eigenmodes, and the magnitude of this intracyclic growth has been
shown to strongly depend on Wo and Q̃: whatever the Womersley number, it increases
almost exponentially with Q̃, and the increase is fastest at the lower values of Wo (Pier
& Schmid 2017). This exponential growth with Q̃ explains why two-dimensional optimal
perturbations always eventually prevail over streaky perturbations, as observed in figure 6.

The maximal growth factor Gmax
max is obviously always larger than either contribution

of phase I or of phase II to the total growth. But while the contribution of phase I
remains at moderate levels (one or two orders of magnitude, as for steady Poiseuille
flow), it is phase II that is responsible for the huge amplification factors prevailing as the
modulation amplitude Q̃ increases. As a result, except for weak pulsation amplitudes, the
Orr mechanism only contributes a small factor to the maximal growth Gmax

max, while most
of the amplification process is due to modal growth during base-flow deceleration.

7. Pulsating pipe flow

After having presented detailed results for channel flows, we now turn to the transient
growth properties of pulsating flows through circular pipes. The organisation of this
section is similar to the previous one. However, since most features are equivalent, many
details may be omitted here.

By adopting the general formulation appropriate for both Cartesian and cylindrical
coordinates, the analysis of pulsating pipe flows is carried out with the same numerical
codes as previously used for pulsating channel flows. Due to periodicity in the azimuthal
coordinate, the wavenumber α2 only takes integer values, but otherwise the numerical
implementation proceeds as for a Cartesian formulation. Recall that the apparent
singularity at the pipe axis (x0 = 0) resolves itself by taking advantage of the symmetry
properties relevant for each flow component, since all flow fields are either symmetric or
antisymmetric in the radial coordinate x0.

7.1. Transient growth of streaks and helical perturbations
Since for steady Hagen–Poiseuille flow, streamwise invariant streaks with α2 = 1 and
α1 = 0 undergo the largest non-modal growth, we first consider the transient amplification
features prevailing for the same type of perturbations developing in pulsating pipe flows.
Figure 14 shows the amplification factors G(ti, tf ) obtained at Wo = 10, for Re = 2000
and 5000, Q̃ = 0.4 and 1.0. The control parameters are the same as those used in figure 2
for pulsating channel flow, and it is observed that the transient growth properties are very
similar.

For streamwise periodic (α1 /= 0) perturbations, the least stable temporal modes
correspond to helical perturbations with α2 = 1. Investigation of transient growth
characteristics for α1 /= 0 also confirms that perturbations with α2 = 1 dominate over
axisymmetric perturbations (α2 = 0) as well as over those of higher azimuthal order
(α2 ≥ 2).

Figure 15 illustrates the transient growth properties for α2 = 1 and α1 = 2 at Wo = 10
and Re = 2000 and Re = 5000 as the amplitude Q̃ of the pulsating base flow component
is increased. As for pulsating channel flow, a second maximum emerges that rapidly
dominates the dynamics beyond some value of the base flow modulation amplitude.
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Figure 14. Optimal transient amplification for streaks with α2 = 1 and α1 = 0 at (a,b) Re = 2000 and (c,d)
Re = 5000. Pulsating pipe flow at Wo = 10 and (a,c) Q̃ = 0.4 and (b,d) Q̃ = 1.0.

This maximum is again located near ti/T = 0.2 and (tf − ti)/T = 0.5 and corresponds
thus to amplification over half a pulsation cycle.

7.2. Optimal growth at given wavenumbers
The maximal transient growth Gmax, computed by optimisation of G(ti, tf ) over all values
of ti and tf for fixed wavenumbers α1 and α2, is shown in figure 16. In each plot the
evolution of Gmax curves for 0 < α1 < 6 is illustrated as Q̃ is increased from Q̃ = 0 to
Q̃ = 1 in steps of 0.1. Panels (a–c) compare the growth of axisymmetric perturbations,
α2 = 0 in panel (a), with that of helical perturbations, α2 = 1 in panel (b) and α2 = 2 in
panel (c). Clearly, under pulsating flow conditions, axisymmetric initial conditions
undergo transient amplification that is not much larger than for the equivalent steady
Poiseuille flow, as demonstrated by the nearly overlapping curves in figure 16(a).
Non-axisymmetric perturbations, however, experience transient amplification that rapidly
grows with Q̃, and strongest growth occurs for α2 = 1 (figure 16b). Computation of
Gmax for all α2 ≤ 6 (results not shown) reveals that the same scenario prevails at higher
azimuthal order, but the rate of increase of Gmax with Q̃ is significantly weaker for higher
α2.

Evolution of the growth characteristics for Re = 4000 with different Womersley
numbers, Wo = 8 in panel (d), Wo = 12 in panel (e) and Wo = 14 in panel ( f ), confirms
again that largest amplification factors occur for lower pulsation frequencies, i.e., longer
pulsation cycles.

Finally, values obtained at lower Re = 2000 for Wo = 8 in panel (g), 10 in panel (h)
and 14 in panel (i) show that the general trend is similar but with lower values of Gmax, as
expected for lower Re.

7.3. Maximal amplification
Finally, the maximal amplification Gmax

max achievable for a given pulsating pipe flow
is obtained by optimising Gmax(α1, α2) over all streamwise wavenumbers α1 and
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Figure 15. Optimal transient amplification for helical perturbations with α2 = 1 and α1 = 2 at (a–c)
Re = 2000 and (d–f ) Re = 5000. Pulsating pipe flow at Wo = 10 and (a,d) Q̃ = 0.1, (b,e) Q̃ = 0.4 and
(c, f ) Q̃ = 0.6.

azimuthal mode numbers α2. Figure 17 shows the variation of Gmax
max as the pulsation

amplitude Q̃ is increased for Womersley numbers in the range 5 ≤ Wo ≤ 15 and Re =
2000, 3000, 4000 and 5000. The behaviour is again found to be similar to that prevailing
for pulsating channel flows: at low pulsation amplitudes, Gmax

max hardly departs from the
value corresponding to the equivalent steady Poiseuille flow; beyond a critical value Q̃c of
the pulsation amplitude Q̃, transition to approximately exponential growth of Gmax

max with
Q̃ takes over. The results shown in figure 17(a) perfectly match those of figure 4(a) of Xu
et al. (2021), for the subset of control parameter values that is common to both studies.
This agreement further validates our methods.

The variation with Wo and Re of the critical value Q̃c for crossover between the two
regimes is shown in figure 18(a). In the exponential regime prevailing for Q̃ ≥ Q̃c, the
growth rates κ corresponding to the slopes in figure 17 are given in figure 18(b), computed
according to (6.1). For a given Reynolds number, the curves of Q̃c in figure 18(a) are seen
to display a minimum for moderate values of the Womersley number, while they increase
both for large and small values of Wo. The increase of Q̃c with Wo for Wo ≥ 10 is strongest
at lower values of the Reynolds number. In contrast, for Wo ≤ 10 the values of Q̃c depend
much less on Re.
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Figure 16. Maximum energy growth Gmax for pulsating pipe flows, over 0 < α1 < 6 at Q̃ = 0.0, 0.1, 0.2,
. . . , 1.0. Here (a–f ) Re = 4000 and (g–i) Re = 2000; (a–c,h) Wo = 10, (d,g) Wo = 8, (e) Wo = 12 and ( f,i)
Wo = 14; (a) α2 = 0, (b,d–i) α2 = 1 and (c) α2 = 2.

Comparison of the values of Q̃c and κ for pipe flows (figure 18) with those prevailing for
channel flows shown in figure 7, reveals that pipe flows require larger pulsation amplitudes
to switch to the regime with exponentially growing amplification factors Gmax

max. This is
especially true for lower Womersley numbers (see also figure 20 below with additional data
for Wo = 3). Also, while the growth rates κ display very similar trends for both channel
(figure 7b) and pipe configurations (figure 18b), the values for pipe flows are approximately
half those of channel flows.

The streamwise wavenumber α1 associated with the most amplified perturbation as
the pulsation amplitude Q̃ is varied for a range of Womersley numbers is monitored
in figures 19(a) and 19(b) for Re = 2000 and Re = 4000, respectively. These plots
demonstrate that the regime change occurring at Q̃c is indeed associated with a jump
in streamwise wavenumber from α1 = 0 for Q̃ < Q̃c to finite α1-values for Q̃ > Q̃c. In
contrast with channel flows, however, for all pulsating pipe flow configurations investigated
here, the optimal perturbations always occur with azimuthal mode number α2 = 1. Thus
the critical value Q̃c always corresponds to a transition from streaky (α1 = 0, α2 = 1) to
helical (α1 /= 0, α2 = 1) optimal perturbations, at the same azimuthal mode number.
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Figure 18. (a) Critical values Q̃c for transition between streaky and helical maximally amplified perturbations
in pulsating pipe flows. (b) Exponential growth rate κ of Gmax

max with Q̃ in the helical regime.

This regime change is also associated with a discontinuity in the duration of the growth
phase tf − ti for the optimal amplification process, as illustrated in figure 19(c,d) for
Re = 4000. The optimised duration tf − ti is given in mean-flow advection units τQ in
figure 19(c) and in units of the pulsation period T in figure 19(d). These plots illustrate
that pulsating pipe flows display similar transient dynamics as channel flows: for Q̃ < Q̃c,
the optimal duration tf − ti remains close to the value prevailing for the average parabolic
flow profile; for Q̃ > Q̃c, when helical perturbations dominate, maximal amplification
occurs over intervals corresponding approximately to half a pulsation period. Thus our
results confirm the findings of Xu et al. (2021) that helical perturbations dominate the
transient growth at large pulsation amplitudes. By our detailed comparison of channel and
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Figure 19. Characterisation of the maximally amplified optimal perturbations as the pulsation amplitude Q̃ is
increased for Wo = 6, 8, 10, 12, 14. Streamwise wavenumber α1 at (a) Re = 2000 and (b) Re = 4000. Duration
of transient growth tf − ti at Re = 4000 (c) measured in mean-flow advection units τQ and (d) in pulsation
periods T .

pipe configurations at moderate pulsation frequencies, we have been able to highlight the
fundamental growth mechanisms, which are common to both geometries.

8. Conclusion

Considering pulsating flows through both channels and pipes, we have investigated the
non-modal transient energy amplification resulting from optimal initial conditions. Our
study has systematically covered the pulsating base flows for 1000 ≤ Re ≤ 5000, 5 ≤
Wo ≤ 15 and 0 ≤ Q̃ ≤ 1.

While channel and pipe flows display quite different linear modal stability
characteristics, their non-modal transient growth features are found to be very similar in
situations that are linearly stable. Optimal energy growth occurs according to two distinct
scenarios. At weak pulsation amplitudes Q̃, the behaviour is similar to that resulting
from the equivalent steady Poiseuille flow, and the oscillating flow component appears
to have only a small effect. Beyond a critical value of Q̃, however, transient growth
increases exponentially with Q̃ and reaches astronomical values, already for moderate
pulsation amplitudes. In this latter regime, optimal growth mainly occurs over half a
pulsation period, during the slow part of the pulsation cycle, and closely follows the
intracyclic amplification of the associated Floquet eigenmodes. We have previously shown
(Pier & Schmid 2017) that the intracyclic modulation amplitudes derived from temporal
normal modes may be huge, even for linearly decaying eigenmodes. The maximal transient
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Figure 20. Evolution of maximal transient energy amplification Gmax
max with Q̃ for Wo = 3, 5, 10, 15 and 20 at

Re = 5000, for (a) channel and (b) pipe configurations.

amplification factors Gmax
max computed in the present investigation are even larger since

they take advantage of both this normal-mode intracyclic growth and non-modal Orr-type
amplification, which contributes in the early stage of the growth process.

These findings have been firmly established by a comprehensive investigation of
pulsating flows over the range 5 ≤ Wo ≤ 15, deemed to be the most relevant for
applications in the haemodynamic context. In order to explore the expected behaviour
beyond that frequency range, figure 20 shows the maximal achievable transient growth
Gmax

max for channel and pipe flows at Re = 5000, extending the results of figures 6(d) and
17(d) by including data at lower and higher pulsation frequencies, Wo = 3 and Wo = 20,
respectively. At high pulsation frequencies, it is observed that the pulsating component is
rather inefficient in producing Gmax

max factors beyond those prevailing for steady base flows,
a result closely related to the fact that high-frequency pulsation also has a strong stabilising
effect on modal temporal growth rates. In the low frequency regime, the curves for Wo = 3
indicate that strong growth is still possible but requires larger pulsation amplitudes Q̃.
When lowering Wo, the critical value Q̃c for onset of the exponential regime increases
moderately for channel flows and significantly for pipe flows (Q̃c ≃ 0.98 for Wo = 3).
These plots are in agreement with observations already made by Xu et al. (2021) for
pulsating pipe flows. Concerning the spatial structure of the optimal perturbations, the
results of figure 20 follow the same scenario as previously discussed: while streaky
perturbations prevail for Q̃ < Q̃c, at larger pulsation amplitudes two-dimensional and
helical perturbations dominate, respectively, in channel and pipe flows.

It should be noted that a major difference between channel and pipe flows concerns their
linear modal instability features. Indeed, for channel flows there exists a critical Reynolds
number beyond which linear instability occurs. This is well known for steady Poiseuille
channel flow, and the dependence of this critical Reynolds number with the pulsating
flow parameters has been extensively discussed in our previous work (Pier & Schmid
2017). By contrast, steady pipe Poiseuille flow remains linearly stable, whatever the
Reynolds number. For time-periodic base flows, linear instability has been found for purely
oscillating pipe flows (Thomas et al. 2011). However, the presence of a non-vanishing
mean flow rate appears to have a stabilising effect and all pulsating pipe flows considered
in the present study are far from temporal instability.

Another difference is that two-dimensional (spanwise invariant and streamwise
periodic) perturbations are the most unstable or the least stable for channel flows, whereas
the leading linear instability for pipe flows occurs for helical modes with α2 = 1 and
α1 /= 0, which dominate over perturbations of higher azimuthal order (α2 ≥ 2) as well
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as over axisymmetric (α2 = 0) ones. It is found that this remains true for pulsating pipe
flows.

While channel flows are rapidly dominated by two-dimensional sinuous perturbations,
pipe flows are dominated by helical perturbations in similar pulsating flow regimes.
For pipe flows, axisymmetric perturbations never prevail. But note that the Cartesian
equivalent of axisymmetric perturbations are two-dimensional perturbations of varicose
symmetry, which never prevail either. The closest equivalent to a two-dimensional sinuous
perturbation in a cylindrical geometry is a helical perturbation (with α2 = 1).

This study gives a detailed and comprehensive perspective on the perturbation dynamics
in pulsatile channel and pipe flow, treating these configurations within a time-dependent,
initial-value problem formalism and thus avoiding restrictive assumptions of a modal,
time-asymptotic approach. This analysis identified a rich perturbation behaviour driven
by parametric and transient excitation over one or multiple forcing cycles and the
dominance of an Orr-type amplification mechanism at early times that acts efficiently and
selectively across a significant parameter range, once a critical pulsation amplitude has
been surpassed.

Our study lays the foundation for a future analysis of pulsating base flows with higher
harmonic content, such as blood flow rates resulting from the cardiac pulse. The present
approach could also be generalised to take into account compliant walls or to address
nonlinear fluid effects.
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Appendix A. General formulation of the Navier–Stokes equations

In order to handle both Cartesian and cylindrical formulations of the governing
Navier–Stokes equations ((2.1) and (2.2)), a general set of spatial coordinates x0, x1, x2 and
associated velocity components u0, u1, u2 is used. These correspond to either wall-normal,
streamwise and spanwise directions for channel flows, or radial, streamwise and azimuthal
directions for pipe flows, respectively. Using these coordinates and velocity fields, the
components of the incompressible Navier–Stokes equations become

∂tu0 + (u · ∇)u0 −
1
x0

u2
2 = ν



∆u0 +
1
x2

0
(−u0 − 2∂2u2)



 − ∂0p, (A1)
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∂tu1 + (u · ∇)u1 = ν



∆u1



 − ∂1p, (A2)

∂tu2 + (u · ∇)u2 +
1
x0

u0u2 = ν



∆u2 +
1
x2

0
(−u2 + 2∂2u0)



 −
1
x0

∂2p, (A3)

0 = ∂0u0 +
1
x0

u0 + ∂1u1 +
1
x0

∂2u2, (A4)

with the notations
∂0 ≡ ∂x0, ∂1 ≡ ∂x1, ∂2 ≡ ∂x2, (A5a–c)

and

u · ∇ ≡ u0∂0 + u1∂1 +
1
x0

u2∂2, (A6)

∆ ≡ ∂00 + (1/x0)∂0 + ∂11 + (1/x2
0) ∂22. (A7)

In these expressions, the terms enclosed in boxes are only present in the formulation using
cylindrical coordinates and pertaining to the pipe flow configuration. Resorting to such a
general formalism is particularly useful when developing numerical codes to solve both
channel and pipe flows: the boxed terms may be switched on or off depending on the flow
configuration.

Appendix B. Analytic expressions of the pulsating base flow profiles

For pulsating base flows prevailing in infinite channels or pipes, the harmonic components
U(n)

1 (x0) of the streamwise velocity fields (3.1) display profiles following the shape
function W(ξ, ω) with ξ = 2x0/D and ω =

√
nWo.

When considering channel flows in Cartesian coordinates, the oscillating velocity
profiles are analytically obtained in terms of hyperbolic functions

W(ξ, ω) ≡
(

cosh(
√

iξω)

cosh(
√

iω)
− 1

)/(

tanh(
√

iω)
√

iω
− 1

)

, (B1)

for |ξ | ≤ 1 and ω /= 0, while the steady component is parabolic,

W(ξ, ω = 0) ≡ 3
2(1 − ξ2). (B2)

When considering pipe flows in cylindrical coordinates, the velocity profiles involve
Bessel functions

W(ξ, ω) ≡
(

J0(
√

−iξω)

J0(
√

−iω)
− 1

)/ (

2
√

−iω

J1(
√

−iω)

J0(
√

−iω)
− 1

)

, (B3)

with J0 and J1 denoting the classic Bessel functions of the first kind. The steady component
is again parabolic,

W(ξ, ω = 0) ≡ 2(1 − ξ2). (B4)

926 A11-31



B. Pier and P.J. Schmid

All the profiles above are normalised so that their cross-sectional average equals
unity. Thus, the pulsating base flow velocity components (3.4) are simply obtained by
multiplying these profiles with the flow rate coefficients Q(n).

Appendix C. Linear governing equations of direct problem

In the direct formulation of the incompressible Navier–Stokes equations (4.3), the spatial
differential operator L(x0, t) is a 4-by-4 matrix of the form

L(x0, t) ≡





















L00(x0, t) 0 L02(x0, t) −∂0
L10(x0, t) L11(x0, t) 0 −iα1

L20(x0, t) 0 L22(x0, t) −
1
x0

iα2

−∂0 −
1
x0

−iα1 −
1
x0

iα2 0





















, (C1)

Its coefficients involve ∂0-differentiation, depend on the spatial wavenumbers as well as
on the base flow velocity profiles. Their explicit expressions are the following:

L00(x0, t) = −iα1U1(x0, t) + ν



∆ −
1
x2

0



 , (C2)

L11(x0, t) = −iα1U1(x0, t) + ν∆, (C3)

L22(x0, t) = −iα1U1(x0, t) + ν



∆ −
1
x2

0



 , (C4)

L10(x0, t) = −∂0U1(x0, t), (C5)

L20(x0, t) = −L02(x0, t) = 2ν
iα2

x2
0

, (C6)

with

∆ ≡ ∂00 +
1
x0

∂0 − α2
1 −

1
x2

0
α2

2 . (C7)

Appendix D. Adjoint problem

In the adjoint formulation of the incompressible Navier–Stokes equations (4.5), the spatial
differential operator L†(x0, t) is obtained as

L†(x0, t) ≡

























L†
00(x0, t) L†

01(x0, t) L†
02(x0, t) −∂0

0 L†
11(x0, t) 0 −iα1

L†
20(x0, t) 0 L†

22(x0, t) −
1
x0

iα2

−∂0 −
1
x0

−iα1 −
1
x0

iα2 0

























, (D1)
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with

L†
00(x0, t) = −iα1U1(x0, t) − ν



∆ −
1
x2

0



 , (D2)

L†
11(x0, t) = −iα1U1(x0, t) − ν∆, (D3)

L†
22(x0, t) = −iα1U1(x0, t) − ν



∆ −
1
x2

0



 , (D4)

L†
01(x0, t) = ∂0U1(x0, t), (D5)

L†
20(x0, t) = −L†

02(x0, t) = 2ν
iα2

x2
0

. (D6)
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The present investigation revisits the linear stability of Poiseuille channel flow
interacting with compliant walls. The results obtained include the dynamics of Tollmien-
Schlichting (TS) modes as well as flow-induced surface-instability (FSI) modes, in the
form of both traveling-wave flutter (TWF) and divergence modes. The compliant wall
model consists of a spring-backed plate with a viscous substrate deformable in the vertical
direction [C. Davies and P. W. Carpenter, J. Fluid Mech. 352, 205 (1997)]. At the interface
between the fluid and the walls, the continuity of velocities and stresses, including both
viscous and pressure contributions, are taken into account. The FSI modes (both varicose
and sinuous) and TS modes are then reinterpreted in the light of the two principal nondi-
mensional control parameters: the Reynolds number (Re), which characterizes the base
flow, and the reduced velocity (VR), which measures the response of the flexible wall to hy-
drodynamic loading [E. De Langre, La Houille Blanche, 3, 14 (2000)]. The characteristics
of TS and FSI modes are systematically investigated over a large control-parameter space,
including wall dissipation, spring stiffness, and flexural rigidity. We observe that TWF
modes are primarily governed by VR and largely independent of the Reynolds number. It is
found that the instability is generally dominated by the TWF mode of varicose symmetry.
Divergence and TS modes are both affected by VR and Re, confirming that these modes
belong to a different class. The onset of the divergence mode is mainly observed for
the sinuous motion, when increasing the dissipation. To provide physical insight into the
mechanisms driving these instabilities, the perturbative energy equations for both FSI and
TS modes are analyzed for a wide range of wall parameters and wavenumbers.

DOI: 10.1103/PhysRevFluids.7.023903

I. INTRODUCTION

The constant scientific interest to extend the laminar regime for industrial applications has led to
the development of compliant walls since the beginning of the 20th century. In particular, researchers
focused on finding optimum wall properties, aiming to delay the laminar-turbulent transition.

In the biological context, interactions between fluid and elastic forces associated with a de-
formable channel or tube lead to a variety of physiologically significant phenomena. In particular,
deformability plays a prominent role in blood flow as well as peristaltic transport, for example,
through the intestines and the urogenital tract (see [1,2] for a review).

Such interest arose from Gray’s paradox [3]. Gray showed that, to overcome the friction drag of
a swimming dolphin subjected to a turbulent flow around its body, the muscles have to be capable
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of generating a power at least seven times greater than that of other kinds of mammalian muscle.
Hence, Gray has suggested that the dolphin skin is able to delay the laminar-turbulent transition. In
the laminar regime, indeed, the power developed by muscles would still conform to that of other
types of mammalian muscle.

Kramer [4] in the 1950s developed a compliant coating trying to mimic the dolphin’s skin. The
author claimed that he was able to reduce the drag of a torpedolike model by as much as 60%.
Later, the conclusions of both Gray’s hypotheses and Kramer’s experiments were in part questioned.
Russian and American experiments since the 1980s failed to reproduce results provided by Kramer.
In addition, scientists observed that the lower turbulence level around the dolphin’s swimming body
could also be attributed to local pressure gradients. It was also suggested that a reduction in the
friction drag may result from the fact that the dolphin leaps out of the water for breathing (see [5–7]
for reviews).

However, Gaster’s experiments in 1988 [8] gave new hope in using compliant walls to delay
laminar-turbulent transition. He showed that the growth rates of artificially generated Tollmien-
Schlichting (TS) waves are inhibited when using appropriate coatings. These experiments have
given a strong impulse to theoretical developments aiming to tackle this problem.

A major difficulty arises from the design of compliant wall models that are able to couple fluid
and solid dynamics. These models may be separated into two categories: surface based and volume
based (see [7,9] for a review). The first class of models is less computationally demanding and
considers an infinitely thin wall interacting with the fluid through an interface condition. In this
case, the wall is defined as a thin plate mounted on springs and dampers. The wall parameters
are classically the spring stiffness, the tension, the bending stiffness, its mass, and the damping
coefficient.

For the second family of models (i.e., volume based), the wall material is fully described to
include single- or multilayer coatings (see [10] and [9] for recent reviews). However, Duncan [11]
has shown that a surface model can be used to quantitatively describe many aspects of instabilities
and wave propagation on the surface of an elastic and incompressible coating.

Here, the surface-based approach is adopted. Within this approach and following the lead of
Benjamin [12–14], which relies on the theory developed by Miles for water waves [15], Carpenter
and Garrad [16,17] focused on the stability of boundary-layer flows over Kramer-type compliant
walls. They provided some confirmation of the transition-delaying potential of compliant coatings.
According to Carpenter and Garrad [16,17], instability modes can be classified into two categories:
fluid based (TS mode) and solid based (flow-induced surface instabilities, or fluid-structure instabil-
ities, referenced as FSI hereafter). The last category includes both the traveling-wave flutter (TWF)
modes and the (almost static) divergence modes. For the divergence mode, scientists are still arguing
about its precise nature. It is either interpreted as an absolute instability [18] or it may also result
from a modal instability with a nearly vanishing phase velocity when increasing the wall dissipation
[19].

While the surface-based model has been extensively used for external flows such as boundary
layers, very few studies have been conducted on internal flows (see, for instance, the recent review
of Kumaran [9]). Among them, Davies and Carpenter [20,21] investigated linear instability waves
that emerge when a viscous incompressible flow interacts with infinite or finite spring-backed plates
in a plane channel.

Considering only sinuous perturbations, Davies and Carpenter [20] derived a theory for the
motion of the walls and obtained neutral stability curves for both FSI and TS modes and some
values of flexural rigidity of the plate, spring stiffness, and damping. The same year, these authors
investigated the dynamics of TS waves that propagate over a compliant panel of finite length, using
linearized numerical simulations [21]. For low external disturbances, Davies and Carpenter [21]
then suggested that the use of multiple-panel compliant walls could maintain the laminar flow
regime at all Reynolds numbers in a plane channel flow. This seminal work was also limited to
the sinuous symmetry. These prior analyses have been extended to the varicose motion of the walls
for the same case with infinite compliant walls by Nagata and Cole [22]. Despite the fact that this
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investigation focused only on a narrow region of the parameter space to make definite statements,
the authors found that the varicose TWF mode can be amplified prior to its sinuous counterpart. A
similar analysis was recently conducted to address the effect of pulsatile Poiseuille flow through a
compliant channel [23] for modal and nonmodal instabilities. Although the latter extended results
discussed above to pulsatile flows and short-time perturbations, it has not brought new elements
for the asymptotic regime of the steady flow case. Finally, Gajjar and Sibanda [24] investigated a
viscous flow in a channel in which only one wall is compliant. The same spring-plate model is used
by the authors and the nonlinear evolution of disturbances have been obtained in the limit of large
Reynolds numbers within the nonlinear critical layer theory.

The aforementioned analyses address the amplification of FSI and TS modes for compliant
channel flows but it should be noted that the models used above have some limitations. First, these
analyses use the Reynolds number as a control parameter for both FSI and TS modes. This approach
is not entirely satisfactory because a change in the Reynolds number also leads to a change in the
compliant wall characteristics. Therefore, the reduced velocity, defined as the ratio between the
characteristic time of the solid and that of the fluid, has been advocated by de Langre [25] to measure
the strength of the fluid-structure interactions independently of the Reynolds number. Second, a
rigorous treatment of the pressure at the wall is key for a complete analysis of fluid-structure
interaction problems. On one hand, a consistent formulation was indeed derived by Davies and
Carpenter [20] under the form of an Orr-Sommerfeld-like equation accounting for compliant walls.
However, this formulation only applies to perturbations of sinuous symmetry. On the other hand,
Nagata and Cole [22] and Tsigklifis and Lucey [23] used a primitive formulation combined with
a spectral collocation method without any specific treatments for the pressure and the additional
boundary conditions arising from the wall equation. In this case, spurious eigenvalues are likely to
occur [26]. Third, as suggested by Nagata and Cole [22], the varicose symmetry is as important as
the sinuous one for FSI modes. Nevertheless, as far as we know, existing studies of varicose modes
only explore a narrow parameter range. As a consequence, the potential gain in using compliant
walls to delay laminar-turbulent transition in a plane channel flow could be challenged significantly.

The purpose of the present paper is therefore to revisit the instability modes that emerge when
a viscous flow interacts with two parallel spring-backed plates and hope to address the inherent
limitations mentioned above. Thus, we reconsider this problem by using the reduced velocity to
describe FSI modes. A general formulation is implemented, free of spurious modes, suitable for both
sinuous and varicose symmetries, and taking into account the exact hydrodynamic forces acting on
the walls. A wide range of wall parameters has been explored to highlight their influence on both
FSI and TS modes. Only two-dimensional perturbations are considered since the Squire theorem
holds for compliant walls [27].

The paper is organized as follows. Section II presents the model and governing equations used
for the fluid-structure interaction problem. In particular, the dimensionless parameters and linearized
equations will be introduced. After the numerical methods are presented in Sec. III, Sec. IV provides
some physical insight into the influence of wall parameters onto FSI and TS modes for both the
sinuous and varicose symmetries. For that purpose, kinetic energy budgets are also computed.
Conclusions and prospects are given in the last section.

II. PROBLEM FORMULATION

A. Fluid-structure interaction model and interface conditions

In the entire paper, we restrict our analysis to the two-dimensional problem. Using a Cartesian
coordinate system (x, y) with unit vectors (ex, ey), we consider an incompressible Newtonian fluid
with dynamic viscosity μ and density ρ between two spring-backed deformable plates located
at y = ζ±(x, t ), which are allowed to move only in the y direction. A schematic diagram of the
configuration is shown in Fig. 1.
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FIG. 1. Channel flow with infinite spring-backed flexible walls.

The flow between the walls is governed by the Navier-Stokes equations:

∂u
∂t

+ u · ∇u = − 1

ρ
∇p + ν�u,

∇ · u = 0, (1)

where u = (u, v) and p represent the velocity and pressure fields, u (v) denotes the streamwise
(wall-normal) velocity component, and ν ≡ μ/ρ is the kinematic viscosity of the fluid.

The movement of the flexible plates obeys the following equations, derived through Newton’s
second law:

m
∂2ζ±

∂t2
+ d

∂ζ±

∂t
+
(

B
∂4

∂x4
− T

∂2

∂x2
+ K

)
ζ± = f ±. (2)

Here, m denotes the mass per unit area of the plates, d their damping coefficient, B the flexural
rigidity, T the wall tension, K the spring stiffness, and f ± represents the y component of the forces
acting on the plates. These forces are obtained as

f ± = ey · f± with f± = (τ
± − δp±I) · n±. (3)

Here τ
±

denotes the viscous stress tensor at the walls and δp± the transmural surface pressure, i.e.,
the difference between the surface pressure inside and outside of the channel, and n± is the unit
vector normal to the walls pointing towards the fluid.

The viscous stress tensor at the walls has the following expression:

τ
± =

⎛
⎜⎜⎜⎜⎝

2μ
∂u

∂x
μ

(
∂u

∂y
+ ∂v

∂x

)

μ

(
∂u

∂y
+ ∂v

∂x

)
2μ

∂v

∂y

⎞
⎟⎟⎟⎟⎠

∣∣∣∣∣∣∣∣∣∣
y=ζ±

, (4)
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and the normal vectors to the interface n± = (n±
x , n±

y ) are obtained as

n±
x = ±∂ζ±

∂x

1√
1 + (

∂ζ±
∂x

)2
and n±

y = ∓ 1√
1 + (

∂ζ±
∂x

)2
. (5)

Combining Eqs. (3)–(5) yields the y component of the hydrodynamic forces acting on the
compliant walls,

f ± =
[
±μ

(
∂u

∂y

∣∣∣∣
y=ζ±

+ ∂v

∂x

∣∣∣∣
y=ζ±

)
ζ±

x ∓ 2μ
∂v

∂y

∣∣∣∣
y=ζ±

± δp±
]/√

1 +
(

∂ζ±

∂x

)2

, (6)

which governs the wall dynamics (2) since the wall movement is constrained to occur only in the y
direction. Note that in this approach there are no hydrodynamic forces acting on the plate from the
outside, except for a pressure.

Finally, the no-slip conditions on both walls lead to the kinematic conditions prevailing at the
moving boundaries:

u = 0 and v = ∂ζ±

∂t
for y = ζ±. (7)

Thus, the fluid-structure interaction problem is completely determined by the coupling of the fluid
equations (1), the wall equations (2), and boundary conditions (7).

B. Dimensionless control parameters

The present compliant-channel flow configuration is characterized by nine dimensional param-
eters: the volumetric flow rate Q (m3 s−1); the half height h (m) of the channel; the fluid density ρ

(kg m−3); the kinematic viscosity ν (m2 s−1); the mass of the plate per unit area, m (kg m−2); the
damping coefficient of the wall, d (kg m−2 s−1); the bending stiffness of the plate, B (kg m2 s−2);
the wall tension T (kg s−2); and the spring stiffness K (kg m−2 s−2). Hence, this system may
be described by six dimensionless parameters. A useful parameter to characterize fluid-structure
interaction phenomena is the reduced flow velocity VR, defined [25] as the ratio of a characteristic
time of the structure to a characteristic time of the flow. Using time scales based on spring stiffness,

τK =
√

m

K
,

and flow advection,

τQ = 4h2

Q
,

the reduced velocity is obtained as VR = τK/τQ. Other choices based on different characteristic
times would be possible. For VR � 1, the influence of the wall compliance is negligible, while
VR � 1 corresponds to very soft walls. Hence, the resulting six nondimensional control parameters
are ⎧⎪⎪⎨

⎪⎪⎩
Re = Q

ν
, VR = Q

4h2

√
m

K
, 	 = m

ρh
,

d
 = d√
mK

, B
 = B

Kh4
, T
 = T

h2K
.

(8)

Here Re is the Reynolds number based on channel diameter and average flow velocity, and 	 is the
mass ratio between the compliant walls and the fluid. The three nondimensional wall parameters
d
, B
, and T
 are all relative to the spring stiffness K , which serves as reference for the reduced
velocity VR. One may notice that in several previous studies [20,22,28] fluid quantities are used to
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build nondimensional parameters for the wall. As underlined by Domaradzki and Metcalfe [29],
this may correspond to nonphysical situations where at each Reynolds number a different compliant
wall and a different fluid are considered. In the present work, the Reynolds number may be modified
using ν and/or Q without changing the wall properties. Hereafter, the mass ratio is kept constant at
	 = 2 and we only consider walls without tension, T = 0. We fix the three dimensional parameters
at ρ = 1, h = 1, and τQ = 1.

C. Formulation of the linearized model

This entire study considers the dynamics of small-amplitude perturbations, obeying the linearized
version of the governing equations around a steady base state. The unperturbed base configuration
thus consists of a parabolic Poiseuille flow U(y) = (Ub(y), 0) between parallel walls located at
y = ±h [see Fig. 1(a)]. This flow is driven by a pressure Pb(x) = P0 − Gx of constant streamwise
gradient, and we assume a pressure outside the channel walls always equal to Pb(x), so as to
equilibrate the forces acting on both sides of the walls for unperturbed conditions.

The total flow fields are then decomposed as u(x, y, t ) = U(y) + u′(x, y, t ) and p(x, y, t ) =
Pb(x) + p′(x, y, t ). The wall displacement is written as ζ±(x, t ) = ±h + η±(x, t ).

Considering that the perturbation components u′, p′, and η± are of small amplitude, the governing
equations may be linearized about the base state.

Since the base state is steady and homogenous in the streamwise direction, the perturbation to
the velocity fields, pressure fields, and normal displacements are expressed in normal-mode form as

u′(x, y, t ) = û(y)ei(αx−ωt ), p′(x, y, t ) = p̂(y)ei(αx−ωt ), and η±(x, t ) = η̂±ei(αx−ωt ), (9)

with α the streamwise wavenumber and ω the frequency. Hereafter, we adopt a temporal viewpoint
where α ∈ R and ω = ωr + iωi ∈ C, with ωi the temporal amplification rate of the mode and
ωr its circular frequency. Substitution of this decomposition into the Navier-Stokes equations and
linearization about the base flow leads to⎧⎪⎪⎨

⎪⎪⎩
−iωρû + ρiαûUb + ρv̂

dUb

dy
= −iα p̂ + μ

(
d2

dy2
− α2

)
û,

−iωρv̂ + ρiαv̂Ub = −d p̂

dy
+ μ

(
d2

dy2
− α2

)
v̂,

(10)

together with the divergence-free condition

iαû + d v̂

dy
= 0. (11)

Linearization of the wall equations (2) and (6) yields⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−ω2mη̂+ − iωd η̂+ + (Bα4 + T α2 + K )η̂+ = +p̂(h) + μ

(
iα

dUb

dy

∣∣∣∣
h

η̂+
)

− 2μ
d v̂

dy

∣∣∣∣
+h

,

−ω2mη̂− − iωd η̂− + (Bα4 + T α2 + K )η̂− = −p̂(−h) − μ

(
iα

dUb

dy

∣∣∣∣
−h

η̂−
)

+ 2μ
d v̂

dy

∣∣∣∣
−h

.

(12)
Following Shankar and Kumaran [30], the boundary conditions at the perturbed interface are

implemented using Taylor series about the base state at y = ±h. At linear order, the flow velocity at
the walls reads

u(x, y = ζ±, t ) = u′(x, y = ±h, t ) + η± dUb

dy

∣∣∣∣
±h

ex. (13)
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Thus, the kinematic boundary conditions (7) become

û(±h) + η̂± dUb

dy

∣∣∣∣
±h

= 0 and v̂(±h) = −iωη̂±. (14)

Then, by using Eqs. (14) and the divergence-free condition, the right-hand side of Eqs. (12) can be
further simplified, leading to⎧⎪⎪⎪⎨

⎪⎪⎪⎩
−ω2mη̂+ − iωd η̂+ + (Bα4 + T α2 + K )η̂+ = +p̂(h) − μ

d v̂

dy

∣∣∣∣
h

,

−ω2mη̂− − iωd η̂− + (Bα4 + T α2 + K )η̂− = −p̂(−h) + μ
d v̂

dy

∣∣∣∣
−h

.

(15)

Equations (10), (11), and (15) completely govern the dynamics of small-amplitude perturbations
and take into account the linearized fluid-structure coupling as derived from the exact hydrodynamic
forces.

III. NUMERICAL METHODS

In this work, we follow the general framework described by Manning et al. [26] for avoiding
spurious eigenvalues. First of all, we rewrite Eqs. (15) using velocity components at the boundaries.
For illustration purposes, only the upper wall is here considered.

Using the condition −iωη̂+ = v̂(h), we obtain

−iωv̂(h) = W1v̂(h) + W2û(h) + 1

m
p(h), (16)

with

W1 = − d

m
− 2

μ

m

d

dy
and W2 = (Bα4 + T α2 + K )

m dUb
dy

∣∣∣∣
h

− μ

m
iα.

The kinematic condition û(h) + η̂+ dUb

dy
|h = 0 is recast as

−iωû(h) + v̂(h)
dUb

dy

∣∣∣∣
h

= 0. (17)

The velocity components and pressure are discretized in the y-direction using a Chebyshev
collocation method. To avoid spurious pressure modes, we consider the so-called PN − PN−2

approximation in which the pressure is approximated with a polynomial of degree N − 2 while the
velocity is discretized with a polynomial of degree N [31]. From this point, we note the vectors con-

taining the unknowns: V = (

VBC︷ ︸︸ ︷
û0, ûN , v̂0, v̂N ,

VI︷ ︸︸ ︷
û1, . . . , ûN−1, v̂1, . . . , v̂N−1) and PI = ( p̂1, . . . , p̂N−1),

where we separate the boundary values (VBC) from the interior points (VI). Hence, the discretized
counterpart of the previous continuous model [Eqs. (10), (15), and (14)] reads

4︷ ︸︸ ︷ 2(N−2)︷ ︸︸ ︷ N−2︷ ︸︸ ︷⎡
⎣ A1 A2 A3

B1 B2 B3
0 C2 0

⎤
⎦
⎡
⎣ VBC

VI
PI

⎤
⎦
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= iω

⎡
⎣ I 0 0

0 I 0
0 0 0

⎤
⎦
⎡
⎣ VBC

VI
PI

⎤
⎦ }4

}2(N − 2)
}N − 2,

(18)

where the divergence-free condition is imposed on the interior points and I denotes the identity
matrix. The derivative matrices based on Chebyshev polynomials are either expressed on the interior
points only (for the pressure) or all the nodes (for the velocity components) [31]. Note that the
boundary equations involve the pressure at y = ±h: these values are readily obtained by polynomial
interpolation with spectral accuracy, corresponding to matrix A3.

The discrete counterpart of the divergence-free condition reads C2VI = 0. Hence, from

0 = C2(iωVI) = C2B1VBC + C2B2VI + C2B3PI,

the vector PI can be expressed as a function of VI and VBC:

PI =
MBC︷ ︸︸ ︷

−(C2B3)−1C2B1 VBC

MI︷ ︸︸ ︷
−(C2B3)−1C2B2 VI.

Thus eliminating the pressure, the system (18) is recast as[
A1 + A3MBC A2 + A3MI
B1 + B3MBC B2 + B3MI

][
VBC
VI

]
= iω

[
I 0
0 I

][
VBC
VI

]
. (19)

System (19) still contains N − 2 null eigenvalues due to the divergence-free constraint. We can
further reduce Eq. (19) by eliminating the streamwise velocity components at the interior points

[26]. Indeed, using VI = (

U︷ ︸︸ ︷
û1, . . . , ˆuN−1,

V︷ ︸︸ ︷
v̂1, . . . , ˆvN−1), the divergence-free condition C2VI = 0

becomes iαU + C2VV = 0. Thus, for α 	= 0, the streamwise velocity U is obtained as a function
of V. This then leads to a discrete version of the Orr-Sommerfeld equation for the fluid-structure
interaction problem of the form[ • •

• •
][

VBC
V

]
= iω

[
VBC

V

]
. (20)

This system may be further reduced [32], by considering perturbations of either sinuous or varicose
symmetry and using only half of the channel together with derivative operators appropriate for the
symmetry of each component of the different flow fields.

Apart from the fact that the above algebraic transformations remove spurious eigenvalues, they
also drastically reduce the computational effort. The system is either solved using the QZ algorithm
from the LAPACK library or an Arnoldi technique provided by the ARPACK software. The numerical
procedure is validated and discussed in the Appendix. The number of collocation points is varied
from 100 to 300 as the Reynolds number is increased.

IV. LINEAR STABILITY RESULTS

After the formulation of the linear fluid-structure interaction problem and the presentation of
the numerical methods, we are now in a position to analyze its dynamics. The different classes of
modes and their dependence on the control parameters are investigated in detail. Specific attention
is devoted to provide physical insight through total energy budget analyses.

A. Spectra and classes of modes

A typical spectrum is shown in Fig. 2, corresponding to a base configuration at Re = 7000, VR =
1, B
 = 4, d
 = 0.2, and perturbations with wavenumber α = 0.6. Since the base state is symmetric
in y, the entire spectrum consists of the same number of modes of either varicose (red symbols)
or sinuous (blue) symmetry. The Orr-Sommerfeld modes (× and +) are essentially due to the base
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FIG. 2. Eigenvalue spectrum for perturbations with α = 0.6 at Re = 7000, VR = 1, B
 = 4, and d
 = 0.2.
Orr-Sommerfeld modes (+, sinuous; ×, varicose) are located on three main branches (A, P, and S) and
dominated by TS mode (circle); four modes (� and �) are due to fluid-structure interactions. Modes of varicose
and sinuous symmetry are shown in red and blue, respectively.

Poiseuille flow and organized in three branches (classically labeled A, P, and S [33]), as for rigid
channels. This part of the spectrum is dominated by the TS mode (indicated by the circle in Fig. 2)
of sinuous symmetry. In the present configuration, the coupling between the fluid and wall equations
leads to four additional eigenvalues (indicated by � and �) and referenced hereafter as FSI modes.
Two of these FSI modes travel upstream (ωr < 0), while the other pair of FSI modes propagates
along the flow direction (ωr > 0); each of these pairs consists of a sinuous and a varicose mode.

To gain a better understanding of these eigenmodes, we monitor changes in the spectrum
resulting from the variation of some control parameters. A few typical scenarios are shown in Fig. 3.

FSI modes strongly depend on the reduced velocity VR, as shown in Fig. 3(a). When VR → 0,
which corresponds to approaching the rigid-walls case, the growth rates of the FSI modes reach
neutrality (ωi → 0) while their phase velocities tend to infinity (ωr → ±∞). For the range of base
state configurations shown here, the upstream propagating FSI modes are always stable, albeit with
a weak decay rate, and their (negative) phase velocities reach very small values as VR is increased:
this behavior is characteristic of divergence modes, as observed for boundary-layer flows along
highly damped walls [19]. On the other hand, the downstream propagating FSI modes are strongly
destabilized as VR is increased; these modes are identified as TWF modes. In contrast with the FSI
mode dynamics, the TS mode only weakly depends on VR since it is mainly driven by the shear flow
[see inset in Fig. 3(a)]. Consistently with the definition of VR, the eigenvalue corresponding to the
TS mode matches the one found for the rigid case when VR → 0. The other Orr-Sommerfeld modes
on the A branch also display only a weak dependence on VR, while those on the P and S branches
appear to be mostly unaffected.

The influence of the wall-damping parameter d
 is shown in Figs. 3(b) and 3(c) for VR = 1 and
VR = 2, respectively. The growth rate ωi of the downstream propagating TWF modes is seen to
significantly decrease with wall dissipation d
. Thus wall damping has a strongly stabilizing effect
on both sinuous and varicose TWF modes. For VR = 1, Fig. 3(b) shows that wall damping has
a similar stabilizing effect on the upstream propagating FSI modes. However, at the larger value
VR = 2 of the reduced velocity [Fig. 3(c)], these FSI modes are nearly stationary divergence modes.
In that regime, an increase in wall damping d
 results in an increase of their negative growth rate,
and the phase velocity is seen to vanish in the limit of large wall damping d
. Here destabilization of
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FIG. 3. Influence of VR and d
 on eigenspectra for α = 0.6 at Re = 7000 and B
 = 4. (a) VR = 0.01, 0.5,
1, 1.5, and 2 (in blue, black, red, green, and brown, respectively) at d
 = 0. (b) d
 = 0, 0.2, 0.5, 1, and 2 (in
black, blue, green, red, and brown, respectively) at VR = 1. (c) d
 = 0, 0.4, 0.8, 1, 2, 4, 6, 10, and 20 (in black,
blue, red, green, orange, light blue, grey, pink, and brown, respectively) at VR = 2. Some mode trajectories are
also represented.

the divergence modes occurs for large values of d
. One may recall that while the sinuous TWF and
divergence modes were investigated numerically by Davies and Carpenter [20], the varicose TWF
and divergence modes have not been explored for the plane channel flow.

Thus, the influence of the various control parameters may be summarized as follows: the TS
mode is temporally damped by an increase of VR, but its temporal amplification rate may be
amplified with an increase in wall damping for a certain range of streamwise wavenumbers. A
different behavior is found when the TWF modes are considered: their growth rate increases with
VR, while it decreases with d
. This is consistent with the mode classification given by Benjamin [14]
(i.e., class A for TS modes and class B for TWF modes). Moreover, the divergence mode is seen to
be amplified for high values of wall-damping parameter. Finally, the effect of the wall compliance
is seen to be negligible for both P and S branches.

To further identify the different types of modes with respect to Benjamin’s classification, the
eigenfunctions of a few selected modes are shown in Fig. 4.
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FIG. 4. Eigenfunctions for Re = 7000 and B
 = 4. (a) TS (sinuous) mode for α = 1, d
 = 4, and VR = 0.5.
(b) Sinuous TWF mode for α = 0.6, d
 = 0, and VR = 1. (c) Varicose TWF mode for α = 0.6, d
 = 0, and
VR = 1. (d) Sinuous divergence mode for α = 0.6, d
 = 20, and VR = 2. (e) Varicose divergence mode for
α = 0.6, d
 = 20, and VR = 2. The phase angles of eigenfunctions are denoted as φu and φv for u′ and v′,
respectively. The eigenfunctions are normalized to the unit kinetic energy norm.

One may recall that the mechanism whereby both TWF modes and TS modes grow involves the
action of the streamwise velocity base flow gradient along the wall-normal position working against
the Reynolds stresses. In the absence of an inflection point, both modes involve a phase shift of the
disturbance velocity at some distance from the wall [34]. However, mechanisms are quite different
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for each of these modes. Within a large-Reynolds-number asymptotic theory, viscous effects are
only present in the vicinity of the viscous wall layer or the critical layer, located at the wall-normal
position yc where Ub(yc) = ωr/α [34]. The inviscid approximation is therefore accurate in the other
regions of the flow. For the TWF mode, the instability mechanism is essentially driven by the wall.
Indeed, the instability is amplified if the work done by the pressure disturbance on the wall is positive
when averaged over one period [12]. As first proven by Miles [15] for water waves, Benjamin [13]
shows for the boundary-layer-flow case that it results from a phase shift between disturbance wall
pressure and wall displacement. In particular, Benjamin [13] proves that the pressure at the wall is
associated with the integrated effect of the velocity perturbations along the wall direction and is a
consequence of a phase shift for velocity components near the critical layer. We note hereafter φu

and φv as the phases of the respective velocity components û and v̂ of the associated eigenfunctions.
For TWF modes [see Figs. 4(b) and 4(c)], the essential phase shift (i.e., φu − φv 	= π/2) occurs
near the critical layer in the limit of large Reynolds numbers (class B modes). For the TS mode
[Fig. 4(a)], the phase shift is rather associated with the viscous wall layer. They belong to class
A modes and are stabilized through a transfer of energy to the wall. Hence it is essential, when
addressing the different classes of modes, to monitor the phases of the perturbation components.
Figure 4(b) shows that the sinuous TWF mode exhibits a clear phase shift near the critical layer
in agreement with class B modes. It is consistent with the theoretical investigation of Davies and
Carpenter [20] for the same flow case. The linear behavior along with the wall-normal position of
û is associated with a displacement of the Poiseuille solution when the walls are shifted with η. It
is easily verified that the small deviation from the Poiseuille solution due to sinuous motion of the
walls is proportional to −2η̂y (see also [35]). Interestingly, the varicose case [Fig. 4(c)], not studied
by Davies and Carpenter [20], also exhibits a phase shift.

Finally, the divergence mode [Figs. 4(d) and 4(e)] exhibits a phase shift in the viscous wall layer.
Nevertheless, due to the low velocity phase, the viscous wall layer and the critical layer are not
well separated. As a consequence, the theoretical framework derived by Davies and Carpenter [20]
cannot be applied for these modes.

For all FSI modes (both TWF and divergence), velocity and pressure fluctuations are concen-
trated near the wall. For the TS mode, as for the rigid case, the streamwise velocity component
peaks at the critical layer.

B. Temporal growth and instability onset

The stability features of compliant channel flow configurations depend on a large number of
parameters. In the previous section we have shown that the reduced velocity VR is the main control
parameter governing fluid-structure interactions, but growth rates of the different classes of modes
may also depend significantly on Reynolds number Re, wall dissipation d
, and flexural rigidity B
.
In the present section, we will map out the stability characteristics by monitoring the dispersion
relation in the (VR, α) plane for selected values of the other relevant control parameters. By
taking advantage of the base flow symmetry, sinuous and varicose perturbations may be efficiently
computed and their properties are here discussed separately. We first consider perturbations of
varicose symmetry, which are generally the modes most amplified by fluid-structure interactions.

Figure 5(a) shows isolines of the temporal growth rate ωi of the leading varicose eigenmode in the
(VR, α) plane at Re = 5000, d
 = 10, and B
 = 4. The neutral curve (ωi = 0) exhibits two distinct
minima at VR ≈ 1.6 and VR ≈ 3.9. Beyond onset, a finite range of wavenumbers α display positive
temporal growth rates. The associated phase speeds ωr/α are given in Fig. 5(b). It is found that near
the first minimum VR ≈ 1.6, modes travel with vanishingly small phase speeds. In contrast, near
the second minimum VR ≈ 3.9, modes travel with phase speeds of the order of the mean base flow
velocity. This behavior is characteristic of divergence and TWF modes, which are thus each found
to dominate the perturbation dynamics in distinct regions of the (VR, α) plane for these parameter
settings. Figure 6 illustrates the influence of wall dissipation d
, for the same values of Re and
B
. It is observed that energy dissipation in the wall only weakly influences the temporal growth
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FIG. 5. Dispersion relation for leading varicose mode in (VR, α) plane for Re = 5000, d
 = 10, and B
 = 4:
contours of (a) growth rate ωi and (b) phase velocity ωr/α.

rate for 0 � d
 � 1, while stronger stabilization occurs for d
 > 1. At these high dissipation rates,
the growth rate and the range of unstable wavenumbers are greatly reduced; however, the critical
value of VR for onset of instability (denoted V c

R hereafter) remains of the same order of magnitude.
Monitoring the neutral curves more precisely reveals that V c

R increases from V c
R  0.45 for d
 = 0

to reach a maximal value of about V c
R  1.6 for d
 = 10 and decreases again for larger values of d


(V c
R  1.0 for d
 = 100). This nonmonotonous effect of wall dissipation on instability onset is due

to a change of the nature of the leading eigenmode: while the instability is dominated by the TWF
mode at low values of d
, the unstable dynamics is governed by the divergence mode for strong
dissipation in the compliant wall as already suggested by Fig. 5.

FIG. 6. Temporal growth rates ωi for the varicose instability at Re = 5000 and B
 = 4 for d
 = 0, 0.6, 1,
10, 60, and 100. The contour levels are 0, 0.1, 0.2, and 0.3.
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FIG. 7. Marginal curves for onset of varicose instability at B
 = 4 for Re = 10000, 40000, 80000, 160000,
and 240000 (in black, blue, red, green, and brown respectively) and (a) d
 = 0, (b) d
 = 10, and (c) d
 = 100.

This observation is further illustrated in Fig. 7, where neutral curves are shown for various
Reynolds numbers and wall dissipations. In particular, for Re = 10000 and d
 = 10 [Fig. 7(b)],
we observe the coexistence of the divergence and TWF modes. The critical reduced velocities V c

R
for the divergence and TWF modes are ≈2 and ≈4, respectively. Neutral curves associated with
the TWF mode [Fig. 7(a)] are seen to be almost independent of the Reynolds number. For the
divergence mode, we observe a destabilizing effect of viscosity [Fig. 7(c)]: the critical value V c

R for
onset of instability is seen to increase with Reynolds number, which is consistent with the fact that
divergence modes are intimately connected to the viscous wall layer. Nevertheless, in the regime
dominated by divergence modes, the temporal amplification rates reach much lower values than
those prevailing for TWF modes at low values of d
 (see Fig. 6).

After the previous extensive discussions of results for varicose perturbations we now focus
on the sinuous symmetry. The linear dynamics of sinuous eigenmodes is very similar to that of
their varicose counterpart, except that the (sinuous) Tollmien-Schlichting modes may also display
positive growth rates.

The growth-rate isolines in the (VR, α) plane of Fig. 8(a) are obtained for Re = 8000, B
 = 4,
and d
 = 10. This Reynolds number (based on channel diameter and mean fluid velocity) is slightly
in excess of the critical value Rec  7696 for Tollmien-Schlichting instability developing in rigid
channel flow. As for the varicose case, the neutral curve exhibits two minima. The first appears near
VR ≈ 0 while the second minimum is close to VR ≈ 2. The associated phase speeds ωr/α given in
Fig. 8(b) indicate that divergence, TWF, and TS modes can be involved in this regime.

Figure 9 shows the evolution of sinuous temporal instability characteristics with the wall dis-
sipation parameter d
. For d
 = 0 and low values of VR, corresponding to near-rigid compliant
walls, there exists a narrow band of unstable wavenumbers near α = 1 associated with unstable
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FIG. 8. Dispersion relation for leading sinuous mode in (VR, α) plane for Re = 8000, d
 = 10, and B
 = 4:
contours of (a) growth rate ωi and (b) phase velocity ωr/α.

Tollmien-Schlichting modes. At larger values of VR, stronger fluid-structure coupling leads to the
destabilization of (sinuous) TWF modes: the temporal growth rates ωi and the range of unstable
wavenumbers rapidly increase with VR. Note that there exists a narrow region near VR = 1 where
both TS and TWF modes are stable. As d
 is increased from 0 to 0.6, it is observed that the regions
corresponding to unstable TS and TWF modes merge, giving rise to the so-called transition mode.

Except for the merging of TS and TWF instabilities, the instability features of sinuous perturba-
tions shown in Fig. 9 are very similar to those observed for varicose perturbations. For d
 > 1,

FIG. 9. Temporal growth rates ωi for the sinuous instability at Re = 8000 and B
 = 4 for d
 = 0, 0.6, 1,
10, 60, and 100. The contour levels are 0, 0.1, 0.2, and 0.3.
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FIG. 10. Marginal curves for onset of sinuous instability at B
 = 4 for Re = 10000, 40000, 80000, 160000,
and 240000 (in black, blue, red, green, and brown respectively) and (a) d
 = 0, (b) d
 = 10, and (c) d
 = 100.

wall dissipation d
 significantly reduces the temporal growth rates and the range of unstable
wavenumbers. For d
 � 10, Fig. 9 shows that divergence and transition modes coexist. In addition,
the critical reduced velocity V c

R for the onset of the divergence mode is only weakly influenced by
the wall dissipation (V c

R ≈ 2). The critical curves shown in Fig. 10 correspond to marginal (ωi = 0)
sinuous instability for a range of Reynolds numbers and d
 = 0, 10, and 100. Due to the fact that, for
Re > 7696, TS instability prevails at low values of VR, down to VR = 0, a critical value of reduced
velocity V c

R cannot be defined for onset of sinuous instability. For the sinuous instability, it may be
hard to distinguish between TS or TWF modes since branch switching occurs as some parameters
are continuously varied. To better illustrate this phenomenon, Fig. 11 shows the dispersion relation
for both branches in the range 0.55 < α < 1.05 for d
 = 0.10, 0.13, and 0.16, at Re = 10000,
B
 = 1, and VR = 1. For α < 0.8, the branches with largest temporal growth rate [upper branches
in Fig. 11(a)] are of TS type while the other branches are always stable in that wavenumber range
and can be identified as TWF modes. For α > 0.8, the unstable branch displays a growth rate ωi

rapidly increasing with α, and is found to correspond to a mode of the TWF type, while the other
branch is strongly stabilized at these wavenumbers. Due to the branch switching that occurs near
α = 0.8 and d
 = 0.13, the unstable TWF branch prevailing for α > 0.8 is continuously connected
to the TS branch when d
 > 0.13 while it is continued as a stable TWF mode for α < 0.8 when
d
 < 0.13. This behavior is further illustrated in Fig. 12. For a small amount of wall dissipation,
the TS mode is seen to be damped as VR is increasing [Fig. 12(a)], for all the Reynolds numbers
considered. In particular, for d
 = 0, the critical reduced velocity of TS mode suppression is varying
from VR ≈ 0.8 for Re = 10000 to VR ≈ 4 for Re = 40000. However, as d
 is increased beyond 0.13,
a transition mode emerges and it is no longer possible to distinguish between TWF and TS modes
[Figs. 12(b)–(d)].
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FIG. 11. Dispersion relation for the two leading sinuous modes at Re = 10000, B
 = 1, and VR = 1:
(a) temporal growth rate ωi and (b) frequency ωr . Branch switching occurs near α = 0.8 and d
 = 0.13.

Finally, we present some results for the destabilization of the divergence mode and its dependence
on wall dissipation d
 and Reynolds number Re. We compute the critical value V c

R for onset of
instability in the (VR, α) plane at fixed values of the other control parameters. A Newton-Raphson
search algorithm with an adaptive step has been implemented to automatically identify the start of
the neutral curve in the (VR, α) plane for different values of d
 and Re. The critical value V c

R (and
associated wavenumber αc) for onset of instability is then obtained when dVR

dα
vanishes along the

neutral curve.
Critical curves as functions of d
 for different Re values are plotted in Figs. 13(a) and 13(b),

respectively, for the divergence modes of varicose and sinuous symmetry. Flexural rigidity is kept
constant at B
 = 1. Both sets of curves clearly indicate the stabilizing effect of the Reynolds number
on the divergence mode, for both the varicose and sinuous cases. For the varicose case, unstable
divergence modes only occur at relatively high wall dissipation, d
 > 6 for Re = 5000 and d
 > 9.5
for Re = 80000. For the sinuous case, divergence mode instability already starts for d
 in the range
2–4, with a weaker Reynolds number dependence. In both varicose and sinuous cases, the critical
V c

R appears to asymptote towards a finite limit for large values of d
.
As discussed above, the combined effects of the different wall parameters are conveniently

summarized by monitoring either the variations of the critical reduced velocity V c
R or the critical

Reynolds number Rec depending on whether the FSI or TS mode is considered. First, we focus
on FSI instability modes of varicose symmetry. To that purpose, we consider a high value of the
Reynolds number in order to investigate only the influence of the wall properties.

Results are reported in Fig. 14 for 0 � d
 � 60 and 0.2 � B
 � 10. The inset in the figure
shows that for small values of d
, flexural rigidity has a moderately stabilizing effect on TWF
modes: V c

R increases as B
 is increased for fixed d
. In the range 5 < d
 < 15, onset of instability
is seen to display an almost universal behavior with a linear relationship between V c

R and d
,
almost independent of B
. In this regime, instability always occurs by a TWF mode. For larger
wall dissipation rates, d
 > 20, the dynamics is dominated by the divergence modes, associated
with vanishing phase velocities. In this latter regime, the critical values V c

R weakly depend on
flexural rigidity B
 and decrease with increasing wall dissipation d
. For large values of d
, a limit
value of V c

R  2.85 is asymptotically reached, independently of B
. Note that the crossover from
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FIG. 12. Neutral curves for the TS mode for Re = 10000, 20000, 30000, and 40000 (in black, red, green,
and blue, respectively) and B
 = 1 in the plane (α,VR ). (a) d
 = 0, (b) d
 = 0.5, (c) d
 = 1, and (d) d
 = 10.

the TWF-dominated instabilities (low d
) to the divergence-dominated instabilities (high d
) also
depends on B
.

Finally, we address the influence of the wall properties on the stability of TS modes by monitoring
the critical Rec. We restrict our analysis to the case without wall damping. Results are summarized
in Fig. 15, where the critical Reynolds number for the TS mode is displayed as a function of VR for
B
 = 1, 2, and 4. The figure shows that the TS mode is significantly stabilized with increasing wall
compliance (i.e., increasing VR), and this stabilizing effect is enhanced at low flexural rigidity B
. In

FIG. 13. Divergence mode. Critical reduced velocity distribution V c
R with the wall-damping parameter and

for Re = 5000, 10000, 20000, 40000, and 80000 with B
 = 1: (a) the varicose case and (b) the sinuous case.
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FIG. 14. Evolution of critical reduced velocity V c
R with wall-damping parameter d
, for a range of flexural

rigidity values B
 (from 0.2 to 10). Perturbations of varicose symmetry are considered.

the figure, onset of TWF instability is indicated by the nearly vertical lines; recall that these modes
are almost independent of the Reynolds number. Dotted lines correspond to sinuous TWF modes
while dashed lines have been computed for varicose TWF modes. It is immediately apparent from
the figure that the potential effect of a compliant wall regarding transition delay is clearly limited
by the destabilization of TWF modes. Indeed, the region of the (VR, Re) plane corresponding to
stable configurations is located below the Rec curves for onset of TS instability and delimited at
large values of VR by onset of TWF instability. The results of the present investigation reveal that
the extent of the stable region is drastically reduced by taking into account TWF perturbations of
varicose symmetry, which display growth rates in excess of their sinuous counterparts. For instance,

FIG. 15. The critical Reynolds number associated with TS instability is plotted as a function of VR for B
 =
1, 2, and 4 in solid lines. Nearly vertical lines indicate onset of TWF instability for perturbations of sinuous
(dotted lines) and varicose (dashed lines) symmetry. The colored regions correspond to stable configurations
at B
 = 2, allowing only sinuous perturbations (light red) or all types of perturbations (solid red).
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when only sinuous perturbations are taken into account, the upper right corner of the shaded region
in Fig. 15 indicates that stable configurations would be possible up to Re = 8370, for B
 = 2.
However, when perturbations of all symmetries are allowed, the stable domain is reduced to the
solid red region, with maximal Reynolds number of Re = 7970, only marginally larger than the
critical Reynolds number of Re = 7696 corresponding to the rigid case. Similar conclusions hold
for different values of B
. Moreover, since it has been shown that wall dissipation has a destabilizing
effect on TS waves, it is not expected that using d
 > 0 could increase the extent of the stable
regions in parameter space. Thus it seems impossible to significantly delay instability onset by wall
compliance.

C. Comparison with asymptotic theories for d� = 0

Davies and Carpenter [20] derived an analytical expression for the wall pressure for d
 = 0 in
the limit of small α and high Reynolds numbers, for modes of sinuous symmetry. This pressure,
denoted p̂(α, c,Uref ), is obtained as a function of the wavenumber α, the phase velocity c = ωr/α,
and a reference value for the fluid velocity, Uref = Q/2h, and includes the effects of both the critical
and viscous layers. The wall pressure is obtained as an expansion in α up to α2: p̂ = p0 + α2 p1,
where only the term p1 includes the effect of viscous and critical layers. For the viscous layer, the
approximation is carried out up to O((αRe)−1/2). Neglecting the viscous stress at the wall, they
obtain the dispersion relation:

m
(
c2 − c2

0

) + p̂(α, c,Uref ) + i
( c

α

)
d = 0, (21)

with c0 =
√

1
m (Bα2 + T + K

α2 ) the free wave speed for the wall. Davies and Carpenter [20] express
the onset of instability with the Reynolds number. Here, we suggest that it is more appropriate to
use the reduced velocity VR. The resulting neutral curves are shown in Fig. 16 for B
 = 4. For the
sinuous case, Fig. 16(a) shows a very good agreement between the analytical model and complete
numerical resolution of the full system up to α ≈ 3. In order to remove the Reynolds number effect,
a numerical solution for Re = 1 × 106 has been carried out. For the latter case, the grid mesh is
increased up to N = 300 in order to correctly capture both viscous and critical layers. Figure 16(a)
shows that the departure from the theoretical model is due to the expansion in terms of streamwise
wavenumber up to α2; hence this approximation is no longer valid for α greater than 3.5 (not
shown in [16]). In addition, one observes that neglecting the viscous stress at the wall and in the
analytical expression of the pressure yields an almost perfect approximation of the exact dispersion
relation. In Fig. 16(b), comparisons with varicose cases are shown. While the theoretical model is
derived only for the sinuous symmetry, it is interesting to notice that in the limit of high Reynolds
numbers, the model associated with merely the critical layer gives a quite accurate description of
the varicose symmetry for α varying from 0.8 to 3. For streamwise wavenumbers greater than 4, the
varicose and sinuous neutral curves fall in one single curve for all Reynolds numbers. For α < 0.8,
the varicose case exhibits a more complex Reynolds number dependence. Since the varicose mode
always dominates over the sinuous mode, the critical value V c

R for onset of instability is associated
with a varicose perturbation for all configurations that have been considered in the present study. The
latter observation is also in agreement with results provided by Nagata and Cole [22]. In addition, it
is found that the Reynolds number has a slight stabilizing effect. In Fig. 16, we provide a comparison
with the theoretical model derived by Huang [36] for the varicose symmetry, only based on the
critical layer. The figure shows a good agreement for moderate values of α between the model and
the numerical simulation.

D. Energy budgets

This final section addresses the energy transfer mechanisms between the different components
of the compliant channel flow configurations, in order to shed further light on the dynamics and on
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FIG. 16. Neutral curves for d
 = 0 and B
 = 4. For the full system of equations, the Reynolds numbers are
fixed to Re = 4 × 104, 8 × 104, 2.4 × 105, and 1 × 106. For the analytical dispersion relation Re is fixed to
1 × 106. (a) Sinuous case and (b) sinuous and varicose cases comparison.

the fundamental mechanisms promoting instability. This section is greatly influenced by the work
of Domaradski and Metcalfe [29] and Carpenter and Morris [37].

For the compliant channel flow configuration under consideration, the total energy of the system
is the sum of three components:

Etot = EFK + EW K + EW P, (22)

where EFK represents the fluid kinetic energy, while the wall energy consists of both kinetic and
potential contributions, EW K and EW P, respectively.

The global fluid kinetic energy is obtained by integration over the channel diameter:

EFK =
∫ +h

−h
e(y)dy, (23)

where

e(y) = ρ û(y) · û(y)∗ ≡ ρ[û(y)û(y)∗ + v̂(y)v̂(y)∗] (24)

denotes the local kinetic energy of the flow, averaged over x at a given wall-normal position y, using
the notations introduced in Sec. II C. The temporal variation of the local kinetic energy then follows
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from the governing equation (10) as

2ωi e(y) = −ρ[û(y)v̂(y)∗ + û(y)∗v̂(y)]
dUb(y)

dy︸ ︷︷ ︸
P : Reynolds stress work against the mean shear

− d

dy
[p̂(y)v̂(y)∗ + p̂(y)∗v̂(y)]︸ ︷︷ ︸

�: pressure diffusion

−2μ

[
dû(y)

dy

dû(y)∗

dy
+ d v̂(y)

dy

d v̂(y)∗

dy
+ α2 (û(y)û(y)∗ + v̂(y)v̂(y)∗)

]
︸ ︷︷ ︸

ε: viscous dissipation

+μ
d

dy

[
û(y)

dû(y)∗

dy
+ û(y)∗

dû(y)

dy
+ v̂(y)

d v̂(y)∗

dy
+ v̂(y)∗

d v̂(y)

dy

]
︸ ︷︷ ︸

D:viscous diffusion

(25)

and is the result of four distinct mechanisms as indicated in the above equation. Integration of this
expression over the channel diameter leads to the equivalent equation governing the evolution of the
total fluid kinetic energy:

2ωiEFK = −
∫ +h

−h
ρ[û(y)v̂(y)∗ + û(y)∗v̂(y)]

dUb(y)

dy
dy − [ p̂(y)v̂(y)∗ + p̂(y)∗v̂(y)]+h

−h

−2μ

∫ +h

−h

[
dû(y)

dy

dû(y)∗

dy
+ d v̂(y)

dy

d v̂(y)∗

dy
+ α2(û(y)û(y)∗ + v̂(y)v̂(y)∗)

]
dy

+μ

[
û(y)

dû(y)∗

dy
+ û(y)∗

dû(y)

dy
+ v̂(y)

d v̂(y)∗

dy
+ v̂(y)∗

d v̂(y)

dy

]+h

−h

. (26)

While interaction with the base shear flow and viscous dissipation prevails throughout the channel
cross section, pressure and viscous diffusion only contribute at the boundaries and transfer energy
between the fluid and the compliant walls.

The kinetic and potential energies associated with the walls are obtained as

EW K = m|ω|2(|η̂+|2 + |η̂−|2) and EW P = (Bα4 + T α2 + K )(|η̂+|2 + |η̂−|2), (27)

respectively. Using wall equations (15), together with boundary conditions (14), yields the temporal
variation of the wall energy as

2ωi(EW K + EW P ) = − 2d|ω|2(|η̂+|2 + |η̂−|2)︸ ︷︷ ︸
E0

+ [ p̂(y)v̂(y)∗ + p̂(y)∗v̂(y)]+h
−h︸ ︷︷ ︸

E1

−μ

[
v̂(y)

d v̂(y)∗

dy
+ v̂(y)∗

d v̂(y)

dy

]+h

−h︸ ︷︷ ︸
E2

. (28)

Thus, changes in total wall energy are seen to be the result of either dissipation within the wall (E0)
or energy exchange at the interface between the fluid and the compliant walls: work done by the
pressure force (E1) or the normal viscous stress (E2). Both terms E1 and E2 also appear in Eq. (26)
but with opposite sign; these fluid-structure interaction terms only account for an exchange of energy
between the fluid and the walls but do not modify the total energy of the system.

The temporal variation of the total energy (22) is then obtained by adding (26) and (28), which
leads to the following integrated total energy budget:

2ωiEtot = −
∫ +h

−h
ρ[û(y)v̂(y)∗ + û(y)∗v̂(y)]

dUb(y)

dy
dy︸ ︷︷ ︸

C1: energy exchange with the base flow
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− μ

[(
dû(y)

dy
η̂∗ + dû(y)∗

dy
η̂

)
dUb(y)

dy

]+h

−h︸ ︷︷ ︸
C2: energy exchange with the base flow at the walls

− 2μ

∫ +h

−h

[
dû(y)

dy

dû(y)∗

dy
+ d v̂(y)

dy

d v̂(y)∗

dy
+ α2(û(y)û(y)∗ + v̂(y)v̂(y)∗)

]
dy︸ ︷︷ ︸

C3: viscous dissipation

− 2d|ω|2(|η̂+|2 + |η̂−|2)︸ ︷︷ ︸
C4: wall damping

. (29)

Hence, the only mechanisms that contribute to variations of the total energy are interactions with
the base flow and dissipation (see also [19,35]). Energy transfer from or to the base flow occurs in
the bulk (C1) as well as at the boundaries (C2), and energy dissipation takes place both in the fluid
(C3) and in the compliant walls (C4). Note that the kinematic boundary conditions (14) have been
used to bring to the fore the role of the base flow shear in the exchange term C2. As underlined by
Carpenter and Morris [37], the contribution C2 arises from the interaction of the displaced mean
flow and shear stress. In the literature, the terms C1 and C2 are often labeled as irreversible energy
transfer from the base flow to the perturbation; depending on the signs and phases of the different
components in C1 and C2, they may have a destabilizing or a stabilizing influence.

The energy budget (29) may be used to recover the temporal growth rate as

ωi = Ĉ1 + Ĉ2 + Ĉ3 + Ĉ4︸ ︷︷ ︸
�

, (30)

where the different contributions have been renormalized by the total energy, Ĉi ≡ Ci/(2Etot ).
Now that we have identified the different components that contribute to the variation of the

perturbation energy, we proceed to analyze their role in the dynamics of the different classes of
modes that prevail in the present configuration. In sequence we will address TS, divergence, and
TWF modes and discuss the corresponding total energy budget as well as the spatial structure of the
different contributions.

First we consider the stabilization mechanism of the TS mode as the reduced velocity VR is
increased. To that purpose, we investigate configurations with Re = 10000, B
 = 1, and d
 = 0.
For these typical control parameter values, the TS mode is stable for VR in excess of approximately
0.85, as shown by the black curve in Fig. 12(a). To study the influence of VR on the energy
transfer mechanisms, the most unstable TS mode is considered as VR is varied; i.e., the streamwise
wavenumber α is chosen to maximize the temporal growth rate ωi for each value of VR.

Figure 17(a) plots the components of the total energy budget as VR is increased. The associated
growth rate ωi is also reported in the same figure. The excellent agreement between the curves of ωi,
derived from the eigenvalue problem, and of �, right-hand side of Eq. (30), gives confidence that the
computation of the different energy terms is correctly implemented. The curves in Fig. 17(a) show
that for the range of VR considered here, the major destabilizing contribution is due to the action
of the basic velocity gradient working against the Reynolds stress (Ĉ1). However, as VR is increased,
this production term Ĉ1 is observed to decrease and to be partially balanced by Ĉ2. This suggests
two stabilizing mechanisms associated with the compliant wall: one reducing the bulk production
term Ĉ1 and due to a modification of the perturbation velocity profiles, and another one directly
connected to the wall term Ĉ2 and due to the displaced mean flow that acts as a dissipative term
here. The viscous dissipation (Ĉ3) is seen to weaken as VR is increased, but the overall stabilizing
influence dominates for increasing VR.

The relative importance of the different components of the total energy (22) are displayed in
Fig. 17(b) as VR is varied, using the notation ÊFK = EFK/Etot , ÊW K = EW K/Etot , ÊW P = EW P/Etot ,
and ÊW = ÊW K + ÊW P. This plot shows that, as VR is increased, a small part of the fluid kinetic
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FIG. 17. Energy of most unstable TS mode as VR is increased at Re = 10000, B
 = 1, and d
 = 0.
(a) Evolution of the integrated total energy budget and comparison with temporal growth rate ωi. (b) Different
contributions to the total energy for d
 = 0.

energy is indeed transferred to the wall, mainly as potential energy. This is consistent with a class
A mode.

We now analyze the spatial structure of the fluid kinetic energy budget (25). Figure 18 shows
the wall-normal profiles of the different contributions for the most unstable TS mode computed at
different values of VR and d
. Note that these profiles have been normalized to unit fluid kinetic
energy EFK . Figures 18(a) and 18(b), corresponding to VR = 0 and VR = 0.03 at d
 = 0, show that
the production term P is significantly modified by an increase of VR. In particular, the amplitude of
P decreases with VR and it exhibits a small region of negative production above the critical layer.
In this region, the energy is transferred from the wave to the mean flow leading to a decrease of
the total energy associated with the fluctuation. A similar observation is made by Metcalfe and
Domaradski [29] for the case of a laminar boundary layer stabilized by a compliant membrane.
Comparison of Figs. 18(a) and 18(b) also illustrates the importance of the viscous diffusion term D
in redistributing energy produced by the Reynolds stress as VR is increased, whereas the pressure
diffusion term � has a minor influence. This shows that under the action of the viscous diffusion
term, the energy produced by the work of the Reynolds stress is transferred towards the wall where
it is dissipated by viscosity (ε). Figure 18(a) also reveals that the production term P increases near
the wall with the emergence of a second peak as VR is increased. Due to the pressure diffusion and
viscous diffusion terms, which are negatively correlated with P , this additional production does not
result in a destabilizing effect.

The influence of the dissipation within the compliant wall is illustrated in Figs. 18(b)–(d) for
VR = 1. When d
 is increased from 0 [Fig. 18(b)] to 0.14 [Fig. 18(c)], the TS mode is destabilized
(not shown here for the sake of conciseness). In Fig. 18(c), the pressure-diffusion term � is positive
across the entire channel, which leads to work of the pressure force at the walls; the viscous diffusion
profile D is mostly unchanged, but the peak near the wall of the production term P becomes the
dominant feature. The increase of the dissipation leads to an increase in the production term in
the viscous layer which is consistent with the TS mode (i.e., the phase shift mainly occurs in this
region).

Finally, for a stronger wall damping d
 = 0.2 [Fig. 18(d)], the pressure diffusion term � is almost
identical to the production term P , in contrast with what is observed for d
 = 0.14 and d
 = 0. In
particular, � exhibits positive values near the wall which are associated with work of the pressure at
the wall. This indicates that the mode is then in strong interaction with the wall and could probably
be classified as a TWF mode. In particular, at d
 = 0.15, a branch switching occurs and a collapse
between TS and TWF modes is observed. This behavior is illustrated in Fig. 19. In the figure, α is
chosen to maximize ωi for each value of d
. On one hand, for d
 < 0.15 where the TS mode exists,
the production term Ĉ1 is increasing with the dissipation. It has as a consequence to increase the
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FIG. 18. Fluid kinetic energy budget profiles for most unstable TS mode at Re = 10000, B
 = 1, and
(a) d
 = 0, VR = 0.03, (b) d
 = 0, VR = 1, (c) d
 = 0.14, VR = 1, and (d) d
 = 0.2, VR = 1. The wall-normal
position of the critical layer is shown as a dashed line.

temporal amplification rate of the TS mode in agreement with class A modes. On the other hand,
for d
 > 0.15, the temporal amplification rate is decreasing with the wall dissipation. This further
indicates that beyond d
 = 0.15, the mode is mainly associated with a TWF instability.

After the discussion of the TS modes, we now address the total energy budgets prevailing for
divergence modes, of both sinuous and varicose symmetry. The evolution of the energy transfer
mechanisms is monitored as d
 is varied, since this is the main control parameter influencing
the dynamics of divergence modes. Figure 20 shows data computed over the range 0 < d
 < 10
at Re = 10000, B
 = 1, and VR = 2. The evolution with d
 of the different terms of the energy
budget for sinuous [Fig. 20(a)] and varicose [Fig. 20(c)] modes reveals that the term Ĉ2 dominates
for both symmetries. This term accounts for the energy exchange with the base flow due to wall
displacement, which is therefore identified as the main mechanism promoting instability of the
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FIG. 19. Energy of most unstable sinuous modes. Evolution of the integrated total energy budget with d


for VR = 1. TS mode is shown as solid lines. Sinuous TWF mode is shown in dashed lines. At d∗ ≈ 0.15 modes
collapse.

divergence modes. It also confirms the influence of the Reynolds number onto the divergence mode
as observed in the previous section. The importance of viscous effects for divergence modes has also
been observed by Carpenter and Morris [37] for the boundary-layer flow case. The destabilizing
effect of Ĉ2 is partially balanced by the work of the Reynolds stress against the basic shear Ĉ1,
the viscous dissipation Ĉ3, and the wall dissipation Ĉ4. Hence, it illustrates the dual nature of
viscous effects for the divergence mode. On one hand, it promotes the instability by propagating the

FIG. 20. Energy of most unstable divergence mode as d
 is increased at Re = 10000, B
 = 1, and VR = 2.
(a, c) Evolution of integrated total energy budget and (b, d) breakdown of total energy into its components for
(a, b) sinuous and (c, d) varicose modes.
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FIG. 21. Fluid kinetic energy budget profiles for most unstable divergence mode at Re = 10000, B
 = 1,
and VR = 2 and (a) d
 = 5 sinuous mode, (b) d
 = 5 varicose mode, and (c) d
 = 9 varicose mode.

energy production from the wall displacement into the flow domain, but on the other hand, viscosity
also plays its usual dissipative role. Inspection of the different contributions to the total energy
[Figs. 20(b) and 20(d)] shows that while the fluid energy remains the main factor in both situations,
the varicose modes involve significantly more wall energy than their sinuous counterparts. Due to
the slow dynamics of these modes, the wall energy is almost entirely made up of potential energy
for both symmetries. It should also be mentioned that due to the long wavelengths of the divergence
modes, the main contribution to the wall potential energy EW P [Eq. (27)] is here due to the stiffness
while the flexural rigidity only plays a marginal role.

The cross-channel profiles of the fluid kinetic energy budgets for the divergence modes are shown
in Fig. 21. The figure demonstrates that the production, diffusion, and dissipation contributions
are all localized in the near-wall region. Comparison of Figs. 21(a) and 21(b) reveals a notable
difference between sinuous and varicose modes at d
 = 5: while the production term P is negative
throughout the channel cross section for the varicose mode, the sinuous mode exhibits a small
region near the wall with positive values of the production P . Interestingly, when d
 is further
increased up to d
 = 9, the plots in Fig. 21(c) show that then the varicose production term P also
exhibits a weakly positive region near the wall. This change of sign of the production term appears
to approximately coincide with the onset of divergence instability, i.e., change of sign of the growth
rate ωi plotted in Fig. 20(c). Hence, while the energy budget is dominated by the term Ĉ2, it seems
that the instability is also significantly influenced by P .

Finally we consider TWF modes. For this final class of modes, we restrict our analysis to the
varicose symmetry which has been observed to always dominate over the sinuous symmetry. The
evolution of the total energy budgets with VR is shown in Fig. 22(a) for Re = 10000, B
 = 1, and
d
 = 0. These plots indicate that the budget is driven by the production term Ĉ1, in agreement
with previous analyses [20,29]. However, it is interesting to notice that energy transfer Ĉ2 from the
base flow to the perturbation via the boundaries also promotes the instability. Both contributions
Ĉ1 and Ĉ2 have a destabilizing influence. The distribution of the total energy among its different
components plotted in Fig. 22(b) shows that for small values of VR the wall is the most energetic
component of this fluid-structure system, but for VR > 1.6 the kinetic energy of the fluid overcomes
the wall contribution. Thus, the present scenario appears to be exactly opposite of the situation
prevailing for TS modes: as VR is increased, the ratio EFK/EW decreases for TS modes while it
increases for TWF modes. This is in accordance with the classification of TS modes as class A and
TWF modes as class B modes. Finally, monitoring the potential and kinetic components of the wall
energy (EW P and EW K , respectively) shows that the wall energy is essentially due to the kinematic
contribution for TWF modes, which is in contrast to the situation prevailing for divergence modes.

In Fig. 22(c), the fluid kinetic energy profile is shown across the channel diameter for VR = 3.
The role of viscosity is found to be mainly concentrated in two distinct areas. The viscous diffusion
term D exhibits a first shallow peak around the critical layer (indicated by the dashed line), while
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FIG. 22. Energy of most unstable varicose TWF mode as VR is increased at Re = 10000, B
 = 1, and d
 =
0. (a) Evolution of integrated total energy budget. (b) Distribution of total energy as fluid and wall contributions.
(c) Cross-channel profile of the fluid kinetic energy budget for VR = 3. The wall-normal position of the critical
layer is shown as a dashed line.

a second stronger peak emerges near the wall due to the viscous layer. This is consistent with the
theoretical model developed by Davies and Carpenter [20]. However, the dominant production term
P is associated with the work of the Reynolds stress against the mean shear and does not exhibit a
maximum near the critical layer. Its profile presents rather an inflection point near the critical layer,
which is in contrast with observations by Metcalfe and Domaradski [29] for the flat plate boundary
layer. We also observe that both pressure diffusion � and viscous diffusion D display large positive
values near the wall. Thus the energy production due to the basic shear flow is transferred to the
wall through the action of both diffusion processes.

To conclude this section on energy transfer mechanisms, the influence of wall dissipation d
 is
reported in Fig. 23 for the most unstable varicose TWF modes at Re = 10000, B
 = 1, and VR =
3. The plots in Fig. 23(a) show that for small values of d
 the stabilization of the TWF mode is
essentially due to the increasing energy dissipation Ĉ4 in the compliant walls. For larger values of
d
, both the work of the Reynolds stress against the basic shear Ĉ1 and the wall dissipation Ĉ4 evolve
so as to stabilize the TWF mode. This illustrates that two distinct mechanisms are at play to diminish
the growth rate for the TWF mode. The curves in Fig. 23(b) illustrate the redistribution of the total
energy due to wall dissipation: as d
 is increased, the wall contribution (essentially kinetic energy)
to the total energy decreases almost linearly in favor of the fluid contribution. The effect of the
wall damping on the wall-normal profiles of the fluid kinetic energy is shown in Fig. 23(c). While
these profiles at d
 = 4 are similar to those prevailing without wall dissipation [see Fig. 22(c)], it is
observed that the production P exhibits a lower amplitude than the pressure diffusion term �. As
d
 increases, the energy transfer from the fluid towards the wall is no longer sufficient to balance the
higher wall dissipation and, as a result, the proportion of fluid energy increases in the total energy
of the perturbation.
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FIG. 23. Energy of most unstable varicose TWF mode as d
 is increased at Re = 10000, B
 = 1, and VR =
3. (a) Evolution of integrated total energy budget. (b) Distribution of total energy as fluid and wall contributions.
(c) Cross-channel profile of the fluid kinetic energy budget for d
 = 4. The wall-normal position of the critical
layer is shown as a dashed-line.

V. CONCLUDING REMARKS

In this paper, we have revisited the linear stability problem of a fluid interacting with a compliant
channel. The walls are modeled as spring-backed deformable plates including a damping mecha-
nism. A general numerical method free of spurious modes is derived to tackle this problem. By
taking advantage of the base flow symmetries, varicose and sinuous eigenmodes are computed sep-
arately and efficiently. A dimensional analysis has been carried out to identify the most physically
relevant control parameters. Traveling wave flutter (TWF), divergence, and Tollmien-Schlichting
(TS) modes are then recovered. The main conclusions of the current study are as follows:

(1) TWF waves are mainly driven by the reduced velocity VR which measures the strength of the
coupling between the fluid and the compliant walls. The Reynolds number effect is not significant
for these modes.

(2) For TWF modes, the perturbations of varicose symmetry are observed to be destabilized first
when increasing VR. While a decrease in the flexural rigidity is accompanied by a stabilization of
the TS mode, it enhances the amplification of TWF modes. This is especially true for the varicose
TWF modes. In particular, we show that the compliant wall potential for laminar-turbulent transition
delay is almost negligible when the varicose symmetry is taken into account. This finding extends
the previous linear stability results obtained for the same flow case but either limited to the sinuous
modes [20,21] or focusing on a quite narrow region of parameter space [22].

(3) For the varicose symmetry, a linear relationship is found between the critical reduced
velocity and the wall dissipation, independently of the flexural rigidity. For large values of VR, the
dynamics is eventually dominated by divergence modes for a certain amount of wall dissipation
and for both symmetries. While a stabilizing effect is observed for the divergence mode when
increasing the Reynolds number, sinuous perturbations are amplified at a lower wall dissipation
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than their varicose counterpart. Such a distinction between varicose and sinuous symmetries was
not identified in previous studies.

We have also uncovered physical mechanisms responsible for the amplification of the different
categories of modes. This was accomplished by evaluating total energy budgets. First, for d
 = 0,
kinetic energy budgets indicate that the TS mode is stabilized as VR is increasing under the action
of two mechanisms. On one hand, the work of the Reynolds stress against the mean flow exhibits
a region above the critical layer which is negative. Here, energy is transferred from the wave to
the base flow. The second mechanism is associated with an irreversible energy transfer from the
fluctuation to the mean flow due to the mean flow displacement near the walls. On the other hand,
the vertical distribution of the production term associated with the TWF mode is observed to peak
near the walls and exhibits an inflection point close to the critical layer for both symmetries. Hence,
it shows some differences with results provided by Domaradzki and Metcalfe [29] for the boundary
layer where a peak is observed near the critical layer position. Furthermore, the energy transfer from
the wall to the fluid is mainly attributed to a pressure diffusion term.

Second, the dominant term for divergence modes appears to be associated with an irreversible
energy exchange due to the interaction of the displaced mean flow and shear stress.

Extension of the present study to nonmodal stability analyses can be considered in a future work.
Hœpffner et al. [35] have investigated the same problem for three-dimensional perturbations but
numerical oscillations were observed by the authors when increasing the number of eigenmodes
used to compute transient growth. The formulation adopted here is free of spurious modes and
we believe that the problem can be solved using the numerical procedure developed in the present
analysis. In addition, the role of the reduced velocity has not been investigated by Hœpffner et al.
[35]. Finally, it should also be interesting to extend our study to pulsatile flow [38,39] and the pipe
geometry, which cover more biologically significant phenomena.
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APPENDIX: VALIDATION AND INFLUENCE OF BOUNDARY CONDITIONS

For validation purposes, we adopt choices made by Davies and Carpenter [20] for dimensionless
wall equations. Here, the Reynolds number is based on h, ν, and the centerline velocity. The
dimensionless wall parameters are

	 = m

ρh
, B
 = B

hρν2
, K
 = Kh3

ρν2
, d
 = dh

ρν
.

Davies and Carpenter [20] used an Orr-Sommerfeld equation for solving the fluid-structure interac-
tion problem. The pressure at the lower wall is recovered through

p(−1) = 1

2

(
−iω

∫ 1

−1
v̂ dy + iα

∫ 1

−1
Ubv̂ dy

)
,

where the viscous terms have been neglected. For consistency, the authors have also neglected the
effect of the viscous stress at the wall for the coupling between the fluid and the walls. We recall
that this formulation is correct only for the sinuous configuration. Guaus and Bottaro [28] used a
primitive formulation for the same problem and considered only the pressure at the wall for the force
associated with the fluid acting at the walls. However, the pressure is computed without neglecting
the viscous stress along the wall-normal direction. In the present study, we have not neglected the
effect of the viscous stress on both the pressure and the force acting on the walls. In Fig. 24, we
show the neutral curve for the sinuous TWF mode for K
 = 107, B
 = 4K, d
 = 0, and 	 = 2.
The figure shows an almost perfect agreement between our approach and the one given by Davies

023903-30



REVISITING THE LINEAR INSTABILITIES OF PLANE …

FIG. 24. Neutral curves. Sinuous configuration. Effects of the boundary conditions. K
 = 107, B
 =
4K
, d
 = 0, and 	 = 2. DC, results extracted from [20]; BC1, the formulation adopted in the present paper;
BC2, the pressure at the wall is expressed as in [20] and we neglect the viscous stress at the walls; BC3,
formulation adopted in [28].

and Carpenter [20]. It supports the hypotheses made by the previous authors. Nevertheless, our
approach is more general because it also allows to deal with the varicose symmetry. In addition, the
system also reduces to an Orr-Sommerfeld problem with only one velocity component. Figure 24
also shows that the formulation made by Guaus and Bottaro [28] is not consistent and leads to
discrepancies near the critical Reynolds number.

[1] J. B. Grotberg and O. E. Jensen, Biofluid mechanics in flexible tubes, Annu. Rev. Fluid Mech. 36, 121
(2004).

[2] P. G. Larose and J. B. Grotberg, Flutter and long-wave instabilities in compliant channels conveying
developing flows, J. Fluid Mech. 331, 37 (1997).

[3] J. Gray, Studies in animal locomotion. VI. The propulsive powers of the dolphin, J. Exp. Biol. 13, 192
(1936).

[4] M. Kramer, Boundary layer stabilization by distributed damping, J. Aeronaut. Sci. 24, 459 (1957).
[5] D. M. Bushnell and K. J. Moore, Drag reduction in nature, Annu. Rev. Fluid Mech. 23, 65 (1991).
[6] F. E. Fish and G. V. Lauder, Passive and active flow control by swimming fishes and mammals, Annu.

Rev. Fluid Mech. 38, 193 (2006).
[7] M. Gad-el-Hak, Boundary layer interactions with compliant coatings: An overview, Appl. Mech. Rev. 39,

511 (1986).
[8] M. Gaster, Is the dolphin a red herring? in Turbulence Management and Relaminarisation (Springer-

Verlag, Berlin, 1988), pp. 285–304.
[9] V. Kumaran, Stability and the transition to turbulence in the flow through conduits with compliant walls,

J. Fluid Mech. 924, P1 (2021).
[10] R. Patne and V. Shankar, Stability of flow through deformable channels and tubes; implications of

consistent formulation, J. Fluid Mech. 860, 837 (2019).
[11] J. H. Duncan, A comparison of wave propagation on the surfaces of simple membrane walls and elastic

coatings bounded by a fluid flow, J. Sound Vib. 119, 565 (1987).
[12] B. T. Benjamin, Shearing flow over a wavy boundary, J. Fluid Mech. 6, 161 (1959).
[13] B. T. Benjamin, Effects of a flexible boundary on hydrodynamics stability, J. Fluid Mech. 9, 513 (1960).
[14] B. T. Benjamin, The threefold classification of unstable disturbances in flexible surfaces bounding inviscid

flows, J. Fluid Mech. 16, 436 (1963).

023903-31



LEBBAL, ALIZARD, AND PIER

[15] J. W. Miles, On the generation of surface waves by shear flows, J. Fluid Mech. 3, 185 (1957).
[16] P. W. Carpenter and A. D. Garrad, The hydrodynamic stability of flow over Kramer-type compliant

surfaces. Part 1. Tollmien-Schlichting instabilities, J. Fluid Mech. 155, 465 (1985).
[17] P. W. Carpenter and A. D. Garrad, The hydrodynamic stability of flow over Kramer-type compliant

surfaces. Part 2. Flow-induced surface instabilities, J. Fluid Mech. 170, 199 (1986).
[18] O. Wiplier and U. Ehrenstein, Numerical simulation of linear and nonlinear disturbance evolution in a

boundary layer with compliant walls, J. Fluids Struct. 14, 157 (2000).
[19] M. Malik, M. Skote, and R. Bouffanais, Growth mechanisms of perturbations in boundary layers over a

compliant wall, Phys. Rev. Fluids 3, 013903 (2018).
[20] C. Davies and P. W. Carpenter, Instabilities in a plane channel flow between compliant walls, J. Fluid

Mech. 352, 205 (1997).
[21] C. Davies and P. W. Carpenter, Numerical simulation of the evolution of Tollmien-Schlichting waves over

finite compliant panels, J. Fluid Mech. 335, 361 (1997).
[22] M. Nagata and T. R. Cole, On the stability of plane Poiseuille flow between compliant boundaries, in

Proceedings of the International Conference on Computational Methods and Experimental Measurements
IX, edited by G. M. Carlomagno, University of Naples di Napoli, Italy and C.A. Brebbia, Wessex Institute
of Technology, United Kingdom (WIT Press, 1999), pp. 231–240.

[23] K. Tsigklifis and A. D. Lucey, Asymptotic stability and transient growth in pulsatile Poiseuille flow
through a compliant channel, J. Fluid Mech. 820, 370 (2017).

[24] J. S. B. Gajjar and P. Sibanda, The hydrodynamic stability of channel flow with compliant boundaries,
Theor. Comput. Fluid Dyn. 8, 105 (1996).

[25] E. de Langre, Fluides et Solides (École polytechnique, 91120 Palaiseau).
[26] M. L. Manning, B. Bamieh, and J. M. Carlson, Descriptor approach for eliminating spurious eigenvalues

in hydrodynamic equations, arXiv:0705.1542.
[27] J. M. Rotenberry and P. G. Saffman, Effect of compliant boundaries on weakly nonlinear shear waves in

channel flow, SIAM J. Appl. Math. 50, 361 (1990).
[28] A. Guaus and A. Bottaro, Instabilities of the flow in a curved channel with compliant walls, Proc. R. Soc.

A 463, 2201 (2007).
[29] J. A. Domaradzki and R. W. Metcalfe, Stabilization of laminar boundary layers by compliant membranes,

Phys. Fluids 30, 695 (1987).
[30] V. Shankar and V. Kumaran, Stability of wall modes in fluid flow past a flexible surface, Phys. Fluids 14,

2324 (2002).
[31] R. Peyret, Spectral Methods for Incompressible Viscous Flow (Springer, Berlin, 2002).
[32] L. Trefethen, Spectral Methods inMATLAB (Society for Industrial and Applied Mathematics, Philadelphia,

2000).
[33] P. J. Schmid and D. S. Henningson, Stability and Transition in Shear Flows, Applied Mathematical

Sciences Vol. 142 (Springer, Berlin, 2001).
[34] P. G. Drazin and W. H. Reid, Hydrodynamic Stability (Cambridge University Press, Cambridge, U.K.,

1981).
[35] J. Hœpffner, A. Bottaro, and J. Favier, Mechanisms of non-modal energy amplification in channel flow

between compliant walls, J. Fluid Mech. 642, 489 (2010).
[36] L. Huang, Reversal of the Bernoulli effect and channel flutter, J. Fluids Struct. 12, 131 (1998).
[37] P. W. Carpenter and P. J. Morris, The effect of anisotropic wall compliance on boundary-layer stability

and transition, J. Fluid Mech. 218, 171 (1990).
[38] B. Pier and P. J. Schmid, Linear and nonlinear dynamics of pulsatile channel flow, J. Fluid Mech. 815,

435 (2017).
[39] B. Pier and P. J. Schmid, Optimal energy growth in pulsatile channel and pipe flows, J. Fluid Mech. 926,

A11 (2021).

023903-32



[A29℄

Residene time distributions for in-line haoti mixers

N. Pouma�ere, B. Pier & F. Raynal

Physial Review E 106, 015107 (13 pages) (2022)

doi:10.1103/PhysRevE.106.015107

https://hal.siene/hal-03727867





PHYSICAL REVIEW E 106, 015107 (2022)

Residence time distributions for in-line chaotic mixers

Nelson Poumaëre , Benoît Pier , and Florence Raynal *

Laboratoire de Mécanique des Fluides et d’Acoustique, Université de Lyon,
École centrale de Lyon, INSA Lyon, Université Claude Bernard Lyon 1, CNRS, F-69134 Écully, France

(Received 11 January 2022; revised 11 May 2022; accepted 1 July 2022; published 19 July 2022)

We investigate the distributions of residence time for in-line chaotic mixers; in particular, we consider the
Kenics, the F-mixer, and the multilevel laminating mixer and also a synthetic model that mimics their behavior
and allows exact mathematical calculations. We show that whatever the number of elements of mixer involved,
the distribution possesses a t−3 tail, so that its shape is always far from Gaussian. This t−3 tail also invalidates
the use of second-order moment and variance. As a measure for the width of the distribution, we consider the
mean absolute deviation and show that, unlike the standard deviation, it converges in the limit of large sample
size. Finally, we analyze the performances of the different in-line mixers from the residence-time point of view
when varying the number of elements and the shape of the cross section.
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I. INTRODUCTION

Efficient stirring is the key ingredient of good mixing. This
mechanism is generally associated with a turbulent flow, but
even when the flow field is laminar, dynamical systems theory
allows chaotic trajectories by stretching and folding of fluid
elements, a process called chaotic advection [1–3]. Chaotic
advection arises in a large diversity of natural or industrial
flows. Extreme examples are mixing in geophysical flows
(in the oceans [4] or magma in the earth mantle [5]), where
the typical length scale reaches hundreds of kilometers, and
microfluidics [6,7], with typical length scale of the order of
100 μm, that is, nine orders of magnitude smaller.

In this article, we are interested in in-line mixers, con-
sisting of a succession of identical elements, which have
applications from millifluidics [8,9] to microfluidics [10]. Al-
though solving the concentration field is not easy to achieve
because of their complicated geometry [11,12], it is well
known that those mixers achieve a very good mixing by repro-
ducing the baker’s map. Thus they can indeed be considered
as ideal mixers.

The present investigation focuses on another aspect of in-
line mixers, their residence-time distributions (RTD) [13,14]:
An ideal mixer is characterized by a very narrow Gaussian or
a Dirac centered on the mean travel time. However, when con-
sidering only one element of an in-line mixer, the histogram of
residence time is very broad and often monotonously decay-
ing, with a maximum equal (or very close) to the minimum
time involved to cross the element [15]: a behavior very far
from that of an ideal mixer. Our goal is thus to study how the
histogram evolves when increasing the number of elements.

Residence time distribution is a complex feature, not al-
ways correctly comprehended. Indeed, let us consider the case
of the flow in a cylindrical pipe with circular cross section.
The parallel flow field in the x direction is a parabolic profile

*Corresponding author: florence.raynal@ec-lyon.fr

of equation:

vx(r) = 2 vm (1 − r2/R2), (1)

where r is the radial distance to the center of the section, R
is the radius of the pipe, and vm the mean velocity over the
section. Because of the cylindrical symmetry, the residence
time t depends only on r as

t (r) = L/vx(r), (2)

for a section of length L. Suppose now that we calculate the
mean residence time tm just by sampling randomly M particles
at the inlet section at t = 0 (what Danckwerts named a “pulse
signal” [14]) and measure the mean of the M corresponding
residence times t . The result should be the same as what is
obtained from the continuous equation:

tm = 1

πR2

∫ R

0
t (r) 2πrdr, (3)

= L

2vm

∫ R

0

1

1 − r2/R2

2rdr

R2
, (4)

= L

2vm

∫ 1

0

1

1 − u
du, (5)

where we have used Eq. (2) and set u = r/R. Finally tm
diverges logarithmically when u approaches 1 (r approaches
R), so that the mean time calculated this way is not defined.
The reason lies in the way the mean time is calculated: When
considering the inlet section during a lapse of time dt , many
more particles cross at the center (where the velocity is max-
imal) than near the walls (where the velocity is very weak).
As expressed by Danckwerts [13], “there is a variation in
velocity from the axis to the wall of the pipe, so that the
central ‘core’ of fluid moves with a velocity greater than the
mean, while the fluid near the wall lags behind.” In order
to calculate a mean time, this nonuniform flux of particles
must be taken into account by properly weighting the statistics
[15–17]. As the quantity of particles that cross a section during
dt is proportional to the crossing velocity, the weight must
also be chosen proportional to this velocity, i.e., v⊥/vm where
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v⊥ is the component of the velocity perpendicular to the cross
section. Now calculating again the mean time tm using this
weight, with v⊥ = vx, leads to the trivial expression

tm = 1

πR2

∫ R

0

vx(r)

vm
t 2πrdr = L/vm (6)

because of Eq. (2). We finally obtain the desired result,

tm = V
Q

, (7)

where V is the volume of an element and Q the flow rate.
In a former article [15], we proposed to use the time of

flight in order to obtain statistics of residence time. The time
of flight is the lapse of time between the inlet and outlet of a
given element when following a single fluid particle. Unlike
RTD, the time of flight is a Lagrangian quantity, very close to
the time of first return [18], or to the waiting time (time spent
by a particle in a given domain D) [19], both introduced for
dynamical systems. Obviously, a particle trajectory is more
likely to enter a given element in regions of high velocity
than near the walls, so that there is no need for weighting
the statistics as for RTD: When averaged, the time of flight
converges naturally toward the mean time tm = V/Q [15].

In the following, we will use time of flight to construct
residence time distributions. The flow field is laminar, and
we mostly consider nondiffusive particles, which corresponds
to flows at high Péclet numbers on short times, for which
the effects of molecular diffusion are negligible. The mean
residence time in n elements is denoted by t (n)

m = n × tm,
where tm ≡ t (1)

m is the mean residence time in a single element
of mixer; similarly, t (n)

min = n × tmin denotes the minimal time
taken by a particle to cross n elements; the maximum time is
infinite, due to the zero-velocity field on the walls. The density
probability of residence time in n elements is denoted by fn(t ).

This paper is organized as follows: In the next section we
present the different mixers studied. We begin with the real
mixers and show that their autocorrelation coefficient de-
creases very rapidly with the number of elements. This allows
us to introduce a kinematic model that mimics the residence
time distributions in a single element. In the following sec-
tion we vary the number of mixing elements from 1 to n.
In particular, we show that t−3 tail that exists for 1 element
persists when the number of elements is increased. Then we
explain how, because of this t−3 tail, the use of the classic stan-
dard deviation is forbidden. We thus discuss how to measure
the stretching of RTD and choose the mean absolute deviation;
we can therefore compare the different in-line mixers. Finally,
in the last section we use this tool to discuss the influence of
the cross-section geometry of mixing elements in the stretch-
ing of RTD.

II. MIXERS STUDIED

The mixers studied here—the Kenics, the F-mixer, and the
multilevel laminating mixer (MLLM)—enable global chaos
[15]; they are constituted of n identical elements. For each
mixer we calculate the RTD using time of flight: We follow a
fluid particle over time and record the time taken to cross each
element. For the calculation of the time of flight in n elements,
we sum the n individual times of flight corresponding to n
elements in a row.

A. Real mixers

The numerical treatment of the velocity field by finite-
element method and integration of the trajectories by a
fourth-order Runge-Kutta method for the mixers studied here
was explained in detail in Ref. [15]; we use the same numeri-
cal data here.

The computational geometries for three mixers are de-
picted in Fig. 1. The corresponding Poincaré sections and
Lyapunov exponents are not shown here but can be found in
Ref. [15]. A particle which exits at the outlet cross section of
a computational geometry is reintroduced at the same location
in the inlet cross section. This enables us to follow a particle
on a very long number of elements, and we note the consec-
utive residence time in each element. Note that the number
of elements involved in the computational geometries is not
significant in this study.

For each mixer four long trajectories were calculated. A
trajectory is terminated when the point ends in a wall, which
may happen due to intrinsically limited numerical accuracy, or
when a point is so close to a wall that the time taken to escape
the element is too high. For this work the loss of particles is
less than 1% [15].

The Kenics mixer [20] is composed of a series of identical
internal blades inside a circular pipe; each blade has a helical
shape, alternately right or left handed, and the leading edge
of a given blade is at right angle of the trailing edge of the
preceding blade. The computational geometry used here is
shown in Fig. 1(a): Note that six elements are represented,
so that the periodicity of the flow arises after two elements.

The MLLM [21–23] has a three-dimensional configuration
intended to mimic the baker’s map. The computational geom-
etry used is shown in Fig. 1(b), with six elements represented.
The successive elements are inverted so as to break the sym-
metry of the flow and avoid small residual nonchaotic regions
[22]. Therefore here again, the structure has a periodicity of
two elements.

Finally, the F-mixer [24,25] has a similar topological
behavior as the MLLM, although its geometry is simpler;
compared to the former, it is less symmetric, which is not a
problem for Stokes flows. Indeed, its Lyapunov exponent is, as
for the MLLM, equal to ln 2 [15]. Its computational geometry
is represented in Fig. 1(c), with eight elements. However,
compared to the former, a mixing element represents a whole
spatial period of the mixer. This property will be taken into
account later.

B. Autocorrelation coefficient

How is a time of flight of a given element correlated to the
time of flight in an element further away? It can be estimated
through the autocorrelation coefficient,

R(i) = M

M − i

∑M−i
j=1 (t j − tm)(t j+i − tm)∑M

j=1(t j − tm)2
; (8)

here i = 1 corresponds to the correlation between two consec-
utive elements. In Fig. 2 we have plotted the autocorrelation
coefficient for the three mixers depicted above. As can be seen
the time of flight decorrelates very rapidly with the number of
elements.
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FIG. 1. Computational geometry of the different mixers studied: (a) the Kenics mixer (six elements); (b) the MLLM (six elements); (c) the
F-mixer (eight elements). For (b) and (c) an isosurface of velocity modulus for a Stokes flow is plotted in color.

The decorrelation is the fastest for the F-mixer. Indeed,
unlike the MLLM, its asymmetry leads to very different times
of flight depending on the branch chosen in an element.
Furthermore, as already noted, one element of the F-mixer
corresponds to a full spatial period, in contrast to the two
other mixers. But, even when considering this particularity,
the decorrelation is still the fastest, since R(1) is nearly zero,
thus below R(2) for the two other mixers.

Overall, for all mixers, the time of flight is totally decorre-
lated after only four basic elements. This rapid decorrelation
of time of flight justifies a priori the model that we present
hereafter.

C. A residence time model

We propose to model residence time in such mixers using
the time of flight between inlet and outlet of an element with
simple geometry. Such a model was previously used to model
the distribution of time of flight in a single element of mixer
[15]. It can be described as follows:

(i) the flow through one element of the mixer is modeled
by a nonchaotic flow possessing no-slip boundaries (for in-
stance a piece of pipe with circular cross section);

(ii) the effect of global chaos on the trajectory of the fluid
particle is modeled by random reinjection at the entry to the
next element with a probability density taking into account the
fact that the particle randomly samples the whole section but
less near the walls;

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5

R
(i
)

i

Kenics
MLLM
F-mixer

FIG. 2. Evolution of the correlation coefficient R(i) between res-
idence time values in elements that are i elements away for the three
real mixers.

(iii) in order to conserve mass, as explained in the In-
troduction, the probability density function of the location
of reinjection is taken proportional to the local velocity [see
Eq. (9) below for a pipe with circular cross section].

In the following, we mostly focus on the case of a circular
cross section (other shapes are also considered, see Sec. V). In
practice we generate random numbers with a parabolic proba-
bility density using an inversion method [26], see Appendix A.

The circular cross section enables indeed an analytical
expression for the probability density f1(t ) to have a time of
flight of duration t for 1 element: The probability to have a
duration of time in between t and t + dt is equal to that of
having a particle reinjected in between r and r + dr, where t
and r are linked by relation (2):

f1(t ) dt = vx(r)

vm

2πr dr

πR2
, (9)

where vx(r) verifies Eq. (1). When differentiating Eq. (2), we
obtain

−2r dr

R2
= − L

2vm t2
dt, (10)

which, when combined with Eqs. (9), (2), and (6), leads to

f1(t ) = t2
m

2t3
. (11)

This is indeed the profile obtained numerically for one ele-
ment, see Fig. 3(a). Not surprisingly, the expression derived
by Danckwerts [13] is recovered. This t−3 tail was also found
for the three mixers in the case of a single element (n = 1).
Because large times of flight correspond to points located near
the wall where the velocity is weak, this behavior was related
to the region of constant shear near the wall [15]. An indirect
proof can be found when considering the plane Couette flow,
where the shear is constant everywhere: For this flow also, the
probability density follows Eq. (11) [15].

In the following, we propose to use this model for n con-
secutive elements of an in-line mixer.

III. RESIDENCE TIME DISTRIBUTIONS: FROM
1 TO n MIXING ELEMENTS

For a single-element of mixer, the RTD is characterized by
the following properties [15]:

the existence of a t−3 tail and a maximum close to t = tmin.
As already stated, our idea is now to go further and explore

the more realistic case of multiple elements.
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FIG. 3. Residence time distribution fn for the model chaotic flow
(Poiseuille flow with circular cross section) for different numbers of
sections, n = 1, 2, 3, 4, 5, 7, 10, 14, 20, 30, 50, 70, 100, 140, 200,
300, 500, 700, and 1000. By way of comparison with real mixers,
the case n = 10 is drawn thicker. Each distribution was built with
M = 108 data; the data are the sum of n independent residence times.
(a) Linear scale; (b) logarithmic scale. Even for a very large num-
ber of sections n, the probability density function (pdf) is far from
Gaussian, and exhibits a t−3 power-law tail. For the large number of
elements, the tails are slightly more scattered, because more points
are in the peak [Fig. 3(a)].

A. Model

The model is of particular interest since, because of its
intrinsic simplicity, it allows to increase arbitrarily the number
of elements. In Fig. 3(a) we show the nondimensional time
distributions [built as a nondimensional probability density
function (pdf)] for a number of elements varying from n = 1
to n = 1000. Of course, 1000 elements is not a realistic con-
figuration in practice, but it allows us to visualize theoretically
the rate of convergence toward the “perfect” mixer.

The first notable point is that for n � 2 the distribution is
actually a bell curve, with a maximum different from t = tmin,
therefore a much improved shape compared to the n = 1 case.
When n increases the curve becomes more peaked, and the

position of the maximum tends to the mean time of flight
t (n)
m = n × t (1)

n . However, the convergence is very slow. The
case n = 10, that can be considered as a reasonable maximum
number of elements in a real mixer, is shown as a thicker
line (in red): As can be seen, the distribution is still very
broad; furthermore, even for n = 1000, the maximum of the
distribution is still not completely centered on the mean time.

The second notable point is visible in the log-log plot of the
same distributions [Fig. 3(b)]: The t−3 tail that was found for
n = 1 persists at all higher values of n, and the distributions
remain very asymmetric. In the model, all residence times in
an element are completely independent of each other. It can be
shown that the distribution of the sum of two decorrelated data
with an algebraic tail also possesses an algebraic tail [27,28].
In Appendix B, we apply this result and prove the existence
of this t−3 tail when summing n independent data taken from
the same distribution with a t−3 tail.

In real mixers, two consecutive times are not completely
decorrelated as in the model (Fig. 2). However, because the
correlation is weak, quite similar results are expected.

B. Mixers

Figure 4 shows the RTD for the three mixers. Due to a
much reduced number of data points for the real mixers com-
pared to the model, the histograms are limited to distributions
for n = 10 elements; in any case, most in-line mixers have
fewer than 10 mixing elements.

As expected, the distributions are quite similar to what
was obtained with the model, although not as smooth, due
to the much smaller sample of data. As for the model, the
distributions are still broad for n = 10 and quite far from
the desired Gaussian shape. Another important point is the
persistence of the t−3 tail, visible on the log-log plot. This is
not surprising: We demonstrated that summing n independent
variables with a t−3 tail led to a distribution with a similar tail.
These real-mixer data are poorly correlated (see Fig. 2), so
that the variables may be considered as nearly independent.
The assumption of uncorrelated data is almost exact for the
F-mixer, for which the autocorrelation coefficient has fallen
to negligible values after only one element. Moreover, the
least noisy tail is that of the MLLM [Fig. 4(d)], for which we
have twice as much data as for the two other mixers but that
also corresponds to the more correlated mixer. Finally, note
that El Omary et al. [29] also found a t−3 tail when properly
weighting their statistics.

A distribution with an algebraic tail t−α (also called Pareto
distribution) belongs to the family of “heavy-tailed” distribu-
tions [30]. This type of distribution is well known in economy
[31], finance [32], physics [33], maths [34], and even
bibliometry [35].

IV. A MEASUREMENT TOOL FOR THE STRETCHING OF
RESIDENCE TIME DISTRIBUTION

A. Why not use the standard deviation?

When dealing with distributions it is natural to measure
the histogram width. Because many distributions in fluid me-
chanics are Gaussian, or close to Gaussian, it is usual to use
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FIG. 4. Residence time distributions for the three real mixers for different numbers of elements, n = 1, 2, 3, 4, 5, 7, 10. From top to
bottom: Kenics, MLLM, and F-mixer. For each mixer, four trajectories were calculated, corresponding to a total of 16 886 times of flight for
the Kenics, 33 570 for the MLLM, and 18 987 for the F-mixer. We used a sliding average, so that the number of points are roughly the same
for the different values of n. Left: linear scale; right: logarithmic scale. As for the model, the tail is more noisy for the highest values of n
(n � 7): The weight (integral under the curve) of the bell-shaped part is more significant, which implies that the proportion of points in the tail
is less important.

the standard deviation, or even higher moments. In our case,
the standard deviation for n consecutive elements is denoted
by σ

(n)
2 and defined as:

σ
(n)
2 =

√∫ ∞

t (n)
min

fn(t )

[
t

t (n)
m

− 1

]2

dt . (12)

However, because of the t−3 tail, the integral diverges and this
quantity is clearly not well defined.

It is always possible in practice to calculate a standard
deviation from a series of M values of time of flight as:

σ
(n)
2 =

√√√√ 1

M

M∑
j=1

[
t j

t (n)
m

− 1

]2

. (13)
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FIG. 5. Evolution of the standard deviation σ2 (orange), centered
absolute moment of order 3/2 σ3/2 (light blue), and mean absolute
deviation σ1 (purple) for one element of the Poiseuille flow model
and for independent samples of increasing size M. The horizontal
dotted line denotes the analytically computed value σ

(1)
3/2 ≈ 0.820.

In the case α = 1 we have σ
(1)
1 = 1/2. Note that the figure was

truncated with a maximum of 5 for the ordinate, while the standard
deviation showed incursions up to 100.

Note again that, because we deal with times of flight (result-
ing from a single trajectory), the weighting is here naturally
included in the statistics.

We propose to use the model (that allows for very large
samples) in the simple case n = 1 to evaluate the reliability
of this quantity: Figure 5 shows the evolution of the standard
deviation σ

(1)
2 for increasing sample size M. For each sample

we draw M times of flight, so that the samples are totally
independent. As expected, the standard deviation does not
converge but continues to increase with the sample size M,
so that there is no limit value for this quantity, even if the
divergence is very slow. What is more surprising is the fact
that the signal is incredibly noisy: Indeed, while we show
only data in the reduced vertical range [0 : 5], values of up
to 100 are present. Finally, although the fact that the different
samples are independent may explain part of the randomness
of the curve, we could expect at least the noise to decay
when M increases. This is obviously not the case, which
means that the standard deviation cannot even be used to
compare two different laminar mixers using the same sample
size. This point has to be stressed since, because of turbu-
lent flows where distributions are close to Gaussian, nearly
all RTD studies in fluid mechanics use this parameter (and
sometimes higher moments) [36–40]. The difficulty lies in-
deed in the fact that a logarithmic divergence is extremely
difficult to detect from a series of points. For an experi-
ment also, the algebraic decay is impossible to monitor in
practice, so that the tail—responsible for the logarithmic
divergence—will not be fully taken into account, hiding the
problem.

Since the moment of order 2, related to the standard devia-
tion, is mathematically ill posed, we propose to use a centered

absolute moment of order α defined as

σ (n)
α =

[ ∫ ∞

t (n)
min

fn(t )

∣∣∣∣ t

t (n)
m

− 1

∣∣∣∣
α

dt

]1/α

, (14)

where α is strictly less than 2 and can be fractional; fractional
moments are indeed frequently used in physics for evaluation
of heavy-tailed distributions [33]. In practice, it can also be
calculated from a finite series of M values of time of flight, as
done for the standard deviation. We obtain:

σ (n)
α =

[
1

M

M∑
j=1

∣∣∣∣ t j

t (n)
m

− 1

∣∣∣∣
α]1/α

. (15)

Here again, the weighting is already contained in the
Lagrangian nature of the time of flight. Evaluating this quan-
tity from points uniformly distributed at inlet is described later
[see Eq. (22)].

B. Choice of α

In our case, taking α = 1.99 would do fine in theory, since
the integral would converge. However, as seen in Fig. 5, the
signal is very noisy for α = 2, and we expect the chosen
quantity to converge reasonably rapidly with increasing M.
We therefore propose to test two different values of α, namely
α = 3/2 and α = 1. The moment of order 1 [41] is more
specifically named “mean absolute deviation” in statistics.
As for the usual standard deviation, we wish to evaluate the
reliability of these quantities using one element of the model
(n = 1). We denote σα ≡ σ (1)

α : We will check that the series in
Eq. (15) actually converge when increasing the size M of the
sample, and compare how fast they converge toward the limit
σα for the two values of α. We thus need an analytical expres-
sion of σα from the model flow, calculated from Eq. (14).

The case α = 1 is straightforward and leads to σ1 = 1/2
for the model flow. Matsui and Pawlas calculated existing
fractional moments of Pareto functions using Laplace trans-
forms [42]; the results are expressed in terms of the β

function and the Gauss hypergeometric function. We give in
Appendix C a classic analytical calculation: We obtain σ3/2 ≈
0.820 for the model flow, and we expect to find the same value
numerically.

In Fig. 5 we show the evolution of these quantities as a
function of the sample size M, using the same set of data
already used for the standard deviation σ

(1)
2 . While both mo-

ments converge toward the desired limits, the convergence is
far more rapid in the case α = 1. The signal is also much
less noisy for the mean absolute deviation, obviously much
less sensitive to the presence of very large residence times in
the sample. Note finally that σ1 is reasonably converged for a
quite low sample size (M � 103–104).

C. Influence of molecular diffusion

Since the reason for the divergence of the standard devia-
tion σ2 is linked to the existence of arbitrary long residence
times, we could wonder whether this phenomenon would be
effectively observed when molecular diffusion is taken into
account. Indeed, molecular diffusion would allow the fluid
particle to change streamline, preventing very long residence
times from being observed. In numerical simulations also,
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FIG. 6. Evolution of the standard deviation σ2 (from red to
yellow) and mean absolute deviation σ1 (from blue to purple) for
diffusing species in one element of the Poiseuille model flow, and
independent samples of increasing size M. The Péclet numbers are
Pe = 106, 107, 108, +∞. The number of points is here much less
than in Fig. 5, typically 15 samples in a decade compared to 150
in Fig. 5. Because molecular diffusion should not play a significant
role in a single element of mixer, the different plateaus obtained for
σ2 are clearly artificial and show again that the standard deviation is
ill posed here. In contrast, the mean absolute deviation σ1 is nearly
insensitive to molecular diffusion, proving that σ1 is a robust measure
of the width of RTD for a given mixer.

even without diffusion, the calculations would be stopped in
the case of too-large residence times. This cutoff could enable
the convergence of the standard deviation, and render this pa-
rameter acceptable for calculating the width of distributions.
In order to evaluate how molecular diffusion would modify
the preceding result, we proceed as follows: As for Fig. 5, we
consider one element of the Poiseuille model flow, with length
L = D, where D is the diameter of the entrance section. We
define the Péclet number of the flow as Pe = vmD/Ds, where
Ds is the molecular diffusion of the species considered. The
displacement of a given diffusing species obeys to

dx
dt

= v(x, y, z, t ) + ζ (t ), (16)

where ζ (t ) is a Gaussian decorrelated process such that
〈ζi(t )ζ j (t ′)〉 = 2Dsδi j δ(t − t ′) [43]. For the model v is simply
given by Eq. (1). As done in Fig. 5, for an abscissa M we
generate M random initial locations with a parabolic proba-
bility. For those M initial points we solve Eq. (16) between
x = 0 and x = L for different realistic finite Péclet numbers
(Pe = 106, 107, and 108), and also in the case without diffu-
sion (Pe = +∞); for each case we plot the standard deviation
σ2 and the mean absolute deviation σ1 of the resulting RTD.
As is visible in Fig. 6, σ2 converges for finite Péclet number.
However, the convergence is slow; even more important, the
value of the plateau depends significantly on the Péclet num-
ber. Although we could expect a small dependence for a long
mixer, those large differences for a single piece of mixer at
high Péclet numbers are not physical, which shows that the
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FIG. 7. Evolution of the mean absolute deviation σ
(n)
1 with the

number of elements n = 1, 2, 3, 4, 5, 7, 10, for the three mixers and
the model.

converged value obtained for σ2 is artificial. In the case of σ1,
the curves merge for quite small samples, and, as expected in
that situation, converge toward the theoretical value σ1 = 1/2,
whatever the Péclet number. This clearly shows that, unlike
the standard deviation, the mean absolute deviation is a robust
measure of the width of the distributions.

D. Application to the different mixers

Because the number of numerical data points used for the
different mixers is in between 17 000 and 34 000, from the
analysis above we have enough data to calculate reasonably
accurately the mean absolute deviation,

σ
(n)
1 = 1

M

M∑
j=1

∣∣∣∣ t j

t (n)
m

− 1

∣∣∣∣. (17)

Figure 7 shows σ
(n)
1 as a function of the number of elements

for the three mixers and the model. In Appendix D, we show
the same evolution for σ

(n)
3/2; we can check that the hierarchy

between the different mixers is the same for the two different
values of α, which definitely reinforces the choice α = 1.

Without surprise, the totally uncorrelated model is the
most efficient. As expected also, the reduced moment of the
MLLM, which is the most correlated mixer, decreases less
rapidly than the others; the Kenics is the best of the three
mixers from the RTD point of view.

Although σ
(n)
1 is a decreasing function of n for all cases

considered, there is no obvious analytical fit for the decay even
in the case of the decorrelated model. The decrease is the most
rapid at the beginning, for small values of n: The width of
the distributions [measured with σ

(n)
1 ] has decreased by 25%

(for the MLLM) to 40% (for the model) after n = 5 elements,
but the decrease is only 40 to 52% for n = 10. Hence from
the RTD point of view there is no interest in adding many
elements in a row, provided that a good mixing is reached after
a few number of elements.
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V. INFLUENCE OF THE CROSS-SECTION GEOMETRY

In this section we would like to understand the reason for
the differences in values of σ

(n)
1 . Since large times of flight are

linked to the presence of walls, one could wonder whether the
shape of the mixer is of importance. As noted by Mortensen
et al. [44], a shape can be characterized by a perimeter P
and an area A, that can be combined in a dimensionless
compactness number C, defined as

C = P2

A . (18)

This quantity is not easy to measure for the mixers considered
here. We thus propose to consider model flows as the one
proposed in Sec. II C. We formerly took the case of a circular
cross section, which allowed for analytical exact results easily
comparable to numerical simulations. But it is relatively sim-
ple to investigate different compactness by varying the shape
of the cross section (ellipse, square, or rectangle rather than a
circle), as done in Mortensen et al. [44]. Because σ

(n)
1 decays

roughly similarly with n for all mixers (Fig. 7), we focus on
the value n = 1.

In the following we keep the area A, length L and the flow
rate Q constant, so that all different shapes correspond to the
same mean time tm.

A. Ellipse

There is no exact expression for the perimeter of an ellipse;
however, it can be approximated using Ramanujan’s second
formula [45]:

P ≈ π (a + b)

(
1 + 3λ2

10 + √
4 − 3λ2

)
with λ = a − b

a + b
,

(19)

where a and b are the large and small semiaxes, respectively.
This expression is very accurate, even for very elongated
ellipses [46]. The parameter λ varies from 0 (circle) to 1
(very elongated ellipses). If A = πab is kept constant, then
a + b = a + A/(πa) is minimum for the circle; the bracketed
expression in Eq. (19) is also a growing function of a, so
that the perimeter is always increasing with a. The area A
being kept constant, the compactness number C also increases
with a.

However, as shown in Appendix E, the probability density
of time duration for a pipe of length L is identical for a circular
or elliptic cross section, whatever λ. This implies that all
moments derived (including σ

(1)
1 ) are identical. In this case

the compactness C plays no role on the distribution of dura-
tion times. Nevertheless, σ

(1)
1 may depend on the geometry,

number of angles, etc.

B. Square and rectangles

Let us consider the Hagen-Poiseuille flow with rectangular
cross section. The rectangle has a width a, a height b, and is
characterized by its area A = a × b and aspect ratio β = b/a.
For this configuration, Spiga and Morino [47] proposed the
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FIG. 8. Evolution of the mean absolute deviation for the
Hagen-Poiseuille flow in rectangular ducts of varying aspect ratio
β. Dashed lines indicate values of σ

(1)
1 for the circular and plane

Poiseuille flow configurations, respectively, σ
(1)
1 = 1/2 and σ

(1)
1 =

2/(3
√

3) 
 0.385. As β increases, the configuration tends to that of
the plane Poiseuille flow.

following expression for the velocity field:

v(y, z) = 16a2b2G

μπ4

∞∑
n odd

∞∑
m odd

sin[nπ (y/a − 1/2)] sin[mπ (z/b − 1/2)]

nm (b2n2 + a2m2)
(20)

for −a/2 � y � a/2 and −b/2 � z � b/2, with G the im-
posed pressure gradient and μ the dynamic viscosity of the
fluid. The mean velocity vm is therefore:

vm = 64a2b2G

μπ6

∞∑
n odd

∞∑
m odd

1

n2m2(b2n2 + a2m2)
. (21)

In practice, this series converges rather rapidly, and we
checked that truncating the sums such that 0 � n, m � 1000
was enough for our calculation. The aspect ratio is varied from
β = 1 (square cross section) to β = 1000 (very elongated
rectangle), the limit β → +∞ being the plane Poiseuille flow.
Finally, all times are made nondimensional using the mean
time tm = L/vm, where L is the length of the pipe section.

Due to the complexity of the expression of the velocity
field, the inversion method is of no use in this situation. We
can nonetheless compute the mean absolute deviation cor-
responding to this velocity field by taking points uniformly
distributed in the rectangle and weighting the values using the
velocity, which modifies expression (17) as follows:

σ
(1)
1 = 1

M

M∑
j=1

v j

vm

∣∣∣∣ t j

t (1)
m

− 1

∣∣∣∣ . (22)

This approach was tested on the circular Poiseuille flow by
taking points uniformly distributed on the disk and using the
expression (22), and the same value of 0.5 was obtained for
σ

(1)
1 , confirming the validity of the method.

Figure 8 represents the evolution of σ
(1)
1 with the aspect

ratio β. For each value of β, three samples of 100 000 points
were computed, leading to slightly different values of σ

(1)
1

due to the randomness of the process. However, because of
the rapid convergence of σ1 with the sample size, the three
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values are very close to each other, with a typical variation of
order 0.5%; the quantity plotted in Fig. 8 is the mean for those
three sets.

We observe that the mean absolute deviation decreases as
the aspect ratio increases, converging to the value correspond-
ing to the plane Poiseuille flow.

Note finally that in microfluidics, most microchannels have
rectangular cross section; the case of the circular cross section,
better than the square from the residence time point of view,
is very close to the 3-1 rectangle, a geometry quite common
in microfluidics.

VI. SUMMARY AND CONCLUSION

In this article we have studied the statistics of residence
time distributions for n elements of an in-line mixer, using
numerical data for three mixers and a model flow. We have
shown that those types of mixers are not perfect from the RTD
point of view and that the t−3 tail found for one element of
mixer persists when increasing the number of elements. This
algebraic decay, signature of a “heavy-tailed” distribution, has
an important consequence in practice: The second-order mo-
ment of the distributions—and therefore higher moments—do
not exist, so that the standard deviation cannot be used to
characterize the width of the histogram.

Therefore we proposed to use the first-order absolute mo-
ment, also called mean absolute deviation, given by Eq. (17):
This moment exists and converges with increasing sample size
in numerical simulations and should also be used in experi-
ments, where the tail is difficult to obtain in practice.

The mean absolute deviation is then used to compare the
different mixers and how the typical width of the distribution
decreases with n. It is also applied to discriminate between
different shapes of cross section. We show that this parameter
is higher for a square than for a circle but also that a rectan-
gular cross section, very common in microfluidics, is a better
mixer than a square from the RTD point of view.

One could wonder how the results for a mixer consisting
of n elements would be affected by molecular diffusion. In
fact, molecular diffusion has negligible effects as long as the
Batchelor scale is not reached [48]. Since such in-line mixers
reproduce the baker’s map, the width of a given heterogeneity
at the exit of the nth element is typically 	n ∼ w/2n, where
w is the width of the cross section. Such an heterogeneity is
mixed on a timescale τn ∼ 	2

n/Ds, where D is the molecular
diffusion of the species to be mixed. Thus the scalar is mixed
at the exit of the (n + 1)-th element if τn is of the order of the
mean travel time in one element tm = L/vm. When equating
τn ∼ tm, we obtain

2n ln 2 ∼ ln

(
vmw

Ds

w

L

)
, (23)

where we recognize the Péclet number Pe = vmw/Ds. In an
in-line mixer, the length L is a few times the width w (see
Fig. 1), while the Péclet number is typically of the order of
106, so that ln(w/L) can be neglected in front of ln Pe. We
finally obtain

n ≈ ln Pe

2 ln 2
. (24)

For Pe = 106, we obtain n ≈ 10, so that in that case the effects
of diffusion are negligible until the outlet of the mixer. In any
case, even if the diffusion effects became important in the very
last elements, this would not significantly change the statistics
of the residence time on the whole mixer, so that our results
should apply even if diffusion is taken into account.
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APPENDIX A: GENERATION OF A RANDOM VARIABLE
WITH PARABOLIC DENSITY

This basic technique is described in Ref. [26]. The goal
is to derive a two-dimensional pdf that is proportional to the
velocity field, here in the case of circular cross section:

f (M ) ∝ v(M ) = v(r). (A1)

By cylindrical symmetry, this is readily reduced to finding a
one-dimensional pdf of the variable r, that has, however, to
be proportional to the velocity field and the perimeter corre-
sponding to the position considered:

f (r) ∝ 2πrv(r) = 2πr × 2vm(1 − (r/R)2). (A2)

Since the integral of f over [0, R] has to be 1, we easily obtain:

f (r) = 4r

R2

(
1 − r2

R2

)
. (A3)

We then compute the corresponding cumulative density func-
tion F , primitive of f :

F (r) = 2r2

R2

(
1 − r2

2R2

)
. (A4)

Finally, the inverse function of F is expressed as:

F−1(p) = R
√

1 −
√

1 − p , ∀p ∈ [0, 1[. (A5)

From here, the inversion method consists in generating a
sample (pi )1�i�M of reals uniformly distributed between 0
and 1; in practice, we use a pseudorandom numbers gener-
ator (PRNG) to produce the uniform distribution, here the
xoshiro256** PRNG of the gfortran compiler. We then
apply F−1 to the sample produced. The result is a new sample
of radii (ri )1�i�M = [F−1(pi )]1�i�M which follows the distri-
bution law described by f .

APPENDIX B: TAIL OF RTD FOR n IDENTICAL
ELEMENTS

Suppose that the RTD of 1 element of a mixer possesses
a t−3 tail. Then, if the elements are decorrelated from the
residence time point of view, then the tail of the distribution
of n elements also has a t−3 tail.

Proof. We will proceed by recurrence. We denote by fm(t )
the pdf associated to the crossing time for m sections. We
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suppose that for all m � (n − 1), we have

fm(t ) = gm(t )

(t + tε )−3
, (B1)

where tε is an arbitrary positive time and gm(t ) a smooth
function such as

gm(t < m × tmin) = 0 and lim
t→∞ gm(t ) = Cm �= 0 . (B2)

The assertion (B2) is true for n = 1; we suppose that it is also
true for n − 1 and prove that it is true for n. Providing that the
events are sufficiently decorrelated, the pdf for n elements is
the convolution product of f1 with fn−1:

fn(t ) =
∫ +∞

−∞
f1(t ) fn−1(tn − t ) dt

=
∫ tn−(n−1)tmin

tmin

g1(t )

(t + tε )3

gn−1(tn − t )

(tn + tε − t )3
dt . (B3)

We make the change of variable x = t/tn, so that dt = tn dx:

fn(t ) =
∫ 1−(n−1)tmin/tn

tmin/tn

g1(tnx)

(tnx + tε )3

gn−1[tn(1 − x)]

[tε + tn(1 − x)]3
tn dx

∼
tn→∞

∫ 1

0
t1−3−3
n

g1(tnx)

(x + tε/tn)3

gn−1[tn(1 − x)]

(tε/tn + 1 − x)3
dx

∼
tn→∞ t−5

n

∫ 1

0

g1(tnx)

(x + tε/tn)3

gn−1[tn(1 − x)]

(tε/tn + 1 − x)3
dx (B4)

because of the presence of the constant tε , the function to
integrate remains smooth on [0; 1]. Let us focus on Eq. (B4):
When tn → ∞, we have tε/tn → 0, and we have two impor-
tant contributions, one at x = 0 and the other at x = 1. We
thus neglect other contributions: In the vicinity of x = 0, the
function to integrate is equivalent to A0 (x + tε/tn)−3, and in
the vicinity of x = 1, is equivalent to A1(tε/tn + 1 − x)−3,
where the fonctions that do not tend to infinity have been
approximated by constants. We obtain:

fn(t ) ∼
tn→∞ t−5

n

[
A0

2(tε/tn)2
+ A1

2(tε/tn)2

]
, (B5)

∼
tn→∞ Cn t−3

n . (B6)

We have shown that fn(t ) also has a t−3 tail and, by recur-
rence, the property is true for all n.

APPENDIX C: CALCULATION OF THE REDUCED
MOMENT σ

(1)
3/2 FOR THE MODEL FOR ONE ELEMENT OF

A CYLINDRICAL PIPE

The reduced moment σ
(1)
3/2 for one element of the model

writes:

σ
(1)
3/2 =

(√
tm
2

∫ ∞

tm/2

|t − tm|3/2

t3
dt

)2/3

. (C1)

Because of the absolute value, the integral is divided, one
integral for t � tm (denoted by I1) and the other for t � tm

(denoted by I2), such that

σ
(1)
3/2 = (I1 + I2)2/3 . (C2)

Calculation of I1(t � tm)
We set u2 = (1 − t/tm). I1 satisfies

I1 =
∫ 1/

√
2

0

u4

(1 − u2)3
du. (C3)

We use formula 2.147(4) from Gradshteyn and Ryzhik [49]:∫
xm dx

(1 − x2)n
= 1

2n − 2

xm−1

(1 − x2)n−1

− m − 1

2n − 2

∫
xm−2 dx

(1 − x2)n−1
(C4)

first with m = 4 and n = 3, next with m = n = 2 and obtain:

I1 = − 1

4
√

2
+ 3

8
ln(

√
2 + 1). (C5)

Calculation of I2(t � tm)
We set u2 = (t/tm − 1) and obtain:

I2 =
∫ ∞

0

u4

(1 + u2)3
du. (C6)

We next use formula 3.241(4) from Gradshteyn and
Ryzhik [49]:∫ ∞

0
xμ−1 dx

(p+qxν )n+1 = 1
νpn+1

( p
q

)μ/ν (μ/ν) (1+n−μ/ν)
(1+n) (C7)

with μ = 5, ν = 2, p = q = 1, and n = 2:

I2 = 1

2

(5/2) (1/2)

(3)
, (C8)

= 3π

16
. (C9)

We finally obtain:

σ
(1)
3/2 =

[
− 1

4
√

2
+ 3

8
ln(

√
2 + 1) + 3π

16

]2/3

≈ 0.820. (C10)

Ramsay [34] calculated fractional moments of this type of
distribution using Laplace transforms, and gave the result in
the form of an infinite series. We checked that the series
indeed converged toward the same value.

APPENDIX D: EVOLUTION OF THE REDUCED MOMENT
σ

(1)
3/2 WITH THE NUMBER OF ELEMENTS

The evolution of the reduced moment of order 3/2 with the
number n of elements is shown in Fig. 9. When compared to
Fig. 7, the hierarchy between the different mixers is preserved;
the decay with n is also similar.

APPENDIX E: FROM CIRCULAR TO ELLIPTIC CROSS
SECTION: CALCULATION OF RTD FOR ONE ELEMENT

OF MODEL MIXER

The velocity field for an ellipse of semiaxes a and b writes:

vx(y, z) = 2vm

(
1 − y2

a2
− z2

b2

)
, (E1)
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FIG. 9. Evolution of σ
(n)
3/2 with the number of elements n = 1, 2,

3, 4, 5, 7, 10, for the three real mixers and the model.

where vm denotes the the mean velocity. We denote by g(t ) the
density probability to have a time of flight of duration t for an
element of size L, with

t = L/vx(y, z) . (E2)

Let us consider the points that verify

y2

a2
+ z2

b2
= α2, 0 � α � 1 . (E3)

They describe an ellipse of axes αa and αb. From Eqs. (E1),
(E2), and (E3) we obtain

vx(α) = 2vm (1 − α2) = L/t , (E4)

that differentiates into

4αdα vm = L dt/t2 . (E5)

Because the density probability is proportional to the velocity,
we now write that the probability that t is in between t and
t + dt is the same as that for vx to be in between vx(α) and

xa

(α+ dα) aαa

y

b

(α+ dα) b

αb

dS(α)

FIG. 10. Elliptic case: The hatched area represents the surface
between the two ellipses corresponding to values α and α + dα

in Eq. (E4).

vx(α + dα):

g(t ) dt = vx(α)

vm

dS(α)

π ab
, (E6)

with dS(α) the surface difference between ellipses corre-
sponding to α + dα and α, see Fig. 10. We thus have:

dS(α) = πab[(α + dα)2 − α2]

≈ 2πabα dα. (E7)

By combining equations (E4), (E5), (E6), and (E7), we obtain

g(t ) = L

vmt
2 α

dα

dt
, (E8)

= L2

2v2
m, t3

. (E9)

The mean time tm verifies

tm = 1

πab

∫ α=1

α=0

vx(α)

vm
× L

vx(α)
dS(α), (E10)

= L

vm
. (E11)

We finally obtain

g(t ) = t2
m

2 t3
, (E12)

that is, the same expression as for the circle Eq. (11).
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The linear dynamics of perturbations developing in an infinite channel with compliant
walls is investigated for pulsatile flow conditions. Two-dimensional modal perturbations
are considered for Womersley-type pulsating base flows and the wall motion is only
allowed in the normal direction. It is found that the flow dynamics is mainly governed by
four control parameters: the Reynolds number Re, the reduced velocity VR, the Womersley
number Wo and the amplitude of the base-flow modulation Q̃. Linear stability analyses are
carried out within the framework of Floquet theory, implementing an efficient approach for
removing spurious eigenmodes. The characteristics of flow-based (Tollmien–Schlichting)
and wall-based (both travelling-wave flutter and divergence) modes are investigated over
a large control-parameter space. It is shown that travelling-wave flutter (TWF) modes are
predominantly influenced by the reduced velocity and that the Reynolds number has only a
marginal effect. The critical reduced velocity (corresponding to onset of linear instability)
is demonstrated to depend both on the Womersley number and modulation amplitude for
a given set of wall parameters. Similarly to the steady flow case, the Tollmien–Schlichting
(TS) mode is also found to be only weakly affected by the flexibility of the wall in
pulsatile flow conditions. Finally, the classification given by Benjamin (J. Fluid Mech.,
vol. 16, 1963, pp. 436–450) is found to be too restrictive in the case of pulsatile base
flows. In particular, a new type of mode is identified that shares characteristics of two
distinct Floquet eigenmodes: TS and TWF modes. Due to coupling of the different
Floquet harmonics, a phenomenon specific to time-periodic base flows, this two-wave
mode exhibits a beating over the intracyclic dynamics.
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S. Lebbal, F. Alizard and B. Pier

1. Introduction

Pulsating flows in pipe or channel flows are laminar provided that the Reynolds numbers
are sufficiently low, as is largely the case for vast parts of the cardiovascular system. In the
large arteries, however, blood flow may experience instability, generating large fluctuating
shear stresses, which are a possible cause for cardiovascular diseases (Chiu & Chien 2011).
The compliance of arteries plays a major role in blood transport, such as maintaining blood
pressure and regularising the flow rate (Ku 1997). The flexibility of the aorta is also a key
element in minimising pressure fluctuations of blood provided by the left ventricle and
distributing oxygen-rich blood through capillaries (O’Rourke & Hashimoto 2007). For
these reasons, both flexible walls and pulsatile flow are ubiquitous in the physiological
context. When a pulsatile flow interacts with compliant walls, a better analysis of the
development of instabilities is therefore required in order to improve our understanding of
the link between wall-shear-stress distributions and flow dynamics.

The theory of viscous flow interacting with compliant walls has come a long way from
Gray’s (1936) initial observations of the outstanding performance of dolphin skins in
delaying turbulence, to the recent review of Kumaran (2021) enlightening us on the various
instability mechanisms. In the 1950s, Kramer conducted pioneering tests in water by
towing a dolphin-shaped object covered with viscoelastic materials of varying compliance
(Kramer 1957). The author shows that the compliant coating leads to a significant drag
reduction and suggests that the dolphin’s secret originates in the laminarisation of the flow
due to its skin material.

On one hand, several researchers tried and failed to replicate Kramer’s experiments;
see Gad-el-Hak (1986, 1996) for reviews. On the other hand, theoretical results of
Carpenter & Garrad (1985) extend the first analytical studies developed by Benjamin
(1959, 1960, 1963) and Landahl (1962) and demonstrate that a suitable choice of wall
properties could control the onset of the primary instability mode of a flat-plate boundary
layer, the so-called Tollmien–Schlichting (TS) mode. However, it is also suggested that
the emergence of wall-based instability modes due to fluid–structure interactions (also
referenced as flow–structure instabilities, FSI) can limit the potential of laminarisation of
the flow (Carpenter & Garrad 1986). The FSI modes can be divided into two categories:
the travelling-wave flutter (TWF) modes and the (almost static) divergence (DIV) modes.
The onset of the DIV mode only occurs for a certain amount of wall dissipation (see
Lebbal, Alizard & Pier (2022) for a recent investigation). While the physics of TWF
modes is fairly well understood using an analogy with the onset of water waves (Miles
1957), scientists are still arguing about the physical mechanism behind the DIV mode
(either absolute or convective instabilities with a low phase velocity). The first successful
experiment to reproduce Kramer’s findings was given by Gaster (1988).

Several attempts to classify instability modes in the presence of fluid–structure
interactions were made since the seminal study of Benjamin (1963) for a boundary-layer
flow developing on either a wavy boundary or an elastic material with given stiffness, mass
and damping. In particular, three types of instability mechanism have been considered: TS
modes belong to class A, TWF modes are associated with class B and class C modes
correspond to almost steady waves, i.e. the DIV mode (see Davies & Carpenter (1997a,b)
for the channel-flow case). Apart from these modes, a transition mode is also found by Sen
& Arora (1988), resulting from the coalescence between a TS mode and a TWF mode. For
instance, Davies & Carpenter (1997a) have shown that the transition mode could develop
inside a flow between a compliant channel for a sufficiently high level of wall damping.
For the same flow case, we have recently shown that, while class B modes are mainly
driven by the reduced velocity, which corresponds to the ratio of characteristic wall and

948 A15-2

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

65
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss



Linear instabilities of pulsatile plane channel flow

advection time scales, the class C mode is influenced by both the Reynolds number and
the reduced velocity (Lebbal et al. 2022).

Independently of studies assessing the optimal properties of wall coating to delay
transition to turbulence in wall-bounded flows, the stability of pulsatile flow with respect
to viscous shear instability modes has been theoretically addressed since the middle of
the 1970s (Davis 1976). In comparison with steady flows, pulsatile flows are governed
by additional control parameters: the pulsation amplitudes and the pulsating frequency,
of which the Womersley number Wo is a non-dimensional measure (see its definition in
(3.6a–c) below). In physiological situations, typical Womersley numbers for large blood
vessels are in the range 5–15 (Ku 1997). Within a Floquet theory framework, von Kerczek
(1982) shows that the sinusoidally pulsating flow developing between two flat plates is
more stable than the steady plane Poiseuille flow for Womersley numbers in excess of
Wo = 12. This result was confirmed by direct numerical simulations carried out by Singer,
Ferziger & Reed (1989). Using linear Floquet stability analyses and nonlinear numerical
simulations, Pier & Schmid (2017) explored a large parameter space for the same flow
configuration, confirming and extending the earlier results given by von Kerczek (1982).

On the other hand, several authors (Straatman et al. 2002; Blennerhassett & Bassom
2006) have found that the perturbations may experience a strong increase in kinetic energy
during the deceleration phase of the pulsatile base flow. This suggests that transient
growth mechanisms and nonlinear effects likely come into play during this part of the
pulsation cycle and that the flow could possibly break down to turbulence. Recently, such
a scenario has been further supported by non-modal stability analyses, experiments and
direct numerical simulations for both pipe and channel flows (Xu et al. 2020b; Pier &
Schmid 2021; Xu, Song & Avila 2021).

In spite of major successes achieved so far in the understanding of the dynamics
prevailing for either pulsatile base flows or wall flexibility, only few studies address
these two effects in combination. Among of them, Tsigklifis & Lucey (2017) investigated
numerically the asymptotic linear stability and transient growth for a pulsatile flow
in a compliant channel where both vertical and horizontal displacements are allowed.
Using Floquet stability analyses, Tsigklifis & Lucey (2017) show that wall flexibility
has a stabilising effect for the Womersley number varying from 5 to 50. The combined
effect of wall damping and Womersley number is illustrated by these authors for TS
and TWF modes. The authors also found that the tangential motion of the wall could
be neglected and that the most dangerous perturbation for the asymptotic regime is
always two-dimensional. The non-modal transient growth is shown to be increased by
wall compliance. However, the symmetry of the perturbation is not discussed by these
authors, and it is therefore not clear whether the sinuous or the varicose TWF modes
are investigated. In addition, the DIV mode was not considered by Tsigklifis & Lucey
(2017). For a steady channel flow and similar compliant walls, the DIV mode has been
characterised by Lebbal et al. (2022) and is therefore also expected to occur for the
pulsatile flow case.

Finally, the influence of the reduced velocity on TWF modes has not yet been considered
when the pulsatile base-flow component comes into play and it is not completely clear if
the classification made by Benjamin (1963) still holds for the pulsatile flow case.

To provide further understanding of the above points, the present study addresses the
linear stability properties of small-amplitude perturbations developing in pulsatile flows
through compliant channels. This paper is organised as follows. In § 2, we introduce
the coupled fluid–structure system, and the base flow and non-dimensional control
parameters are given in § 3. The mathematical formulation of the linear stability problem
is presented in § 4. The numerical methods to solve and reduce the generalised eigenvalue
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Figure 1. Channel flow with infinite spring-backed flexible walls. (a) Schematic diagram showing the
equilibrium state configuration and (b) wall deformation and coordinate system.

problem are explained in § 5. Section 6 is devoted to the results and constitutes the main
contribution of the paper: discussion of the spectra, influence of the control parameters
and spatio-temporal structure of the eigenmodes. In particular, specific attention will be
given to providing critical parameters for the onset of instabilities for the different types
of modes (TWF, DIV and TS) and symmetries (sinuous and varicose). In that respect, the
extension of the classification made by Benjamin (1963) for the steady flow to the pulsatile
flow case will be discussed. Finally, in § 7 the conclusions are summarised, an attempt is
made to assess the relevance of the critical parameter values in practical contexts, and
some prospects for future work are given.

2. Fluid–structure interaction model and interface conditions

In the present study, the analysis is restricted to the two-dimensional case. We introduce
the Cartesian coordinate system (x, y) with unit vectors (ex, ey) and consider an
incompressible Newtonian fluid with dynamic viscosity μ and density ρ between two
spring-backed deformable plates located at y = ζ±(x, t) which are allowed to move only
in the wall-normal direction (see figure 1). As suggested by previous theoretical analyses
carried out by Larose & Grotberg (1997) and Tsigklifis & Lucey (2017) for steady and
pulsatile flow cases, respectively, horizontal wall motion only plays a minor role in the
dynamics and is therefore not considered in the present investigation for simplicity of the
model.

The flow between the walls is governed by the incompressible Navier–Stokes equations

ρ
∂u
∂t

+ ρ(u · ∇)u = −∇p + μΔu, (2.1)

0 = ∇ · u, (2.2)

where u = uex + vey is the velocity field, with streamwise (u) and wall-normal (v) velocity
components and p the pressure field.

The movement of the flexible plates obeys the following equations:

m
∂2ζ±

∂t2
+ d

∂ζ±

∂t
+
(

B
∂4

∂x4 − T
∂2

∂x2 + K
)

ζ± = f ±, (2.3)
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Linear instabilities of pulsatile plane channel flow

where m denotes the mass per unit area of the plates, d their damping coefficient,
B the flexural rigidity, T the wall tension, K the spring stiffness and f ± represents the
y-component of the hydrodynamic forces acting on the plates. These forces are obtained
as

f ± = ey · f ± with f ± = ( ¯̄τ± − δp±I) · n±. (2.4)

Here, ¯̄τ± denotes the viscous stress tensor at the walls, δp± the transmural surface pressure
and n± = (n±

x , n±
y ) is the unit vector normal to the walls pointing towards the fluid. The

y-component of the normal forces acting on the plate then reads

f ± = μ

(
∂u
∂y

∣∣∣∣
y=ζ±

+ ∂v

∂x

∣∣∣∣
y=ζ±

)
n±

x + 2μ
∂v

∂y

∣∣∣∣
y=ζ±

n±
y − δp±n±

y , (2.5)

with

n±
x = ±∂ζ±

∂x
1√

1 +
(

∂ζ±

∂x

)2
and n±

y = ∓ 1√
1 +

(
∂ζ±

∂x

)2
. (2.6a,b)

Finally, since only vertical displacements are allowed, the no-slip conditions on both
walls lead to the kinematic conditions (Wiplier & Ehrenstein 2000)

u = 0 and v = ∂ζ±

∂t
for y = ζ±. (2.7)

The fluid–structure interaction problem is thus fully defined by the coupling of the fluid
equations (2.1) and (2.2), the wall equations (2.3) and (2.5) and the boundary conditions
(2.7).

3. Base flows and non-dimensional control parameters

A pulsatile base flow, of frequency Ω , is considered. Such a flow is driven by a spatially
uniform and temporally periodic streamwise pressure gradient and is obtained as an
exact solution of the Navier–Stokes equations, assuming a vanishing transmural pressure
difference for the unperturbed state. The base-state solution then consists of undeformed
parallel walls and of a velocity field in the streamwise direction with profiles that only
depend on the wall-normal coordinate and time. It can be expanded as a temporal Fourier
series

U( y, t) = U( y, t)ex with U( y, t) =
∑

−∞<n<+∞
U(n)( y) exp(inΩt). (3.1)

Similarly, the pressure gradient that drives the flow is expanded as

G(t) =
∑

−∞<n<+∞
G(n) exp(inΩt), (3.2)

and is associated with a pulsatile flow rate

Q(t) =
∑

−∞<n<+∞
Q(n) exp(inΩt). (3.3)

In the above expressions, the conditions Q(n) = [Q(−n)]�, G(n) = [G(−n)]� and U(n)( y) =
[U(−n)( y)]� ensure that all flow quantities are real (with � denoting complex conjugation).
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S. Lebbal, F. Alizard and B. Pier

The velocity profile is analytically obtained for each harmonic component. The mean-flow
component U(0)( y) corresponds to a parabolic steady Poiseuille flow solution. For n /= 0,
the profiles U(n)( y) are obtained in terms of exponential functions (Womersley 1955).
Analytical expressions as well as the relationship between U(n)( y) and Q(n) are detailed in
the appendix of Pier & Schmid (2021). In this work, we focus on pulsatile base flows with
a single oscillating component: −1 ≤ n ≤ 1 in (3.1)–(3.3). Without loss of generality, Q(1)

may then be assumed real, and the flow rate is obtained as

Q(t) = Q(0)(1 + Q̃ cos Ωt), (3.4)

with the relative pulsating amplitude Q̃ defined as

Q̃ = 2
Q(1)

Q(0)
. (3.5)

The problem is then characterised by 11 dimensional parameters: the mean flow
rate [Q(0)] = m2 s−1, the half-channel width [h] = m, the fluid density [ρ] = kg m−3,
the viscosity [μ] = kg s−1 m−1, the mass of the plate per unit area [m] = kg m−2,
the damping coefficient of the wall [d] = kg m−2 s−1, the bending stiffness of the
plate [B] = kg m2 s−2, the wall tension [T] = kg s−2, the spring stiffness [K] =
kg m−2 s−2, the pulsation frequency [Ω] = s−1 and the amplitude of the oscillating flow
component [Q(1)] = m2 s−1. Hence, the present configuration may be described by eight
non-dimensional control parameters.

The base flow is characterised by three non-dimensional parameters

Re = Q(0)

ν
, Wo = h

√
Ω

ν
and Q̃ = 2

Q(1)

Q(0)
. (3.6a–c)

Here, the Reynolds number Re is based on the average fluid velocity, the channel diameter
and the kinematic viscosity ν = μ/ρ; the Womersley number Wo is a measure of the
pulsation frequency and can be interpreted as the ratio of the channel half-diameter h to
the thickness δ = √

ν/Ω of the oscillating Stokes boundary layers.
The parameters associated with the walls are non-dimensionalised with respect to the

spring stiffness K, which leads to

B∗ = B
Kh4 , T∗ = T

Kh2 and d∗ = d√
mK

. (3.7a–c)

Finally, two non-dimensional parameters account for the coupling between the fluid and
the compliant walls

VR = Q(0)

4h2

√
m
K

and Γ = m
ρh

. (3.8a,b)

The reduced velocity VR represents the ratio of the wall characteristic time scale τK =√
m/K, associated with the spring stiffness, to the characteristic flow advection time scale

τQ = 4h2/Q(0) (de Langre 2000). The parameter Γ is the mass ratio between the walls
and the fluid.

Unperturbed base configurations are thus completely specified by the 8 non-dimensional
control parameters (3.6a–c)–(3.8a,b). We further use ρ = 1, h = 1 and Q(0) = 1 to
uniquely determine dimensional quantities. Hereafter, to reduce the dimensionality of
control-parameter space, the mass ratio is kept constant at Γ = 2 and we consider walls
without tension T = 0.
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Linear instabilities of pulsatile plane channel flow

4. Linear stability analysis

For the stability analysis, the total flow fields are decomposed as the superposition of base
and small-amplitude perturbation fields

u(x, y, t) = U( y, t) + u′(x, y, t), (4.1)

p(x, y, t) = G(t)x + p′(x, y, t). (4.2)

The wall displacement is similarly written as

ζ±(x, t) = ±h + η±′(x, t). (4.3)

Since the base configuration is homogeneous in x, perturbation fields may be expressed as
spatial normal modes

u′(x, y, t) = ũ( y, t)eiαx + c.c., (4.4)

p′(x, y, t) = p̃( y, t)eiαx + c.c., (4.5)

η±′(x, t) = η̃±(t)eiαx + c.c., (4.6)

where α denotes the streamwise wavenumber and c.c. stands for the complex conjugate.
Introducing this decomposition into the governing equations (2.1)–(2.3) and neglecting
the quadratic terms leads to the following system of coupled linear partial differential
equations:

∂ ũ
∂t

= −iαU( y, t)ũ − ∂U
∂y

( y, t)ṽ − 1
ρ

iαp̃ + ν

(
∂2

∂y2 − α2
)

ũ, (4.7)

∂ṽ

∂t
= −iαU( y, t)ṽ − 1

ρ

∂ p̃
∂y

+ ν

(
∂2

∂y2 − α2
)

ṽ, (4.8)

0 = iαũ + ∂ṽ

∂y
, (4.9)

m
∂γ̃ ±

∂t
= −dγ̃ ± − (Bα4 + Tα2 + K)η̃± ± p̃( y, t)|±h ∓ μ

dṽ

dy

∣∣∣∣±h
, (4.10)

where we have introduced the additional functions γ̃ ± = ∂tη̃
± in order to reduce the

system to first-order differential equations in time. Note that the wall equations (4.10)
assume a pressure outside the channel walls always equal to the unperturbed pressure
G(t)x prevailing inside (see Lebbal et al. (2022) for further details). The same assumption
has been made by Davies & Carpenter (1997a,b), Tsigklifis & Lucey (2017) and many
others. The effect of the transmural pressure for collapsible channels has been investigated
by Luo & Pedley (1996) and Xu et al. (2020a) and is out the scope of the present study.

The boundary conditions at the perturbed interface are expanded in a Taylor series about
their equilibrium values at y = ±h (Domaradzki & Metcalfe 1986; Davies & Carpenter
1997a; Shankar & Kumaran 2002). At linear order, the flow velocities at the walls are
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S. Lebbal, F. Alizard and B. Pier

obtained as

u(x, y = ζ±, t) = u′(x, y = ±h, t) + η±′(x, t)
dU
dy

∣∣∣∣
( y=±h,t)

ex. (4.11)

Thus, the boundary conditions (2.7) become

ũ( y = ±h, t) + η̃±(t)
dU
dy

∣∣∣∣
( y=±h,t)

= 0 and ṽ( y = ±h, t) = γ̃ ±(t). (4.12a,b)

Since the base flow is time periodic, the linear stability analysis proceeds by following
Floquet theory, where the eigenfunctions are assumed to have the same temporal
periodicity as the base flow. The perturbations are therefore further decomposed as

ũ( y, t) =
[∑

n

û(n)( y) exp (inΩt)

]
exp (−iωt), (4.13)

p̃( y, t) =
[∑

n

p̂(n)( y) exp (inΩt)

]
exp (−iωt), (4.14)

η̃±(t) =
[∑

n

η̂±(n) exp (inΩt)

]
exp (−iωt), (4.15)

γ̃ ±(t) =
[∑

n

γ̂ ±(n) exp (inΩt)

]
exp (−iωt), (4.16)

where the complex frequency ω = ωr + iωi is the eigenvalue, with ωi the growth rate and
ωr the circular frequency. After substitution of these expansions, the linearised equations
governing the dynamics of small perturbations take the following form, for each integer n:

ωû(n)( y) = [nΩ + iν(∂yy − α2)]û(n)( y) + α

ρ
p̂(n)( y)

+
∑

k

[
αU(k)( y)û(n−k)( y) − i

dU(k)

dy
v̂(n−k)( y)

]
, (4.17)

ωv̂(n)( y) = [nΩ + iν(∂yy − α2)]v̂(n)( y) + 1
ρ

dp̂(n)

dy

+
∑

k

[αU(k)( y)v̂(n−k)( y)], (4.18)

0 = iαû(n)( y) + ∂v̂(n)

∂y
, (4.19)

ωη̂±(n) = nΩη̂±(n) + iγ̂ ±(n), (4.20)

ωγ̂ ±(n) = nΩγ̂ ±(n) − i
d
m

γ̂ ±(n) − i
m

(Bα4 + Tα2 + K)η̂±(n)

± i
m

(
p̂(n)(±h) − μ

dv̂(n)

dy

∣∣∣∣∣±h

)
, (4.21)
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Linear instabilities of pulsatile plane channel flow

together with the kinematic wall conditions

û(n)(±h) = −
∑

k

dU(k)

dy

∣∣∣∣∣
±h

η̂±(n−k), (4.22)

v̂(n)(±h) = γ̂ ±(n). (4.23)

Note that, in (4.17), (4.18) and (4.22), the summation only involves −1 ≤ k ≤ +1 for
harmonically pulsating base flows.

The system of coupled linear differential equations (4.17)–(4.21) with boundary
conditions (4.22) and (4.23) forms the generalised eigenvalue problem that governs
the dynamics of small-amplitude perturbations developing in this time-periodic
fluid–structure interaction system.

5. Numerical methods

In this section, we outline the numerical strategy that has been implemented for
solving the generalised Floquet eigenvalue problem derived in the previous section. The
main objectives in this implementation are the elimination of spurious (non-physical)
eigenvalues and the reduction of the required computational effort. To that purpose, we
follow the general framework described by Manning, Bamieh & Carlson (2007), who have
also suggested an interest in the proposed method for handling fluid–structure interaction
problems.

The velocity and pressure components are discretised in the wall-normal direction using
a Chebyshev collocation method. To suppress spurious pressure modes, we consider the
(PN,PN−2)-formulation, where the pressure is approximated with a polynomial of degree
N − 2 while the velocity is discretised with a polynomial of degree N (Schumack, Schultz
& Boyd 1991; Boyd 2001; Peyret 2002). In classical fashion, velocity fields are therefore
represented by their values over N Gauss–Lobatto collocation points spanning the entire
channel diameter and including the boundary points, while the pressure fields use only the
N − 2 interior points. We note the vectors containing the unknown velocity and pressure
components at the interior points for each Fourier mode

VI
(n) = (û(n)

2 , . . . , û(n)
N−1, v̂

(n)
2 , . . . , v̂

(n)
N−1), (5.1)

PI
(n) = (p̂(n)

2 , . . . , p̂(n)
N−1). (5.2)

Similarly, wall displacements and wall velocities are denoted by

W (n) = (η̂
(n)
1 , η̂

(n)
N , γ̂

(n)
1 , γ̂

(n)
N ). (5.3)

The kinematic conditions (4.22) and (4.23) may be used to express the velocity
values at the boundaries in terms of the wall variables. As a consequence, the variables
û(n)

1 , v̂
(n)
1 , û(n)

N and v̂
(n)
N may be directly eliminated from the problem together with the

boundary conditions. Then, using

X̂ (n) = (VI
(n), PI

(n), W (n)) (5.4)

for each harmonic of the Floquet eigenvector, the system (4.17)–(4.21) is recast as a
generalised algebraic eigenvalue problem of the form

Â(n)X̂ (n) +
∑

k

Ŝ(k)X̂ (n−k) = iωB̂(n)X̂ (n). (5.5)
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S. Lebbal, F. Alizard and B. Pier

Here, the square matrices Â(n), Ŝ(k) and B̂(n) are of size (3N − 2)2 and may be written in
block structure as

Â(n) =

⎛
⎜⎝ Â(n)

V V ĜV ÂV W

D̂V 0 D̂W

ÂW V ĜW Â(n)
W W

⎞
⎟⎠ , Ŝ(k) =

⎛
⎝Ŝ(k)

V V 0 Ŝ(k)
V W

0 0 0
0 0 0

⎞
⎠ and

B̂(n) =
⎛
⎝IV V 0 0

0 0 0
0 0 IW W

⎞
⎠ . (5.6a–c)

Their decomposition in terms of square blocks along the diagonal and rectangular blocks
off diagonal reflects the structure of the vectors X̂ (n) (5.4), with 2N − 4 variables for
VI

(n), N − 2 variables for PI
(n) and 4 variables for W (n). Note that the wall equations

involve the pressure at y = ±h; since the pressure is represented on the N − 2 interior
collocation points, these boundary values are obtained by polynomial interpolation with
spectral accuracy, corresponding to two lines of the rectangular block ĜW . In the above
expressions, n may in theory take all integer values (positive and negative) but in practice
the Fourier series are truncated at |n| ≤ Nf for some cutoff value Nf (i.e. the number of
complex Fourier components is then 2Nf + 1).

Note also that the blocks for which the superscript (n) is not indicated in (5.6a–c)
do not depend on a specific harmonic and that the matrix B̂(n) only consists of two
identity blocks. The matrices Ŝ(k) account for the advection terms due to the pulsating
base-flow component U(k)( y) and are responsible for the coupling of the different Fourier
components of the Floquet eigenfunctions. Since we consider pulsating flows with only
a single oscillating component U(±1)( y), only the matrices Ŝ(k) with |k| ≤ 1 are here
non-zero. As a result, the eigenvalue problem (5.5) has block–tridiagonal structure, which
allows the use of efficient solution methods such as a generalised form of the Thomas
algorithm.

The next step consists in eliminating the pressure by using the discrete version of the
divergence-free condition

D̂V VI
(n) + D̂W W (n) = 0. (5.7)

Hence, applying this divergence operator to the parts of the algebraic system (5.5)
corresponding to the momentum equations yields

−(D̂V ĜV + D̂W ĜW )P(n)
I = (

D̂V ĜV
) ( Â(n)

V V ÂV W

ÂW V Â(n)
W W

)(
V (n)

I
W (n)

)

+ D̂V
∑

k

(Ŝ(k)
V VV (n−k)

I + Ŝ(k)
V WW (n−k)). (5.8)

The operator (D̂V ĜV + D̂W ĜW ) is a square matrix of size (N − 2)2, independent of the
harmonic n and non-singular. By inverting it, the pressure components P(n)

I are obtained
as the result of linear operators acting on the components V (k)

I and W (k).
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Linear instabilities of pulsatile plane channel flow

Thus eliminating the pressure, the system (5.5) is recast as

A(n)X (n) +
∑

k

S(k)X (n−k) = iωX (n). (5.9)

Now, the components of the eigenvector

X (n) = (VI
(n), W (n)) (5.10)

contain 2N variables and the new matrices A(n) and S(k) are of size (2N)2. Note also
that, through the elimination of the pressure, the generalised eigenproblem (5.5) has been
transformed into a regular eigenproblem.

The system (5.9) may be further reduced when α /= 0. Indeed, using the discretised
version of the divergence-free condition ũ = (i/α)∂yṽ, allows us to eliminate the
longitudinal velocity components by expressing them in terms of the wall-normal
velocities. This leads to an eigenvalue problem of the same form as (5.9) where the
components of the eigenvector are of size N + 2, with N − 2 wall-normal velocity values
and 4 wall variables. In practice, this system is solved using an Arnoldi algorithm that
exploits the block–tridiagonal structure of the matrices.

The transformations that have led from the initial generalised eigenvalue problem of
size 3N + 2 to a regular eigenproblem of size N + 2 may appear tedious. However, it is
largely worth the effort: the final formulation is not only free of spurious eigenmodes,
it is also drastically more efficient in terms of numerical computations. Finally, the
method may be further improved by considering separately perturbations of sinuous or
varicose symmetries and using only half of the channel together with derivative operators
appropriate for the symmetry of each component of the different flow fields. Thus the
complete problem may be addressed by carrying out two eigenvalue computations (sinuous
and varicose) of half-size, which further speeds up the process and directly provides the
information about the symmetry of the different modes.

The numerical method has been validated using the results given by Pier & Schmid
(2017) for the pulsatile flow inside a rigid channel and those provided by Davies &
Carpenter (1997a) for the steady base flow between compliant walls.

6. Stability analysis

The purpose of the present study is to identify the effect of the pulsating base
flow on instability modes in the presence of compliant walls for a wide range of
flow and wall parameters. We first discuss how the eigenvalue spectra are modified
due to the time-periodic flow component. Then, the influence of the main control
parameters on the dominant modes is investigated, with special attention given to possible
cross-over between different mode types (i.e. TS, TWF and DIV modes). Finally, the
multi-dimensional parameter space is mapped out using a variety of critical curves for
instability onset.

6.1. The Floquet eigenspectrum
The linear stability properties of time-periodic flow configurations is addressed by
resorting to Floquet theory, as explained in § 4. In order to introduce the specific features
of Floquet eigenspectra that are essential to this entire investigation, we illustrate them for
a situation with small pulsation amplitude Q̃, and compare them with the corresponding
steady case.
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S. Lebbal, F. Alizard and B. Pier
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Figure 2. Spectrum for Q̃ = 0.02, Wo = 10, VR = 1, Re = 10 000, α = 1, B∗ = 4 and d∗ = 0. The steady
case corresponds to Q̃ = 0. In the insets, small symbols correspond to eigenvalues computed with Nf = 6
and large symbols are obtained with Nf = 3.

Figure 2 shows the eigenvalue spectrum computed with α = 1 for a pulsating base
configuration characterised by VR = 1, Wo = 10, Q̃ = 0.02, Re = 10 000, B∗ = 4 and
d∗ = 0. In the figure, the corresponding steady configuration is also reported (i.e. Q̃ = 0).

This plot reveals the characteristic feature of any Floquet spectrum: multiple eigenvalues
of the same growth rate ωi and frequencies ωr separated by integer multiples of the
base frequency Ω . This is due to the fact that, if ω is a complex eigenvalue associated
with an eigenfunction of the form (4.13)–(4.16), then all frequencies ω� = ω + kΩ (for
any positive or negative integer k) are also among the eigenvalues and their associated
eigenfunctions are simply obtained by similarly shifting the Fourier components in the
Floquet expansion as, for example, û(n)

� ( y) = û(n−k)( y). In theory, the Fourier expansions
(4.13)–(4.16) are an infinite series, and the infinite number of eigenvalues ω + kΩ all
correspond to the same physical perturbation. In practice, however, the Fourier expansions
are truncated to a finite number of components, leading to a finite set of eigenvalues ω�.
These are then no longer exactly equal to ω + kΩ and the associated normal modes also
differ since they correspond to different truncations of the Fourier series. To illustrate
this truncation effect, two spectra are shown, computed with Nf = 3 and Nf = 6, thus
corresponding to 2Nf + 1 = 7 and 13 Fourier components, respectively, and associated
with sets of 7 or 13 eigenvalues each.

The superposition of flow cases Q̃ = 0 and Q̃ = 0.02 illustrates the close similarity of
steady and pulsating spectra and reveals that each of the steady eigenvalues is located very
near one of the Floquet eigenvalues (see insets). Here, the Floquet spectrum corresponds
to a weakly modulated base flow, for which the oscillating base-flow component U(±1)( y)
is much smaller than the Poiseuille component U(0)( y). Thus, the magnitude of the
off-diagonal blocks S(±1) in the Floquet eigenproblem (5.9) is small in comparison with
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Linear instabilities of pulsatile plane channel flow

the diagonal blocks and the adjacent Fourier components in the Floquet eigenfunction are
therefore only weakly coupled. As a result, the growth rates in the eigenspectrum here
closely follow those prevailing for the equivalent steady flow. For weakly modulated base
flows, as is the case in figure 2, it thus seems natural to choose the eigenvalue ω + kΩ
nearest its steady counterpart as the most representative frequency of the Floquet normal
mode.

Insets in figure 2 reveal slight variations in ωi for the eigenvalues towards the edges
(especially visible for the TS mode and to a lesser extent for the varicose TWF mode). This
indicates that the corresponding Floquet modes suffer from truncation errors, while the
eigenvalues sufficiently far from the edges are well resolved. Note also that the eigenvalues
nearest their steady counterpart are located in the central region and therefore the first to
be sufficiently well resolved when increasing Nf .

For larger pulsation amplitudes Q̃, however, this similarity with the steady spectrum
no longer holds and a more robust criterion is required to lift the formal degeneracy of
the Floquet eigenspectrum. It seems suitable to consider the frequency associated with
the most energetic Fourier component in the Floquet expansion. In order to identify this
most representative frequency among the multiple Floquet eigenvalues for each normal
mode, we consider the magnitude of the different Fourier components of the Floquet
eigenfunctions, defined as

En = ρ

∫ +h

−h
|û(n)

( y)|2dy

+ m(|γ̂ +(n)|2 + |γ̂ −(n)|2) + (Bα4 + Tα2 + K)(|η̂+(n)|2 + |η̂−(n)|2). (6.1)

By using this energy-based norm, it is possible to single out the dominant component
in the eigenfunction Fourier expansion and also to check if the truncation contains
enough harmonics for an accurate representation of the normal mode. This process
is illustrated in figure 3, for Nf = 100, where the magnitudes En are plotted for five
consecutive eigenvalues corresponding to the varicose TWF mode associated with α =
0.8, Re = 10 000, Q̃ = 0.2, Wo = 10, VR = 1, B∗ = 4 and d∗ = 0. It is observed that
the En-distribution peaks at n = 0 for the eigenvalue ω = 0.415 + 0.046i, while the
distributions associated with the surrounding eigenfrequencies ω + kΩ peak at n = k
since they correspond to similarly shifted Fourier components. It follows that ω =
0.415 + 0.046i is the dominant frequency of this eigenmode. Throughout this paper we
will therefore always consider that, for a given mode, the dominant frequency is derived
by this energy-based criterion and choose the eigenvalue for which the Fourier series is
dominated by the n = 0 component, i.e. for which E0 is largest. For the rigid wall case,
this method has been proven to be effective in recovering the TS mode frequency obtained
using linearised direct numerical simulation (results are given in Pier & Schmid 2017).
Note also that the plots in figure 3 demonstrate that we are using more than enough
harmonics to fully resolve the Floquet eigenfunctions, since the energy associated with
the higher harmonics is almost negligible.

The Floquet eigenfunctions correspond to either sinuous or varicose modes, depending
on the symmetry or antisymmetry of the different flow fields with respect to the mid-plane
y = 0. As explained in § 5, they may be efficiently computed by taking advantage of these
symmetry properties. In the spectrum of figure 2, the sinuous eigenfrequencies are given
in blue and the varicose frequencies in red. Despite the multiplicity of the eigenvalues due
to the time-periodic base flow, the spectrum still displays the familiar structure made of
a large number of Orr–Sommerfeld modes (as A, P and S branches) together with two

948 A15-13

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

65
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss



S. Lebbal, F. Alizard and B. Pier
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Figure 3. Fourier density for FSI varicose mode associated with α = 0.8, Re = 10 000, Q̃ = 0.2,

Wo = 10, VR = 1, B∗ = 4 and d∗ = 0. The numerical eigenproblem is solved with Nf = 100.

isolated TWF modes (one sinuous and one varicose). Note that the two DIV modes are
here out of the range of this plot.

6.2. Influence of some parameters on the spectrum

Figure 4(a) displays spectra for VR = 1, Wo = 10, d∗ = 0 and Q̃ varying from 0 (i.e. the
steady flow case) to Q̃ = 0.2. Figure 4(b) illustrates the effect of the base-flow frequency
by varying Wo from 10 to 20 for Q̃ = 0.8. Note that the significant increase in Nf
for figure 4(b) is required due to a broadening of the Fourier density distribution
when Q̃ increases. As discussed in the previous section, the figure shows modes that
exhibit equispaced eigenfrequencies where the gap between two successive frequencies
corresponds to the base frequency Ω , which scales as the square root of the Womersley
number. In figure 4, the bold eigenvalues are associated with the dominant frequency
for each mode, obtained by considering the magnitude of the Floquet harmonics, as
explained in the previous subsection. Concentrating on FSI modes, dominant frequencies
for both sinuous and varicose symmetries have finite ωr values. These FSI modes are
thus connected to TWF instability waves. They are referenced hereafter as sTWF (sinuous
TWF) or vTWF (varicose TWF) depending on their symmetry with respect to the
midplane y = 0.

For the flow and wall parameters that are considered and Q̃ = 0, the most amplified
TWF mode is of varicose type (see figure 4a). For this steady base-flow case, the sTWF
is seen to be marginally stable and the temporal growth rate of the TS mode is damped.
For Wo = 10, an increase of Q̃ tends to destabilise the TS wave (see figure 4a). This is
reminiscent of the results of Pier & Schmid (2017), where TS modes for a pulsatile base
flow between rigid walls have been computed. By contrast, the TWF modes exhibit distinct
behaviours whether the sinuous or varicose symmetry is considered. While an increase of
Q̃ up to 0.2 leads to a reduction of the temporal amplification rate for the varicose type,
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Linear instabilities of pulsatile plane channel flow

0
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Figure 4. Spectra with VR = 1, Re = 10 000, α = 1, B∗ = 4 and d∗ = 0. For each branch, 11 eigenvalues are
shown centred around the dominant frequency (large symbols). The numerical eigenproblem is solved with
Nf = 20 in (a) and Nf = 150 in (b); (a) Wo = 10 and (b) Q̃ = 0.8.

the opposite behaviour is observed for the sTWF mode. Figure 4(b) shows the effect of the
Womersley number Wo on TS and TWF modes for the same case at Q̃ = 0.8. An increase
of Wo has a stabilising effect on TWF modes for both symmetries. The opposite role of Wo
is seen for the TS mode. This reflects the richness of physical processes that are involved,
in comparison with the rigid wall case.

Finally, figure 5 shows the effect of wall compliance on TS and TWF modes for
Q̃ = 0.2, Wo = 10, Re = 10 000, B∗ = 4 and α = 1. Only Floquet modes that match the
dominant frequency for each mode are shown. As VR is approaching zero, the phase speed
of TWF modes tends to infinity, which is consistent with the rigid wall case. An increase
of VR has a stabilising effect on the TS mode. The opposite behaviour is observed for
TWF modes, whatever the symmetry considered. However, the figure suggests a preferred
varicose symmetry for large VR. Parenthetically, one can see in figure 5(a) that the phase
speed tends to a finite value (≈ 0.5) for both sTWF and vTWF as wall compliance
increases. The influence of the wall dissipation is illustrated in figure 5(b) for small values
of d∗. The figure shows that the temporal amplification rate of the TS mode is slightly
enhanced by increasing d∗. In contrast, growth rates of both sTWF and vTWF modes are
significantly reduced by wall dissipation.

When increasing the wall dissipation d∗, the onset of a DIV mode is expected as
documented for steady base flows (see Davies & Carpenter (1997a) and Lebbal et al.
(2022) for a recent investigation). The effects of the pulsatile base-flow components for
different values of d∗ are shown in figure 6. We restrict here the analysis to the varicose
case since the sinuous symmetry is much more complicated due to the competition
between the transition and DIV modes (Lebbal et al. 2022). The effect of Q̃, illustrated
in panel (a), shows that, for moderate values of d∗, the dynamics is driven by the TWF
mode (i.e. the phase velocity ωr/α is of the order of the mean base-flow velocity). As d∗
is increased, the TWF mode is temporally damped. For large values of d∗, we observe a
different regime for all Q̃. The most unstable mode is shifted towards lower frequencies
and its temporal growth rate increases again, a behaviour characteristic of the DIV mode.
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Figure 5. Spectra with Q̃ = 0.2, Wo = 10, Re = 10 000, α = 1 and B∗ = 4; (a) d∗ = 0 and (b) VR = 1.
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Figure 6. Spectra for the varicose symmetry with Re = 10 000, α = 0.5, B∗ = 4 and VR = 2; (a) Wo = 10
and 0 ≤ Q̃ ≤ 0.6, (b) Q̃ = 0.4 and 5 ≤ Wo ≤ 20 for d∗ = 0, 1, 5, 10, 15, 20 and 25. The mode trajectories are
displayed by dashed lines. The shaded region indicates the regime dominated by the DIV mode.

The critical value of d∗ for this regime change is seen to increase with Q̃: 5 ≤ d∗ ≤ 10 for
Q̃ = 0 and 15 ≤ d∗ ≤ 20 for Q̃ = 0.6. As soon as the regime is driven by the DIV mode,
its temporal amplification rate ωi is seen to increase with Q̃. The effect of Wo is illustrated
in panel (b). The figure shows that the onset of the DIV mode for the range of Womersley
numbers investigated occurs for 10 ≤ d∗ ≤ 15. It also shows that ωi and ωr increase with
Wo for the DIV mode.

Although the dynamics of the different modes is influenced by the pulsatile base-flow
parameters, the above discussion suggests similarities between the steady case and
our results. In particular, for the parameters that have been considered, the distinction
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Linear instabilities of pulsatile plane channel flow

made between class A and B modes by Benjamin (1963), Landahl (1962) and Carpenter
& Garrad (1985) still holds for our pulsatile flow case. However, we will see in the next
section that this classification is clearly too restrictive for pulsatile base flows.

6.3. Wave superposition for sinuous Floquet mode
The Fourier density distributions for a sinuous Floquet mode associated with VR =
1, Wo = 10, Re = 10 000, α = 1, B∗ = 4 and d∗ = 0 are shown in figure 7 together with
the associated eigenvalues for Q̃ = 0.349 and 0.350. Both series of eigenvalues have
positive growth rates. The figure shows the existence of two distinct peaks in the Fourier
density distribution. This suggests that two different mechanisms influence this mode. To
further illustrate this scenario, the different contributions of the total energy per Fourier
mode are also reported in figure 7. For the En-distribution at Q̃ = 0.349 (left curves),
the main peak is due to the fluid kinetic energy contribution, associated with a dominant
frequency of ωr 	 0.26. In contrast, for Q̃ = 0.350, the wall contributions take over,
leading to a dominant frequency of ωr 	 0.52. For both cases, the En-distributions are
very similar, but the exchange in dominant peaks due to a continuous modification of the
distribution results in a sudden jump of the dominant frequency. This behaviour indicates
that the intracyclic mechanism involves the interference between fluid-based (TS) and
wall-based (TWF) modes. By contrast with the steady base-flow case, we can therefore
no longer distinguish here between class A and class B modes. Moreover, figure 7 also
shows that for Q̃ < 0.35, the Floquet mode is mainly driven by its TS component. When
Q̃ is increased up to 0.35, the intracyclic growth is mainly due to its sTWF part. This new
type of mode will be called hereafter a two-wave mode. For the same set of parameters, the
influence of Q̃ on the stability of the system is shown in figure 8. For comparison purposes,
the rigid case is also reported. We restrict our analysis to the sinuous symmetry. For the
compliant wall case, the evolution of both temporal growth rates and circular frequencies
are displayed for the first and second most amplified Floquet modes. The dominant Floquet
frequency for each mode is selected using the methodology mentioned in the previous
section. The TS mode distribution is seen to closely follow its rigid wall counterpart up to
Q̃ = 0.3. When Q̃ exceeds this value, however, its En-distribution exhibits two peaks and
the mode consists of the superposition of TS and TWF waves (as illustrated in figure 7).
For Q̃ greater than 0.35 the energy peak is connected to the TWF wave. At this point, the
dominant frequency for this mode is associated with the wall dynamics, as shown by the
energy contributions in figure 7. For Q̃ up to 0.5, we observe the co-existence of TWF
and two-wave modes. For 0.5 < Q̃ < 0.6, the two-wave mode is seen to be temporally
damped. By contrast, the growth rate of TWF mode is increased for this range of Q̃. For
larger values of Q̃, the spectrum features a single unstable mode that shares the main
characteristics of TWF modes.

In the next section, we will describe the spatio-temporal behaviour of Floquet
eigenfunctions, for TWF, TS and two-wave modes.

6.4. Spatial structure of eigenmodes
The structure of TS and FSI Floquet modes are investigated in more detail by monitoring
the wall-normal distribution of their flow kinetic energy. To that end, we define the fluid
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Figure 7. Energy per Floquet modes (red for total energy, blue for fluid kinetic energy, green for the
wall potential and kinetic energy) at Q̃ = 0.349 (left) and Q̃ = 0.350 (right) with VR = 1, Wo = 10, Re =
10 000, α = 1, B∗ = 4 and d∗ = 0. The frequency associated with the dominant peak is indicated by •.
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Figure 8. Spectra for different Q̃ with VR = 1, Wo = 10, Re = 10 000, α = 1, B∗ = 4 and d∗ = 0.

kinetic energy of the Floquet mode (4.13)–(4.16) as

Ê( y, t) = 1
2
ρ

∣∣∣∣∣
∑

n

û(n)( y) exp (inΩt)

∣∣∣∣∣
2

, (6.2)

which is periodic in time and may be used to characterise the intracyclic dynamics, since
it does not contain the long-term exponential growth (or decay) part.

First, we will discuss the temporally averaged energy distribution, obtained as

Ē( y) = 1
T

∫ T

0
Ê(t, y) dt. (6.3)

In figure 9(b), Ē( y) is shown for the TS mode for Wo = 10, Q̃ = 0.2, Re = 10 000, α =
1, B∗ = 4, d∗ = 0 and VR = 1. For comparison purposes, the rigid wall and steady
base-flow cases are also reported in figure 9(a).
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Linear instabilities of pulsatile plane channel flow
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Ē
0 0.5 1.0 1.5 2.0 2.5

0

0.5

1.0

0

0.5

1.0

Q̃ = 0

Q̃ = 0.2

(b)(a)

Figure 9. The wall-normal distribution Ē( y) of averaged kinetic energy for the TS perturbations with Q̃ = 0,
0.2, Wo = 10, Re = 10 000, α = 1, B∗ = 4 and d∗ = 0. The critical layer position is indicated by blue dashed
lines. (a) Rigid channel and (b) compliant channel with VR = 1.

We recall that, for the case of a Poiseuille flow between flat rigid walls, Ē( y) should
peak around the critical layer, i.e. the wall-normal position where the phase speed equals
the base-flow velocity (Drazin & Reid 1981), as shown in figure 9(a). For compliant walls
and the steady flow case, a similar behaviour is observed (Davies & Carpenter 1997a), see
figure 9(b). However, a slight shift near the wall is observed for the peak in kinetic energy
as a consequence of the stabilising effect of the compliant wall on TS modes.

The distribution of Ē( y) for the time-periodic base flow exhibits a double peak structure
for both the rigid wall and compliant wall cases (see red curves in figure 9). This behaviour
has also been observed by Singer et al. (1989) for the same flow case by using linearised
direct numerical simulations and assuming rigid walls. They have shown that, in a certain
moment of the cycle, the mean-flow profile exhibits an inflection point. These authors
came to the conclusion that this second peak is a consequence of changes in the base-flow
profile during the cycle. Interestingly, figure 9 shows that the wall compliance favours the
first peak over the second one. More recently, Tsigklifis & Lucey (2017) have observed
that both peaks are enhanced during the cycle by wall compliance. However, since the
eigenfunction does not vanish at y = ±h for a compliant channel, comparisons between
rigid and compliant configurations are not straightforward. We also observe that the inner
peak is shifted closer to the wall due to wall compliance (figure 9). This suggests that the
stabilising effect of elastic walls on TS modes still holds for pulsatile base flows.

The wall-normal distributions of Ē( y) for both varicose and sinuous TWF modes are
shown in figure 10 for the same set of parameters. While for the sinuous symmetry, the
TWF mode exhibits no significant changes in comparison with the steady flow case, the
vTWF mode displays clearly a different structure near the walls. Indeed, the amplitude
of vTWF mode peaks near y = 0.9 for the pulsatile base-flow case, while it exhibits its
maximum at the wall for the steady case. The consequences for the stability properties
will be discussed in the next sections.

6.5. Temporal dynamics of Floquet eigenmodes
In this section, we investigate the intracyclic dynamics of the perturbations for the same
configurations as in the previous section. For that purpose, we consider the instantaneous
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Figure 10. The wall-normal distribution of energy for TWF modes are shown for Q̃ = 0 and 0.2,
VR = 1, Wo = 10, Re = 10 000, α = 1, B∗ = 4 and d∗ = 0. (a) The sTWF mode and (b) the vTWF mode.

total perturbation energy, defined as

Ẽ(t) = 1
2h

∫ h

−h
Ê( y, t)dy + ẼWK(t) + ẼWP(t). (6.4)

This quantity Ẽ(t) is the sum of the instantaneous fluid kinetic energy and the kinetic and
potential energies of the walls

ẼWK(t) = m

∣∣∣∣∣
∑

n

γ̂ ±(n) exp (inΩt)

∣∣∣∣∣
2

, (6.5)

ẼWP(t) = (Bα4 + Tα2 + K)

∣∣∣∣∣
∑

n

η̂±(n) exp (inΩt)

∣∣∣∣∣
2

. (6.6)

Recall that all these quantities are temporally periodic (with period Ω) since the complex
exponential term exp(−iωt) has been removed. We first consider the TS mode. Figure 11
shows the different contributions to Ẽ(t) for Wo = 10, Q̃ = 0.2, Re = 10 000, B∗ =
4, d∗ = 0 and α = 1 for both the rigid case and compliant walls with VR = 1. As noted by
Pier & Schmid (2017) for the rigid case, the growth of Ẽ(t) occurs in the deceleration phase
of the base flow (indicated by regions hatched in red along the t-axis), while decay occurs
during the acceleration phase (hatched in blue). This remains true for the compliant wall
configuration (figure 11b). Here, the definition of base-flow acceleration or deceleration
phases is based on the sign of dQ/dt. In particular, the dynamics of the perturbation
is mainly driven by the flow kinetic energy while the wall energy is almost negligible.
A similar behaviour has also been observed by Tsigklifis & Lucey (2017), who have shown
that the kinetic energy of the flow mostly contributes to the total energy of the system for
the TS mode.

The intracyclic dynamics associated with TWF disturbances exhibits a markedly
different behaviour, as shown in figure 12. In contrast to the TS mode, the growth in
total energy occurs during the acceleration phase of the base flow for both symmetries.
In particular, walls mainly contribute to the total energy growth whatever the symmetry
that is considered. However, the contribution to the total perturbation energy of the fluid
kinetic energy is lower for the varicose case than the sinuous one.
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Linear instabilities of pulsatile plane channel flow
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Figure 11. The intracyclic modulation of energy for the TS perturbations with Q̃ = 0.2, Wo = 10, Re = 10 000
and α = 1. Colours: blue for the fluid kinetic energy, green for the wall kinetic energy, red for wall potential
energy. (a) Rigid channel, (b) compliant channel with B∗ = 4, d∗ = 0 and VR = 1.
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Figure 12. The intracyclic modulations of energy for the TWF perturbations with Q̃ = 0.2, VR = 1,

Wo = 10, Re = 10 000, α = 1, B∗ = 4 and d∗ = 0. (a) The sTWF mode and (b) the vTWF mode.

6.6. Interaction between TS and sTWF waves
As mentioned earlier, a two-wave mode (i.e. where both sTWF and TS waves interact)
may emerge for a given set of parameters.

Here, we will further investigate the occurrence of this Floquet mode. For that purpose,
the parameters Wo = 10, B∗ = 4, d∗ = 0, VR = 1 and α = 1 are considered, and the
Reynolds number is fixed at Re = 10 000.

In figure 13, the variations with Q̃ of the temporal growth rates ωi and the circular
frequencies ωr for TS, sTWF and two-wave modes are shown. For the two-wave mode,
the variation of ωr is displayed for the two frequencies associated with the two peaks, as
illustrated in figure 7. Figure 13(a) shows that the temporal growth rates of TS and sTWF
follow similar paths for Q̃ = 0.25–0.45 until their divergence beyond Q̃ = 0.46. Within
the range 0.28 ≤ Q̃ ≤ 0.46, indicated in light blue, the TS Floquet mode exhibits a second
peak in its Fourier energy density distribution, which signals a transition to a two-wave
mode. In particular, it is observed in figure 13(b) that one peak displays a characteristic
frequency in continuity with the sTWF mode, while the second peak follows the value of

948 A15-21

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

65
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss



S. Lebbal, F. Alizard and B. Pier

0.25

0.012

0.010

0.008

0.50

0.45

0.40

0.35

0.30

0.25

0.006

0.004

0.30 0.35 0.40 0.45 0.50 0.25 0.30 0.35 0.40 0.45 0.50

ωi ωr

Q̃ Q̃

(b)(a)

Figure 13. Evolution of (a) temporal growth rates ωi and (b) circular frequencies ωr with Q̃ for VR = 1, Wo =
10, Re = 10 000, α = 1, B∗ = 4 and d∗ = 0 (blue for sTWF, red for TS/two-wave mode). The shaded area
represents the region where the two-wave mode exists.

ωr closely corresponding to the TS mode. For Q̃ ≥ 0.46, the two-wave mode vanishes and
only a single peak survives, corresponding to ωr matching the sTWF mode.

To better illustrate the temporal dynamics associated with the two-wave mode, we show
in figure 14 the intracyclic evolution of the total perturbation energy Ẽ(t) for different
pulsation amplitudes Q̃ and the sinuous symmetry. On the one hand, the TWF mode
exhibits almost no effect as Q̃ is increased in the range 0.38–0.48 for both Reynolds
numbers. On the other hand, the two-wave mode presents an interesting intracyclic
dynamics.

At Q̃ = 0.38, growth occurs for both the acceleration and deceleration phases of the base
flow. This is consistent with the fact that this Floquet mode shares common features with
both TS and TWF waves. When increasing Q̃, the growth associated with the acceleration
phase increases. On the contrary, figure 14 shows that the energy peak in the deceleration
phase is damped with Q̃. It means that the two-wave mode is mainly driven by its TWF
contribution as Q̃ is increased from 0.38 to 0.48. In particular, beyond Q̃ = 0.46, the
TS wave contribution is negligible, consistent with results reported in figure 13. As a
consequence, at Q̃ = 0.46, the variation of Ẽ(t) for TWF and two-wave modes are almost
indistinguishable. Beyond Q̃ = 0.46, this mode shows the same characteristics as the
TWF instabilities, namely, a growth of energy in the acceleration phase of the base flow.
The intracyclic behaviour associated with the two-wave mode displays a low-frequency
beating during the deceleration phase of the base flow for 0.28 ≤ Q̃ ≤ 0.46 (see figure 14).
This phenomenon results from an interference between two waves of slightly different
frequencies associated with the two peaks in the spectral energy distribution, as shown
in figure 15(a) for Q̃ = 0.38. The difference between the two peaks indeed corresponds
exactly to the frequency beating observed in figure 15(b). To further illustrate this point,
Ẽ(t) has been computed by filtering the Fourier components in the neighbourhood of either
the TS wave or the sTWF wave, using components from the ranges hatched respectively
in fuchsia or orange in figure 15(a). The plots of figure 15(b) show that intracyclic
dynamics pertaining to either the TS wave or the sTWF wave is recovered and the beating
phenomenon is then suppressed.

6.7. Influence of Q̃ and Wo on temporal growth rates
In this section, we investigate the combined effect of wall flexibility and pulsatile base-flow
parameters (Q̃ and Wo) on the temporal growth rates of TWF and TS Floquet modes.
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Linear instabilities of pulsatile plane channel flow

0.25

0.50

t/T 0.75

1.00

2

4

 Q̃
 = 0.38

 Q̃
 = 0.4

 Q̃
 = 0.42

 Q̃
 = 0.44

 Q̃
 = 0.46

 Q̃
 = 0.48
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Figure 14. Intracyclic evolution of the total perturbation energy Ẽ(t) with
VR = 1, Wo = 10, Re = 10 000, α = 1, B∗ = 4 and d∗ = 0 (cyan for sTWF and fuchsia for TS).
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Figure 15. (a) Fourier density distribution and (b) filtered intracyclic total energy for the two-wave mode with
Q̃ = 0.38, VR = 1, Wo = 10, Re = 10 000, α = 1, B∗ = 4 and d∗ = 0. Blue, full dynamics; fuchsia, TS wave
dynamics; and orange, sTWF wave dynamics.

Results are conveniently summarised by monitoring the growth rate ωmax
i associated with

the most unstable streamwise instability (i.e. ωmax
i = maxα ωi) for a given set of fluid and

wall parameters. For illustration purposes, B∗ = 4 and d∗ = 0 are fixed.
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S. Lebbal, F. Alizard and B. Pier
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Figure 16. The TS Floquet mode. Maximum temporal growth rates ωmax
i for different amplitudes Q̃ =

0, . . . , 0.1 and frequencies Wo = 10, . . . , 20, with Re = 10 000, B∗ = 4 and d∗ = 0. (a) Rigid wall and
(b) VR = 0.2.

Figures 16(a) and 16(b) show the variation of the maximum temporal growth rates with
Q̃ and Wo of the TS mode for both the rigid case in (a) and compliant walls (VR = 0.2)
in (b).

The TS Floquet modes exhibit a similar dynamics whatever the case considered (either
rigid or compliant walls). For Wo ≥ 14, the temporal growth rate decays with Q̃ for both
rigid and flexible cases while it increases for Wo ≤ 13. One may recall that a similar
behaviour is observed for the rigid case (Pier & Schmid 2017).

Figure 17 illustrates the effect of Wo and Q̃ on TWF Floquet modes for VR = 1. The
temporal growth rate for the varicose vTWF mode presents two distinguishable phases
(figure 17a). For small and moderate values of Q̃, ωmax

i is damped. Then, one may observe
a growth of ωmax

i as Q̃ increases. The turning point depends on the Womersley number. In
particular, the corresponding Q̃ is seen to increase with Wo.

The distribution of ωmax
i for the sinuous symmetry exhibits a different behaviour. For

weakly pulsatile base flows (Q̃ < 0.2), the sTWF mode is destabilised whatever the Wo
considered. In particular, this instability is strongly enhanced for the small frequencies
of modulation Wo. For moderate values of Q̃(0.2 < Q̃ < 0.5), a more complex behaviour
is observed. For this range of amplitudes, the sTWF mode interacts with the TS Floquet
mode, and we can no longer distinguish between these two waves. Beyond this point, ωmax

i
strongly increases and reaches similar values as its varicose counterpart. An intracyclic
modulation amplitude Emax

min , defined as the ratio of the maximum to the minimum of Ẽ(t),
is computed for the same parameter range as in figure 17, for TWF Floquet modes only. For
the varicose symmetry, the plots in figure 18(a) show that Emax

min increases for all Wo under
consideration. The evolution of Emax

min for the sinuous symmetry is displayed in figure 18(b).
The figure shows that the sTWF Floquet modes exhibit smaller-amplitude variations than
their varicose counterparts. In addition, for Q̃ > 0.5, a saturation of Emax

min is observed. Such
a behaviour occurs beyond the collapse of TWF and TS Floquet modes. One may thus
suggest that it is a consequence of the emergence of a transition mode. Comparison with
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Linear instabilities of pulsatile plane channel flow
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Figure 17. Maximal temporal growth rates ωmax
i for different amplitudes Q̃ = 0, . . . , 0.7 and frequencies

Wo = 10, . . . , 20, with Re = 10 000, B∗ = 4 and d∗ = 0; (a) vTWF VR = 1 and (b) sTWF VR = 1.
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Figure 18. The amplitude of the modulation ratio Emax
min for different amplitudes Q̃ = 0, . . . , 0.7 and

frequencies Wo = 10, . . . , 20, with Re = 10 000, B∗ = 4, d∗ = 0 and VR = 1; (a) vTWF modes and (b) sTWF
modes.

figure 12 also reveals that the very large values of Emax
min observed for the vTWF modes

(figure 18a) are mainly due to the fact that Ẽ(t) drops to extremely low levels during the
acceleration phase of the pulsating cycle (figure 12b).

6.8. Critical parameters for onset of instability
A complete two-dimensional instability analysis is now performed by exploring a wide
range of wall and flow parameters. In a effort to summarise the different results, only
critical Reynolds numbers (Rec) and critical reduced velocities (Vc

R) are monitored
(corresponding to the onset of TS or TWF and DIV Floquet modes, respectively).
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Figure 19. Critical Reynolds number Rec for TS mode with B∗ = 4 and d∗ = 0; (a) VR = 0.2 and
(b) VR = 0.6.

The variations of Rec for the TS mode are computed for VR = 0.2 and VR = 0.6
for different pulsatile flow parameters in figure 19. Beyond Wo = 13, the TS Floquet
modes are stabilised by the pulsatile flow component. For lower frequencies, the opposite
behaviour is observed. For example, at Wo = 20, the critical Reynolds number for Q̃ =
0.10 is already approximately 50 % larger than the value found for the Poiseuille flow
case (Q̃ = 0). The dynamics including compliant walls is thus found to be very similar
to the rigid walls case (see Pier & Schmid 2017). The critical reduced velocity Vc

R for the
TWF modes are shown in figure 20. The varicose TWF displays two phases. For moderate
pulsation amplitudes (Q̃ < 0.4), the instability is weakly stabilised. For higher pulsation
amplitudes, the vTWF mode is destabilised for all the frequencies studied. Unlike the
vTWF, the sTWF mode shows a monotonic destabilisation as the pulsation amplitude is
increased. The Womersley numbers considered here have almost no effect on the critical
curves. Note that even for highly pulsatile flows, onset of TWF instability is always due to
the varicose symmetry.

In order to systematically study the linear stability over the entire parameter space, the
critical reduced velocity Vc

R is also computed for various wall dissipations d∗ (figure 21),
flexural rigidities B∗ (figure 22) and Reynolds numbers Re (figure 23).

According to the energy classification of Benjamin (1963) and Landahl (1962), the
dissipation has a stabilising effect on the TWF instabilities. The plots in figure 21 show
the variation of the critical reduced velocity with wall dissipation d∗. For a Poiseuille base
flow (Q̃ = 0), the critical Vc

R is almost multiplied by a factor 2 when d∗ is varied from 0
to 0.02.

An increase in Q̃ leads to stabilisation of the flow for all values of d∗ that have been
considered (see figure 21). In particular, the overall behaviour is quite similar for d∗
varying from 0.005 to 0.04. The critical Vc

R is nearly constant for Q̃ up to 0.05. Beyond
this value, Vc

R decreases almost linearly with Q̃ at a similar rate of change. Interestingly,
the symmetry of the Floquet mode appears to have a negligible effect on Vc

R for this range
of parameters.
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Linear instabilities of pulsatile plane channel flow
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Figure 20. Critical reduced velocities Vc
R for TWF modes and different Wo. The other parameters are:

Re = 10 000, B∗ = 4 and d∗ = 0; (a) vTWF and (b) sTWF.
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Figure 21. Critical reduced velocities Vc
R for TWF modes for different d∗. The other parameters are:

Wo = 20, Re = 10 000 and B∗ = 4; (a) vTWF and (b) sTWF.

The effect of flexural rigidity is illustrated in figure 22. Increasing B∗ results in
stabilisation of the TWF Floquet modes for all Q̃ that are considered. However, the overall
shape of these curves is almost unaffected by B∗ for both sinuous and varicose cases.
For the varicose case, a nearly constant value of Vc

R is observed up to Q̃ = 0.3. Beyond
Q̃ = 0.4, the critical Vc

R is seen to decrease almost linearly with Q̃ for all flexural rigidities
that have been investigated. In particular, the slope seems to be independent of B∗.

The sinuous case appears to be more stable than its varicose counterpart. As for the
varicose symmetry, the overall tendency is not affected by B∗. A slight decrease in Vc

R is
observed for Q̃ up to 0.1. Beyond Q̃ = 0.4, Vc

R exhibits an almost linear behaviour with Q̃.
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Figure 22. Critical Vc
R for TWF modes for different B∗. The other parameters are: Wo = 20, Re = 10 000 and

d∗ = 0; (a) vTWF and (b) sTWF.
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Figure 23. Critical Vc
R for TWF modes for different Re numbers. The other parameters are: Wo = 20, B∗ = 4

and d∗ = 0; (a) vTWF and (b) sTWF.

The influence of the Reynolds number on Vc
R is shown in figure 23. The onset of Floquet

TWF modes is almost unchanged by the Reynolds number for both the varicose and
sinuous TWF modes. The insensitivity to Re is more pronounced when Q̃ is increased
to large amplitudes. This weak influence has already been reported for the steady case
(Lebbal et al. 2022).

Finally, in an effort to summarise the influence of the pulsatile base-flow parameters on
the DIV mode, we show in figure 24 the critical reduced velocity as a function of Wo for Q̃
varying from 0.0 to 0.6 for d∗ = 15 and Re = 10 000. The existence of the DIV mode has
been documented in figure 6 for this wall dissipation. The figure shows that, for low values
of the Womersley number, Vc

R increases with Q̃. This suggests that the pulsatile base flow
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Linear instabilities of pulsatile plane channel flow
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Figure 24. Critical Vc
R for the varicose DIV mode for different Wo and Q̃. The other parameters are:

Re = 10 000, B∗ = 4 and d∗ = 15.

has a stabilising effect on the DIV mode for this range of parameters. For Wo beyond 10,
the opposite behaviour is observed for all Q̃ that are investigated.

7. Conclusions and discussion

In this paper, we have investigated the dynamics resulting from perturbations developing
in harmonically pulsating flows between two compliant walls. The stability analysis is
restricted to the time-asymptotic behaviour of the perturbation and to the two-dimensional
case within the framework of Floquet theory. A numerical solution strategy has been
implemented that is free of spurious modes and greatly reduces the computational effort.

When accounting for wall compliance, we show that the most relevant control parameter
is the reduced velocity VR for TWF Floquet modes. In particular, the Reynolds number
appears to have a negligible influence on these modes. As already observed for the steady
case (Lebbal et al. 2022), the most unstable modes are associated with the varicose
symmetry. For the pulsatile flow configurations, we show that the instability onset for
these modes is mainly driven by the amplitude of the pulsation rather than its frequency.
For Q̃ in the range 0−0.4 and varicose perturbations, the pulsatile base flow is seen to
weakly stabilise the TWF Floquet modes (i.e. the critical reduced velocity increases) with
respect to the steady flow case. The opposite behaviour is observed for Q̃ larger than 0.4.
For the sinuous symmetry, we always observe a flow destabilisation with an increase of
Q̃. When accounting for the wall dissipation, we show that a slight increase of d∗ tends
to stabilise the TWF Floquet modes for both symmetries whatever the value of Q̃, in
agreement with Benjamin’s classification (Benjamin 1963). For the TS Floquet modes,
the intracyclic dynamics exhibits strong similarities with the pulsatile flow case in a rigid
channel (Pier & Schmid 2017). However, a stronger stabilisation is observed when wall
flexibility comes into play. For a significant amount of wall dissipation (d∗ ≥ 10), the onset
of the DIV mode is also observed. Although restricted to only the varicose symmetry, we
have shown that, for low values of Wo (≈ 5), an increase of Q̃ stabilises the DIV mode,
whereas the opposite behaviour is observed for larger values of Wo.
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On the one hand, it has been shown that Benjamin’s classification still holds for a wide
range of parameters. In particular, for fluid–structure interaction modes, similar general
trends are observed for steady and pulsatile flow configurations. However, on the other
hand, this study has also revealed a more complex flow dynamics that is not found when
wall flexibility or pulsating base flows are studied independently. In particular, for some
range of Wo and Q̃ a new type of mode has been discovered that shares characteristics
of two distinct Floquet modes. This two-wave mode combines properties of both TS and
TWF modes. It leads to an interference that generates a beating during the intracyclic
dynamics.

To address the practical or experimental relevance of the present findings, we consider
the analogy derived by Carpenter & Garrad (1985) for a Kramer-type compliant wall,
using the test case detailed by Wiplier & Ehrenstein (2000) for a boundary-layer flow.
Using the parameter values used in these papers, corresponding to natural rubber,
a non-dimensional reduced velocity of approximately VR = 0.4 is obtained when
considering the characteristic flow advection time scale based on the free-stream velocity
and the δ99 boundary-layer thickness (where the velocity reaches 99 % of the free-stream
value). For such a configuration, Wiplier & Ehrenstein (2000) observed the onset of a
TWF mode. In order to estimate the value of VR prevailing in physiological configurations,
an approximate value of the equivalent spring stiffness K is required. Considering that
a diastole–systole pressure difference of 40 mmHg produces a 2 mm deformation of
the main arterial walls (Nichols, O’Rourke & Vlachopoulos 2011), this leads to K 	
3 106 kg m−3 s−2. Then, with typical values for blood flow rate and arterial diameters,
reduced velocities VR in the range 0.1–0.2 are obtained. These values are slightly below
those required to trigger the different unstable modes that we have investigated here, but
they are nonetheless of the same order of magnitude. Also, we recall that the Womersley
numbers explored here are in the range of those encountered in blood flow. Thus, we
conclude that it is plausible that the instability modes studied here indeed participate in
the dynamics of practical configurations.

Extension of the present study to non-modal stability analyses can be considered in a
future work, continuing the investigations of Tsigklifis & Lucey (2017) and Pier & Schmid
(2021). Finally, it would also be interesting to generalise our analyses to pipe geometries
which cover more biologically significant settings. The theoretical developments and
numerical tools that have been used in the present investigation can be easily adapted
to a formulation in cylindrical coordinates, following the same approach used by Pier &
Schmid (2021). A Kramer-type wall could be implemented for cylindrical configurations,
using the shell theory developed by Demyanko (2021) for the stability of flows in compliant
pipes.
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In this paper, we present a Lagrangian method for searching initial disturbances which
maximize their total energy growth after a certain time horizon for linearized fluid-structure
interaction problems. We illustrate this approach for the channel flow case with compliant
walls. The walls are represented as thin spring-backed plates, the so-called Kramer-type
walls. For nearly critical values of the control parameters (reduced velocity VR and
Reynolds number Re), analyses for sinuous or varicose perturbations show that the fluid-
structure system can sustain two types of oscillatory motions of large amplitude. The first
motion is associated with two-dimensional perturbations that are invariant in the spanwise
direction. For that case and a certain range of streamwise wavenumbers, the short-
time dynamics of sinuous perturbations is driven by the nonmodal interaction between
the Tollmien-Schlichting and the traveling-wave flutter (TWF) modes. The amplitude of
the oscillation is found to increase with the reduced velocity, and the optimal gain exhibits
larger values than its counterpart computed for a channel flow between rigid walls. For
perturbations of varicose symmetry, the transient energy is rapidly governed by the unstable
TWF mode without a clear low-frequency oscillation. The second type of motion concerns
streamwise-invariant and spanwise-periodic perturbations. In that situation, it is found that
perturbations of sinuous symmetry exhibit the largest amplification factors. For moderate
values of the reduced velocity, VR = O(1), the dynamics is the result of a simple super-
position of a standing wave, due to traveling-wave flutter modes propagating downstream
and upstream, and the roll-streak dynamics. The variations of these oscillations with the
reduced velocity, spanwise wavenumber, and Reynolds number are then investigated in
detail for the sinuous case.

DOI: 10.1103/PhysRevFluids.9.043905

I. INTRODUCTION

The interaction between fluid flow and compliant walls has a wide variety of applications in both
biological and engineering systems. For instance, after the seminal experiments of Kramer [1], many
researchers have illustrated the performance of compliant coatings by altering the flow favorably to
extend the laminar region (see Ref. [2] and the recent work of Nagy et al. [3]). In the biological
context, wall deformability plays an important role in blood flow as well as peristaltic transport, for
example, through the intestines and the urogenital tract (see Refs. [4,5] for a review).

In that respect, many efforts have been made to design a representative compliant wall model
and to study the asymptotic linear stability due to the coupling between the fluid flow and the solid
structure (see the recent review of Kumaran [6]). Among them, the surface-based model consisting
of an infinitely thin plate mounted on springs and dampers (the so-called Kramer wall) which
interacts with a shear flow received considerable attention over the last few decades. Carpenter
and Garrad [7,8] focused on the stability of boundary-layer flows over Kramer-type compliant
walls. They provided some confirmation of the transition-delaying potential of compliant coatings.
For this model, Carpenter and Garrad [7,8] identified two categories of instability modes: the

2469-990X/2024/9(4)/043905(26) 043905-1 ©2024 American Physical Society
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fluid-based Tollmien-Schlichting (TS) mode and solid-based fluid-structure instabilities, referenced
as FSI modes hereafter. The last category includes both the traveling-wave flutter (TWF) modes and
the (almost static) divergence (DIV) modes.

The mechanism responsible for the growth of TWF modes is similar to that governing water
surface waves generated by wind [9,10]. The DIV mode is either interpreted as an absolute
instability [11] or a modal instability with a nearly vanishing phase velocity for high values of
the wall dissipation [12].

While a wide number of investigations has been devoted to study the long-time regime of these
instabilities [13–16], only a few have focused on the short-time dynamics. Among them, Hœpffner
et al. [17] studied the transient energy growth mechanisms for perturbations developing in a channel
flow with Kramer-type compliant walls. Their analysis was restricted to streamwise-invariant per-
turbations (i.e., varying the spanwise wavenumbers β at fixed streamwise wavenumber α = 0). The
solution is obtained by summing over the eigenmodes that collectively exhibit nonmodal growth.
The authors have shown that, for large wall elasticity, the flow can sustain standing waves with
large oscillations in time. The most amplified perturbations exhibit sinuous symmetry and are well
described by an added-mass effect. The flow behavior is then essentially driven by the standing-wave
dynamics rather than by the lift-up effect. However, the authors failed to obtain convergence when
increasing the number of modes used in the summation. Thus, a complete overview of the wall
flexibility effects onto transient energy growth is still missing. More specifically, the significant case
where streaks interact with the standing wave for moderate wall flexibility has not been explored by
the previous authors.

For the same flow case, Zengl and Rist [18] computed the optimal gain map in the streamwise-
spanwise wavenumber plane with a similar numerical method. These authors showed that the
optimal gain does not significantly depend on the wall flexibility. They have also observed that
the flow can sustain strong oscillations for oblique waves due to wall compliance. However, the
underlying mechanisms are not fully discussed in that study. In addition, this analysis has been
carried out for only a single set of compliant wall parameters.

More recently, for pulsatile plane Poiseuille flow bounded by compliant walls, Tsigklifis and
Lucey [19] investigated mainly the intracyclic growth features, i.e., the modulation amplitude of a
given Floquet mode. Nevertheless, a complete study of nonmodal growth mechanisms associated
with the steady case is not given by these authors.

While the analyses discussed above have provided significant insight into some nonmodal mech-
anisms of a flow interacting with compliant boundaries, they only focus on specific parameter ranges
and do not fully capture the complete transient growth scenarios due to the entire set of eigenmodes.
Then the above-mentioned studies have some limitations. First, for the streamwise-invariant case
(α = 0), some essential questions like the influence of the wall flexibility on the amplification of
streaks, for instance, has not yet been sufficiently discussed: How does the standing wave interact
with the streaks and at what characteristic spanwise scale? Second, how does the amplitude of
standing-wave oscillations scale with wall parameters and spanwise wavenumbers β for moderate
wall flexibility, and what is the spanwise wavenumber exhibiting oscillatory behavior with highest
modulation amplitudes? Third, for the spanwise-invariant case (β = 0), what are the specific roles
of Tollmien-Schlichting waves and traveling-wave flutter modes onto the transient energy growth
for short times?

To fill these gaps, we will thus reconsider the transient energy growth problem for fluid flows
interacting with a compliant channel, using a Lagrangian approach. It will allow us to overcome the
difficulties that arise when summing over the whole spectrum of eigenmodes. The chosen wall
model is of Kramer type. We will also adopt the framework described in Ref. [15], where we
considered the reduced velocity VR as the main control parameter for fluid-structure interaction
problems [20]. Then, we will discuss the optimal transient energy growth mechanisms for both
streamwise-invariant perturbations and disturbances developing in the streamwise–wall-normal
plane for a range of reduced velocities and Reynolds numbers.
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FIG. 1. Channel flow with infinite spring-backed flexible walls. (a) Schematic diagram showing the equi-
librium state configuration and (b) wall deformation and coordinate system.

The paper is organized as follows. Section II presents the model and governing equations.
In particular, the constrained optimization problem is presented within a Lagrangian framework.
The adjoint system of equations, adjoint kinematic conditions, and temporal terminal and initial
conditions are given for the linearized fluid-structure interaction system. After having presented the
control parameters and the numerical methods in Secs. III and IV, respectively, Sec. V is devoted
to give some physical insight into the influence of the reduced velocity and Reynolds number on
the short-time dynamics of the perturbation for a range of streamwise and spanwise wavenumbers.
Finally, conclusions and prospects are given in the last section.

II. PROBLEM DEFINITION AND SYSTEM OF EQUATIONS

A. Fluid-structure interaction problem

We introduce the Cartesian coordinate system (x, y, z) and unit vectors (ex, ey, ez) associated
with streamwise, wall-normal, and spanwise directions, respectively. Hereafter, the study will focus
on an incompressible Newtonian fluid, with dynamic viscosity μ and density ρ, between two
spring-backed deformable plates, which are allowed to move only in the y direction. As shown
in previous theoretical analyses [5,19] for a similar case, the wall motion in x and z directions only
plays a minor role in the dynamics and is therefore not considered in the present investigation
for simplicity of the model. The instantaneous flow velocity and pressure fields are given by
u(x, t ) = (u(x, t ), v(x, t ),w(x, t )) and p(x, t ), at position x = (x, y, z) and time t .

Denoting the lower and upper wall positions as ζ±(x, z, t ), the fluid domain corresponds to
ζ−(x, z, t ) < y < ζ+(x, z, t ) (see Fig. 1), and the flow between the walls follows the incompressible
Navier-Stokes equations

∂u
∂t

+ (u · ∇ )u = − 1

ρ
∇p + ν�u, (1)

0 = ∇ · u, (2)

where ν = μ/ρ denotes the kinematic viscosity. The displacement of the walls is governed by

m
∂2ζ±

∂t2
+ d

∂ζ±

∂t
+ (B�2 − T � + K )ζ± = f ±, (3)
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where m denotes the mass per unit area of the plates, d their damping coefficient, B the flexural
rigidity, T the wall tension, K the spring stiffness, and f ± represents the y component of the
hydrodynamic forces acting on the plates. Note that in the above equations �u = (∂xx + ∂yy + ∂zz )u
while �ζ = (∂xx + ∂zz )ζ and �2ζ = (∂x4 + 2∂x2z2 + ∂z4 )ζ . The fluid-structure interaction problem
is completed with the kinematic conditions

u = 0, v = ∂ζ±

∂t
, w = 0 for y = ζ±, (4)

associated with no-slip conditions prevailing along the compliant walls.
The unperturbed base configuration corresponds to Poiseuille flow due to a constant pressure

gradient within a straight rectangular channel (Fig. 1). It is associated with a steady parabolic
streamwise velocity profile U(x) = (U (y), 0, 0), with U (y) = 3

2Um(1 − (y/h)2), between the unde-

formed walls at y = ±h. Here Um = 1
3

h2

ν
G is the mean velocity resulting from a constant streamwise

pressure gradient −G. Note that we assume a pressure outside the channel walls always equal to the
unperturbed pressure −Gx prevailing inside. The same hypothesis is made by Davies and Carpenter
[13,21], Tsigklifis and Lucey [19], and few others since then.

B. Linear governing equations

In the next sections, we will investigate the short-time dynamics of a small perturbation super-
imposed to the equilibrium state. Therefore, the total flow fields are decomposed as

u(x, t ) = U (y)ex + u′(x, t ), (5)

p(x, t ) = −Gx + p′(x, t ), (6)

where u′ and p′ represent the deviations from the base flow fields. Similarly, the positions of both
walls are written as

ζ±(x, z, t ) = ±h + η±(x, z, t ),

where η± measures the displacement of the walls from their equilibrium positions at y = ±h.
The assumption of small-amplitude perturbations leads to the linear version of the Navier-Stokes

equations:

∂u′

∂t
+ (U · ∇ )u′ + Uyv

′ex = − 1

ρ
∇p′ + ν�u′, (7)

0 = ∇ · u′. (8)

After linearization of the hydrodynamic forces f ± (see Ref. [22] for details), the wall equations are
recast as

∂η±

∂t
= γ ±, (9)

m
∂γ ±

∂t
= −dγ ± − (B�2 − T � + K )η± ±

(
p′ − μ

∂v′

∂y

)∣∣∣∣
y=±h

, (10)

where the wall velocity γ ± = ∂tη
± has been introduced in order to obtain a system of first-order

differential equations in time. This system of linear partial differential equations is completed with
the associated linearized kinematic conditions:

u′ = −η± dU

dy
, v′ = γ ±, w′ = 0 at y = ±h. (11)

See our previous paper [15] for further details about the derivation of the governing equations for
small-amplitude perturbations.
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C. Optimization framework

For the sake of conciseness, we henceforth omit the prime for the small-amplitude perturbations.
We first introduce a measure of the total energy of the perturbation in a computational box of size
Lx × 2h × Lz:

E (u) = 〈〈ρu2〉〉︸ ︷︷ ︸
Fluid kinetic energy

+
∑
i=±

〈B(�ηi )2 + T ∇ηi · ∇ηi + K (ηi )2〉
︸ ︷︷ ︸

Wall potential energy

+
∑
i=±

〈m(γ i )2〉
︸ ︷︷ ︸

Wall kinetic energy

, (12)

where 〈〈 · 〉〉 = ∫ Lx

0

∫ h
−h

∫ Lz

0 · dx dy dz and 〈·〉 = ∫ Lx

0

∫ Lz

0 · dx dz, which represent the integral values
either over the whole domain D or along the walls ∂D. Here, E may be written as a function of
u only since η± and γ ± can be expressed in terms of the velocity components at the walls using
kinematic conditions (11). In Eq. (12), we separate the energy contributions from the walls (i.e., wall
potential energy and wall kinetic energy) from the one associated with the fluid (i.e., fluid kinetic
energy). This decomposition is also used by Hœpffner et al. [17] and Malik et al. [12] for transient
growth analysis of flows interacting with compliant walls.

The largest total transient energy growth E that a small perturbation can experience over a fixed
target time τ is obtained by maximizing the following constrained Lagrangian:

L = E (u(t = τ )) − ρ

∫ τ

0

〈〈
a ·

(
ut + U · ∇u + 1

ρ
∇p − ν�u + vUyex

)〉〉
dt −

∫ τ

0
〈〈�∇ · u〉〉dt

−
∫ τ

0
〈g+[mγ +

t + dγ + + (B�2 − T � + K )η+ − p+ + μv+
y ]〉dt

−
∫ τ

0
〈g−[mγ −

t + dγ − + (B�2 − T � + K )η− + p− − μv−
y ]〉dt

−
∫ τ

0
〈e+[η+

t − γ +]〉dt −
∫ τ

0
〈e−[η−

t − γ −]〉dt

− 〈〈a0 · [u(t = 0) − u0]〉〉 − λ[E (u0) − 1], (13)

where the control is u0 = (u0, v0,w0) and u±
0 = −η±

0 Uy|±=h, v±
0 = γ ±

0 , w±
0 = 0. In Eq. (13), λ, a0,

�, a, g+, g−, e+, and e− are the Lagrange multiplier fields imposing the constraints that the initial
total perturbation energy equals 1, the perturbation is incompressible, and that the fluid-structure
interaction system (10) is satisfied.

Taking variations with respect to all the degrees of freedom, where the boundary conditions
are included implicitly when integrating by parts the momentum equations, leads to the adjoint
evolution equations for the fields,

− at − U · ∇u + 1

ρ
∇� − ν�u + aUyey = 0,

∇ · a = 0,

− mg+
t − e+ + g+d − �+ + μb+

y = 0,

− mg−
t − e− + g−d + �− − μb−

y = 0,

− e+
t + (B�2 − T � + K )e+ − μa+

y U +
y = 0,

− e−
t + (B�2 − T � + K )e− + μa−

y U −
y = 0, (14)

together with the adjoint kinematic conditions,

g− = b−, g+ = b+,

a+ = 0, a− = 0, (15)
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the temporal terminal conditions,

for D \ ∂D : a(t = τ ) = 2u(t = τ ),

and for ∂D : g±(t = τ ) = 2γ ±(t = τ ), e±(t = τ ) = 2
[
2ρhUy|2±h + (B�2 − T � + K )

]
η±(t = τ ),

(16)

and the initial conditions,

for D \ ∂D : a(t = 0) = 2λu(t = 0),

and for ∂D : g±(t = 0) = 2λγ ±(t = 0), e±(t = 0) = 2λ
[
2ρhUy|2±h+(B�2−T � + K )

]
η±(t = 0),

(17)

where the Lagrange multiplier λ is fixed to verify unit total energy at t = 0. Here, the integration
along the wall-normal direction is computed with spectral accuracy. A direct and adjoint looping
method [23], where the direct system is integrated forward in time and the adjoint problem is
advanced backward in time, is hence used to compute the optimal initial perturbation for a given
target time τ . A similar technique has already been used for a Couette flow by our team with the
same code [24]. In the next sections, the corresponding maximum energy growth is referenced as
G(τ ). Since the nonlinear terms are removed from the equations, both direct and adjoint systems
can be solved in Fourier space, without any coupling between spatial Fourier modes. In this context,
we introduce the following waveform for the different fields:

u(x, y, z, t ) = ũ(y, t )e j(αx+βz) + c.c., a(x, y, z, t ) = ã(y, t )e j(αx+βz) + c.c.,

γ ±(x, z, t ) = γ̃ ±(t )e j(αx+βz) + c.c., η±(x, z, t ) = η̃±(t )e j(αx+βz) + c.c.,

g±(x, z, t ) = g̃±(t )e j(αx+βz) + c.c., e±(x, z, t ) = ẽ±(t )e j(αx+βz) + c.c.,

with
√

j = −1 and α and β the streamwise and spanwise wavenumbers, respectively. Again, for
simplicity, we omit ·̃ in the following.

III. CONTROL PARAMETERS

In the present study, the compliant-channel flow system is characterized by nine dimensional
parameters: the volumetric flow rate [Q] = m2 s−1, the half height of the channel, [h] = m, the fluid
density [ρ] = kg m−3, the kinematic viscosity [ν] = m2 s−1, the mass of the plate per unit area,
[m] = kg m−2, the damping coefficient of the wall, [d] = kg m−2 s−1, the bending stiffness of the
plate, [B] = kg m2 s−2, the wall tension [T ] = kg s−2, and the spring stiffness [K] = kg m−2 s−2.
Hence, the system may be described by six dimensionless parameters:

Re = Q

ν
, VR = Q

4h2

√
m

K
, � = m

ρh
,

d∗ = d√
mK

, B∗ = B

Kh4
, T∗ = T

Kh2
. (18)

Here Re is the Reynolds number based on channel diameter and average flow velocity. The
nondimensional wall parameters d∗, B∗, and T∗ are relative to the spring stiffness K . Finally, two
nondimensional parameters account for the coupling between the fluid and the compliant walls: the
mass ratio between the walls and the fluid, �; and the reduced velocity VR that represents the ratio
of the wall characteristic timescale

√
m/K to the characteristic flow advection timescale 4h2/Q (see

Refs. [15,20]). In order to reduce the dimensionality of the control parameter space, and without
much loss of generality, we only use T = 0 and � = 2 hereafter, and we also set three dimensional
parameters at ρ = 1, h = 1, and Q = 1.
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IV. NUMERICAL METHODS

The numerical method is here described for the direct system only, since time marching of the
adjoint system proceeds in a similar fashion. The approach closely matches the Uzawa algorithm
described by Peyret [25]. Spatial directions are approximated with spectral accuracy and a semi-
implicit second-order time-marching scheme is used.

As usually done in the incompressible regime, a PN/PN−2 Chebyshev collocation method is used
for the spatial discretization. We rewrite the system of equations in vector form with complex com-
ponents, using u = (u1, u2, . . . , uN ), v = (v1, v2, . . . , vN ), and w = (w1,w2, . . . ,wN ) for velocity
components and p = (p2, . . . , pN−1) for the pressure. We also introduce ũ = (u2, . . . , uN−1) and
ṽ = (v2, . . . , vN−1), where only the interior points are included. After spatial discretization, with N
Chebyshev collocation points, the first and second y-derivative operators acting on velocity fields
are recast as D and D2 matrices, respectively. The y-derivative operator on the N − 2 grid points
for the pressure is represented by matrix Dp. Finally, we note hereafter the time step �t and n the
number of the time iteration.

The discrete system of the momentum equations for the fluid is then rewritten in matrix form to
yield

Mũn+1 − jαpn+1 = S̃n+1,n,n−1
u ,

Mṽn+1 − Dppn+1 = S̃n+1,n,n−1
v , (19)

Mw̃n+1 − jβpn+1 = Sn,n−1
w ,

and the divergence-free constraint expressed at the interior points reads

D̃̃vn + jαũn + jβw̃n = Sn
d , (20)

where M = νD̃2 − σ I with σ = 3/(2�t ) + ν(α2 + β2). Here D̃ and D̃2 represent the first and
second derivative operators on N grid points, where the first and/or last rows and first and/or last
columns are removed. In Eqs. (19) and (20), boundary conditions for u and v are included on the
right-hand side of the equations. The boundary conditions are time dependent. As a consequence,
in Eq. (20) we have

Sn
d = −(

D11v
n
1 + D1Nvn

N , D21v
n
1 + D2Nvn

N , . . . , DN1v
n
1 + DNNvn

N

)
.

For Eqs. (19), we use the following decomposition:

S̃n+1,n,n−1
u = Sn,n−1

u + Cn+1
u , S̃n+1,n,n−1

v = Sn,n−1
v + Cn+1

v ,

with

Sn,n−1
u = −(4̃un − ũn−1)/2�t + 2fn

u − fn−1
u ,

Sn,n−1
v = −(4̃vn − ṽn−1)/2�t + 2fn

v − fn−1
v ,

Sn,n−1
w = −(4w̃n − w̃n−1)/2�t + 2fn

w − fn−1
w ,

where

fn
u = jαŨũn + ṽnŨy, fn

v = jαŨṽn, fn
w = jβŨw̃n,

and the contribution of the boundary conditions for the second derivatives are included into

Cn
u = −(

D2
11un

1 + D2
1N un

N , D2
21un

1 + D2
2N un

N , . . . , D2
N1un

1 + D2
NN un

N

)
,

Cn
v = −(

D2
11v

n
1 + D2

1Nvn
N , D2

21v
n
1 + D2

2Nvn
N , . . . , D2

N1v
n
1 + D2

NNvn
N

)
.
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Applying the divergence operator (20) onto the momentum equations (19), an equation for the
pressure is obtained:

Qpn+1 = Gn,n−1 + Hn+1, (21)

with Q = α2M−1 − D̃M−1Dp + β2M−1 and

Gn,n−1 = jαM−1Sn,n−1
u + D̃M−1Sn,n−1

v + jβM−1Sn,n−1
w ,

Hn+1 = −Sn+1
d + jαM−1Cn+1

u + D̃M−1Cn+1
v .

Following Davies and Carpenter [21], a three-point implicit time discretization for the wall equa-
tions is used to ensure numerical stability:

m(3γ n+1
± − 4γ n

± + γ n−1
± ) = 2�t

[−dγ±n+1 − (B�2 + K )η±n+1 ± pn+1
1/N ∓ μ(Dv)1/N

n+1
]
,

(3ηn+1
± − 4ηn

± + ηn−1
± ) = 2�tγ n+1

± , (22)

with �2 = α4 + β4 + 2α2β2 and where p1 and pN are computed using spectral extrapolation. The
following system is then solved iteratively at each time step:

pn+1,k+1 = Q−1[Gn,n−1 + Hn+1,k],

ũn+1,k+1 = M−1 jαpn+1,k+1 + M−1
[
Sn,n−1

u + Cn+1,k
u

]
,

ṽn+1,k+1 = M−1Dppn+1,k+1 + M−1
[
Sn,n−1

v + Cn+1,k
v

]
,

wn+1,k+1 = M−1 jβpn+1,k+1 + M−1Sn,n−1
w ,

γ n+1,k+1
±

[
1 + 2�t

3m
d

]
+ ηn+1,k+1

±

[
2�t

3m
(B�2 + K )

]

= 2�t

3m

[±pn+1,k+1
1/N ∓ μ(Dv)n+1,k+1

1/N

] + 4

3
γ n

± − 1

3
γ n−1

± ,

ηn+1,k+1
± − 2

3
�tγ n+1,k+1

± = 4

3
ηn

± − 1

3
ηn−1

± . (23)

In Eqs. (23), the wall part is easily solved by inverting a 2×2 system and the boundary conditions
for the velocity components are updated using kinematic conditions. Between 20 and 50 iterations
are needed at each time step to converge.

Finally, the numerical method is further improved by considering separately perturbations of
sinuous or varicose symmetries and using only half of the channel together with derivative operators
appropriate for the symmetry of each component of the different flow fields [26]. The separation
between varicose and sinuous cases facilitates the analysis of the driving mechanisms of the
dynamics and also allows to run the different symmetries simultaneously on two processors. The
present code is an extension of a direct numerical simulation (DNS) code developed by our team
which has been well validated for channel and Couette flow simulations with rigid walls [24,27].

V. NUMERICAL VALIDATION

A. Asymptotic case

In this section, we validate the numerical method for time marching the linearized Navier-Stokes
equations that include the wall deformation (referenced as LDNS hereafter). Both the direct and
adjoint systems are considered. For that purpose, we focus on a case described in a previous paper of
our team. The control parameters are fixed to VR = 1, B∗ = 4, d∗ = 0, α = 1, and Re = 10 000. For
this case, the long-time dynamics is driven by the varicose traveling-wave flutter mode. The linear
stability problem has been solved using an algebraic eigenvalue solver. The LDNS is initialized with
a random noise. The numerical parameters are fixed to N = 60 and �t = 0.01. Results are shown in
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FIG. 2. Validation of the time-marching linear solver for both direct and adjoint formulations for Re =
10 000, α = 1, B∗ = 4, � = 2, d∗ = 0, and VR = 1. Numerical parameters are set to N = 60 and �t = 0.01.
The time evolution of the modulus of the wall vertical displacement for a given random initial perturbation
is shown on a logarithmic scale. A linear regression provides a temporal growth rate σ = 0.031894 for both
direct and adjoint solvers. The temporal evolution of the most amplified linear eigenvalues obtained with the
eigenvalue matrix solver gives σ = 0.031887.

Fig. 2, where we have reported the time evolution of the modulus of the wall vertical displacement
for both the direct (η) and adjoint systems (e). The figure shows a perfect agreement between the
temporal amplification rate obtained with the algebraic eigenvalue solver and the one derived from
the linearized Navier-Stokes solver for both the direct and adjoint problems.

In Fig. 3, we also compare the spatial structure of the eigenmodes computed with the eigenvalue
solver and the LDNS for the direct system, which again perfectly agree.

B. Transient growth

The coupling between the direct and adjoint solvers and the choice of the energy norm are
discussed using results given by Hœpffner et al. [17]. For that purpose, we convert the dimensionless
values provided by Hœpffner et al. [17] to those used in the present paper. Hence, for this case, the
reduced velocity is fixed to VR = 23.57, the flexural rigidity is set to B∗ = 4, the wall dissipation
d∗ = 0.0071, and the Reynolds number Re = 6667. The spanwise and streamwise wavenumbers
are fixed to 0.2 and 0, respectively. Two different energy norms are used: the total energy norm
(12) and another one based only on the flow kinetic energy inside the domain. The envelopes of
the optimal gain G over the target time τ computed using the direct-adjoint looping method for
both energy norms are shown in Fig. 4. The number of collocation points used is N = 60 and the
time step is fixed to �t = 0.01. Published results of Hœpffner et al. [17] are also reported. The
envelope G is either associated with the sinuous or varicose symmetry depending on the chosen
time horizon used for the optimization. Figure 4 shows an almost perfect agreement between our
time-stepping algorithm and the matrix solver used by Hœpffner et al. [17]. Hœpffner et al. [17]
have used an eigenfunctions basis for the computation of G. The authors have been unable to
obtain a true convergence towards the optimal solution when including too many modes in the
projection. Especially when considering the whole spectrum, the authors show that the optimal gain
tends to blow up. Within the present time-stepping framework, we do not observe any problem
for the convergence even when doubling the number of collocation points. It seems therefore more
appropriate to use the present method in order to draw definite conclusions about transient growth
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FIG. 3. Same flow case as in Fig. 2. The envelope of the eigenfunctions computed either with the LDNS
(in solid lines) or the eigenvalue solver (open circles) are shown.

scenarios investigated hereafter. The figure also shows that while a similar beating phenomenon is
recovered for both inner products, the amplitude of the perturbation is clearly decreased by using the
fluid kinetic energy norm only. Therefore, it seems inappropriate to restrict the analysis to the fluid
kinetic energy only because it fails to take into account a significant level of amplification associated
with the wall dynamics. Hereafter, all computations are carried out using the total energy norm. In
the next section, the wall dissipation is set to zero and the flexural rigidity is fixed to B∗ = 1 for
illustration purposes.

FIG. 4. G as a function of the target time τ for VR = 23.57, B∗ = 4, d∗ = 0.0071, Re = 6667, β = 0.2, and
α = 0. Results extracted from Hœpffner et al. [17] are also reported. Computations associated with the total
energy norm and the fluid kinetic energy norm inside the domain are shown in black and blue, respectively.
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FIG. 5. G as a function of the target time τ for Re = 6666 and (a) VR = 0.006, (b) VR = 0.45, (c) VR = 0.53,
and (d) VR = 0.65. For all panels, the streamwise wavenumbers are α = 0.8, 1, 1.2, 1.4, and 1.6 (from the left
to the right). Red, sinuous symmetry; black, varicose symmetry.

VI. RESULTS

A. Optimal growth for β = 0

In this section, the analysis is restricted to two-dimensional perturbations with vanishing span-
wise wavenumber, β = 0. In Fig. 5, time evolutions of G for various streamwise wavenumbers are
shown at different reduced velocity for both the sinuous and varicose symmetries. The figure shows
that for VR varying from VR = 0.006 to VR = 0.45, a weak effect of the wall flexibility is observed
for all α that are investigated. When the reduced velocity is increased up to 0.53, the varicose
configuration is driven by the asymptotically unstable TWF mode for short times for α = 0.8 and
1. One may recall that the varicose case is the most unstable one when considering the asymptotic
regime (i.e., the critical reduced velocity is lower than the one associated with the sinuous case [15]).
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FIG. 6. G as a function of the target time τ for Re = 6666, α = 1.2, and VR = 0.4, 0.8.

For α = 1.2, 1.4, and 1.6, a distinct short-time growth is observed with the emergence of a distinct
peak in G. For these cases, the sinuous configuration is always the most amplified for short times.
For VR = 0.65 and the varicose symmetry, the system is mainly governed by the unstable mode
for α = 0.8, 1.2, and 1.4. A distinct peak of G is only observed for α = 1.6. Once again, for
this streamwise wavenumber, the sinuous symmetry is the most amplified symmetry for short
times. In particular, its energy peak in G is seen to increase with the reduced velocity. Hence,
focusing our attention on the transient growth mechanism, the sinuous configuration seems to be
the most interesting case to investigate. In addition, the sinuous case also exhibits a clear distinct
low-frequency beating, not observed for the varicose symmetry [see Fig. 5(d) and α = 1]. As a
consequence, for the sake of conciseness, we will focus on the sinuous symmetry hereafter.

The influence of the reduced velocity onto the optimal gain G is further illustrated in Fig. 6
for α = 1.2, Re = 6666, and target times varying from 0 to 100. We recall that for this Reynolds
number, the TS modes are temporally damped for the rigid-wall case. For VR = 0.4, G exhibits a
growth for short times and relaxes to zero in the asymptotic regime. For VR = 0.8, G peaks during
short times before being damped until τ = 25 and then increases for long times. For this reduced
velocity value, the TWF mode is temporally amplified. To further characterize the energy growth
for short times, we note Gs, the optimal gain associated with the first peak (see Fig. 6). In Fig. 6, it
is clear that Gs depends on VR. The knowledge of the impact of VR on Gs is also of strong interest
even in the slightly supercritical regime since it provides some information on the receptivity of the
system to external disturbances.

Let us now introduce the quantity GM
s (Re,VR) = maxα Gs(Re,VR, α) that measures the maxi-

mum gain reached by Gs over α for a given configuration (Re,VR). The distribution of GM
s with Re

and VR is shown in Fig. 7(a) and the associated optimal wavenumber αM
s in Fig. 7(b).

Figure 7 shows that while the TS wave is slightly damped temporally [13] for small values of VR,
the transient growth is enhanced with the wall compliance. In addition, close to the critical value of
VR for the onset of the TWF mode, the transient growth for short times has considerably increased.

Let us now focus on some representative cases. In Fig. 8, the time evolutions of the total energy
associated with the optimal initial perturbation for VR = 0.6, Re = 8300, and some target times τ

and streamwise wavenumbers α are displayed. For comparison purposes, the envelope G for the
rigid case is also reported (in red). The case is represented by a black dot in the maps of Fig. 7. The
figure shows that the distribution of the total energy gain for short times is in strong contrast with
the rigid-wall counterpart. The compliant walls can either stabilize or enhance the energy growth.
One may also notice that energy growth exhibits beating oscillations for some parameters.
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FIG. 7. Isocontours of (a) GM
s and (b) αM

s in the (Re,VR ) plane. The dashed line denotes the evolution of
the critical Reynolds number with respect to the TS mode. The dash-dotted line represents the evolution of the
critical reduced velocity with respect to the TWF mode.

The same analysis is conducted for VR = 0.7 and results are shown in Fig. 9 (the case is also
reported in the maps of Fig. 7). The figure shows a similar behavior as the one observed for
VR = 0.6 with the exception that the amplitude of the oscillations and the total energy peak GM

s
are enhanced by the wall compliance. Interestingly, the figure also shows that the onset of the
exponential instability for the TWF mode occurs at different streamwise wavenumbers from those
where the largest oscillations are observed. In an effort to explain the underlying mechanism we
show in Fig. 10 a subset of the eigenvalue spectrum for VR = 0.7 and α = 1. The complex circular
frequency is noted as ω = ωr + jωi with the frequency ωr/2π and the temporal amplification
rate ωi. In addition to the TS mode, the spectrum exhibits also two distinct modes, the so-called
traveling-wave flutter (TWF) modes (see Ref. [15] for further results). One TWF mode is traveling
along the downstream direction in x. The other one is traveling in the opposite direction. In Fig. 10,
we have also reported the distance between the circular frequency of the TWF mode traveling in the
downstream direction and the one associated with the TS mode, labeled �ω. The difference �ω is
seen to be correlated with the time period of the beating process, �T , observed in Fig. 9: �T is
nearly equal to 2π/�ω. This behavior has also been observed by Davies and Carpenter [21]. It is
a consequence of constructive interference between the TS and TWF waves. This interpretation is
further illustrated in Fig. 11, where the distributions of ωr and ωi with α are shown for both TWF
and TS modes. The figure shows that for the range in α where the oscillating behavior is observed
in Fig. 9, circular frequencies associated with TS and TWF waves are closely approaching each
other. In this region, the two modes have very similar eigenfunctions (i.e., they are nonorthogonal)
and their superposition generates an energy growth and a low-frequency beating.

To gain insight into the role of the different modes on the time evolution of E (t ), the optimal
initial perturbation is expanded onto the basis of eigenvectors. Let us note the initial perturba-
tion qi = Vâ with V = (q̂1, q̂2, . . . , q̂m) the m columns containing the discrete eigenvectors (the
corresponding eigenvalues are noted − jωi, hereafter) and â the vector containing the coefficients
of the expansion of qi. To find â, we use an orthogonal projection based on a Gram-Schmidt
orthonormalization process. It is equivalent to require that the projection error is orthogonal to
the set of eigenmodes for the chosen subspace of dimension m. The procedure is further detailed
in Ref. [28]. The time evolution of qi expanded into an eigenmode basis reads qi(t ) = Va(t ) with
a(t ) = (â1e− jω1t , â2e− jω2t , . . . , âme− jωmt ).

We now consider two representative cases for Re = 8300, α = 1, and τ = 26. The reduced
velocity is fixed either to VR = 0.6 or VR = 0.7. Three subsets of modes are investigated and their
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FIG. 8. Time evolution of the total energy for the optimal initial perturbation for τ = 26, 66, 133, 200,
266 (from the left to the right) and α = 0.8, 1, 1.2, 1.4. The Reynolds number is fixed to Re = 8300 and the
reduced velocity is set to VR = 0.6. In red, the envelope G for the rigid case is represented.

dimensions are fixed to m = 16. A first subset includes the least damped modes. A second subset
includes also the least damped modes but the TWF mode propagating downstream is removed. For
the last subset, the TS mode is removed. Time evolutions of the reduced-order models are compared
to LDNS results in Fig. 12. The time evolution of the kinetic energy associated with the optimal
initial perturbation for the rigid-wall case is also reported in the figure for the same parameters
for comparison purposes. For both reduced velocities, the figure shows an almost perfect match
between E (t ) extracted from the LDNS and E (t ) obtained by using the first subspace of modes
(i.e., including both TWF and TS modes). It validates the orthogonal projection used in the present
study. When the reduced-order model excludes the TWF mode propagating downstream it has as
a consequence that the oscillations disappear, as expected. The total energy peak for short time is
also reduced. For VR = 0.6, and for large times, the dynamics is mainly driven by the TS mode. For
this value of the reduced velocity, the total energy associated with the full system is seen to oscillate
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FIG. 9. Time evolution of the total energy for the optimal initial perturbation for τ = 26, 66, 133, 200,
266 (from the left to the right) and α = 0.8, 1, 1.2, 1.4. The Reynolds number is fixed to Re = 8300 and the
reduced velocity is set to VR = 0.7. In red, the envelope G for the rigid case is represented.

with a damping rate close to the TS mode. When considering the subspace where the TS mode is
removed, the total energy peak damping is quite important, which indicates the strong influence of
the TS mode in the dynamics. For VR = 0.7, the dynamics is modified. For this value of reduced
velocity and chosen parameters, the TWF mode is temporally amplified for long times, while the
TS mode is damped temporally. It is consistent with the time evolution of E (t ) for the subsets of
modes excluding either the TS mode or the TWF mode. It has as a consequence that the oscillations
observed for the full system are not driven anymore by the temporal amplification rate of the TS
wave. One may also note that while the dynamics for the subspace excluding the TS mode exhibits
an exponential growth for t > 50, the inclusion of the TS mode leads to a delay of the onset of the
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FIG. 10. Spectrum for Re = 8300, VR = 0.7, and α = 1.

FIG. 11. (a) Circular frequency ωr versus the streamwise wavenumber α and (b) temporal amplification
rate ωi versus α for TS and TWF modes and Re = 8300, VR = 0.7.

FIG. 12. Total energy evolution for the optimal initial perturbation projected onto different subsets of
eigenmodes for Re = 8300, α = 1, τ = 26, and VR = 0.6, 0.7. The envelope G for the rigid case is also
reported.
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FIG. 13. Time evolution of the total energy for Re = 6666, β = 0.5, and VR = 0.4, 0.8, and 1.2 and sinuous
initial optimal perturbations computed for τ varying from 14 to 1820. The envelope G for the rigid case is also
reported.

total energy growth of the TWF mode. Finally, Fig. 12 shows that an increase of the wall compliance
enhances the total energy peak for short times and amplifies the amplitude of the oscillations.

B. Optimal growth for α = 0

In this section, we focus on the behavior of perturbations which are infinitely elongated in the
streamwise direction x. The transient energy developments are shown in Figs. 13 and 14 for β =
0.5 and Re = 6666 for the sinuous and varicose symmetries, respectively. The reduced velocity
ranges from VR = 0.4 to VR = 1.2 and the target time is varying from τ = 14 to τ = 1820. For
comparison purposes, the envelope G is also represented for the rigid-wall case only. For all VR

that are considered, the energy curves exhibit a lower growth than the rigid-wall case and their
time evolution features fast oscillations for both symmetries. As discussed in Refs. [17,18], the
frequency beating correlates with the frequency of the TWF eigenmodes. As also observed for
the two-dimensional (2D) case, the transient energy growth exhibits a larger amplification for the
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FIG. 14. Time evolution of the total energy for Re = 6666, β = 0.5, and VR = 0.4, 0.8, and 1.2 and
varicose initial optimal perturbations computed for τ varying from 14 to 1820. The envelope G for the rigid
case is also reported.

sinuous symmetry than the varicose one. For this reason, we restrict our analysis to the sinuous
configuration hereafter.

For illustration purposes, we show in Fig. 15(a) the spectrum for the same flow case and VR = 1.2.
The figure shows that, in addition to the rigid flow case, there are two eigenmodes that arise from
the fluid-structure interaction as observed in the previous section for β = 0, i.e., two TWF modes
propagating in opposite directions. The absolute value of their corresponding circular frequency
is noted ωTWF below. For very large VR, Hœpffner et al. [17] (see discussion in section 5.2) have
shown that the transient growth is mainly due to the interaction between the two TWF modes where
their superposition generates a standing wave that exhibits a low-frequency process. The latter is
characterized by a beating period equal to 2π/ωTWF.

In Fig. 15(b), the total energy time development associated with the initial optimal perturbation
obtained for τ = 14 is reported. For a purely standing wave, the regular pattern is oscillating up and
down; as a consequence the beating period associated with its total energy corresponds to π/ωTWF.
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FIG. 15. (a) Spectrum at β = 0.5, VR = 1.2, and Re = 6666. (b) Time evolution of the total energy growth
for the initial optimal perturbation computed for τ = 14.

For short times, this is precisely what is observed in Fig. 15(b) (noted �T0). As the perturbation
evolves in time, its total energy exhibits a characteristic oscillation of period �T = 2π/ωTWF.
It seems to indicate that, for these values of VR, the mechanism is more complex than a simple
superposition of the two TWF modes.

To further investigate the origin of the beating and the impact of the TWF modes on the transient
energy growth, we project the initial perturbation on a subspace spanned by a reduced number of
eigenmodes, as in the previous section. In Fig. 16(a), E (t ) is shown for both the complete LDNS and
the reduced-order model (ROM) based on 50 eigenmodes for validation purposes. One may observe
a perfect agreement between the two simulations. In the figure, the time evolution of the total energy
is also represented for a subset including only the two TWF modes. It generates a standing wave
with a characteristic frequency ωTWF. However, its growth in time is far from matching the one
given by the LDNS.

In Fig. 16(b), E (t ) is plotted for m = 50 excluding the TWF modes. The total energy evolution
for the rigid-wall case is also reported. This total energy curve does not show any beating process
and it displays a transient amplification comparable to the situation prevailing for rigid walls (i.e.,
associated with a pair of streamwise vortices which generates streaks). In particular, the growth
for large times is much higher than the one including TWF modes. It indicates that the inclusion
of TWF modes yields to destructive interferences that tend to damp the transient energy growth
associated with streak amplification.

Let us now consider an initial perturbation resulting from the superposition of the two previous
subsets of modes (i.e., the standing wave and the pair of streamwise vortices). The time evolution
of its total energy is shown in Fig. 17. The figure shows that the curve almost matches the one
associated with the optimal initial perturbation. It shows that the subsets of modes associated with
TWF modes and the discrete branch are nearly orthogonal. Hence, the mechanism seems to be
linked to a standing wave oscillating in a streaky developing flow.

The modification of the transient growth mechanism due to the TWF modes is also illustrated
through cross sections of velocity components extracted at various times in Figs. 18–20.

In Fig. 18, the time evolution of the optimal perturbation obtained by LDNS is represented for
a time interval equal to �T . The figure shows that TWF modes lead to damping the intensity of
the pair of streamwise vortices during one cycle of the standing wave. It has as a consequence to
annihilate the generation of streaks which is consistent with results given in Fig. 16.
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FIG. 16. Time evolutions for the total energy growth for β = 0.5, VR = 1.2, Re = 6666, and τ = 14.
(a) LDNS are compared with ROMs for m = 50 eigenmodes and the two TWF modes (referenced as m = 2).
(b) Total energy curves computed with the ROM for m = 50 excluding the TWF modes are compared to the
rigid-wall case.

A similar simulation is shown in Fig. 19, where the optimal initial perturbation is projected
onto the two TWF modes. A purely standing-wave behavior is observed, where the perturbation is
mainly concentrated near the walls and oscillates around zero. Finally, the last configuration where
the TWF modes are removed from the subset of modes is depicted in Fig. 20. The evolution of the
initial perturbation exhibits the fundamental bricks of the lift-up effect, i.e., a pair of streamwise
vortices that generate low- and high-speed streaks.

Then, for this value of VR where the coupling between the fluid and compliant walls is more
effective, the importance of the interactions between TWF modes and the discrete branch is crucial
to fully describe the phenomenon instead of what is observed for very large values of VR when the
system is governed only by the standing wave (i.e., mainly an effect of the walls [17]).
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FIG. 17. Time evolutions for the total energy growth for β = 0.5, VR = 1.2, Re = 6666, and τ = 14. The
evolution of E (t ) for the initial perturbation restricted to the summation of the pair of streamwise vortices and
the standing waves is compared to E (t ) associated with the optimal perturbation.

Let us now characterize the influence of some parameters on these oscillations. We introduce
the quantity �E (τ, Re,VR, β ) which measures the amplitude of the oscillations [see Fig. 15(b)].
In particular, we consider hereafter, �EM (Re,VR, β ) = maxτ �E (τ, Re,VR, β ). The distribution of

FIG. 18. Cross sections of the optimal perturbation for β = 0.5, Re = 6666, Vr = 1.2, and τ = 14 in
the (z, y) plane for tk = ti + k/8�T with k varying from 0 to 7 and ti = 8.7. Vectors for the cross-stream
components and isocontours of the streamwise velocity fields are shown.
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FIG. 19. Cross sections of the optimal perturbation projected onto the two TWF modes for β = 0.5, Re =
6666, Vr = 1.2, and τ = 14 in the (z, y) plane for tk = ti + k/8�T with k varying from 0 to 7 and ti = 8.7.
Vectors for the cross-stream components and isocontours of the streamwise velocity fields are shown.

�EM as a function of VR and β for Re = 6666 is shown in Fig. 21. The figure shows that �EM (VR)
exhibits an almost linear behavior for all spanwise wavenumbers that are investigated. The behavior
of the amplitude of the standing-wave oscillation is then further outlined with the parameter A
obtained by using the linear approximation �EM (Re,VR, β ) ≈ A(Re, β )VR. The distribution of
A with β for three Reynolds numbers is shown in Fig. 21(b). The figure shows that A peaks for
spanwise wavenumbers much smaller than the optimal value of β for streaks and rigid walls (i.e.,
β = 2). Besides, the amplitude of the oscillations increases with the Reynolds number and the peak
in A is reached for a spanwise wavenumber around β ≈ 0.7 − 0.8 independently of Re. It may
confirm the strong interplay between the streaks and the standing wave to dictate the amplitude of
the oscillations for this range of VR, since the TWF modes are mainly independent of the Reynolds
number [15].

As discussed above, the frequency of the standing wave is associated with the circular frequency
of the TWF mode. In Fig. 22, the distribution of the circular frequency of the TWF mode is shown
as a function of VR and β. Some computations at various Reynolds numbers confirmed that the
circular frequency is not dependent on Re (not shown here). The figure shows that the standing-
wave frequency is decreasing with an increase of VR and a decrease in β. In the figure, we also report
the added-mass model derived by Hœpffner et al. [17]. In this model, the authors approximate
the wall-normal flow velocity profiles with an exponential curve. Hence, by using an integration
along the wall-normal direction of the momentum equation, the action of the pressure force can be
associated with an added-mass effect. The equation of the circular frequency is then

ω2 = 1

m + ma
(Bβ4 + K ),
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FIG. 20. Cross sections of the optimal perturbation projected onto 50 eigenmodes excluding the two TWF
modes for β = 0.5, Re = 6666, Vr = 1.2, and τ = 14 in the (z, y) plane for tk = ti + k/8�T with k varying
from 0 to 7 and ti = 256. Vectors for the cross-stream components and isocontours of the streamwise velocity
fields are shown.

with ma = ρh(1 − e−β )/β. The corresponding values are reported as dashed lines in Fig. 22 where
an almost perfect match is observed with the full computation. It validates this model also for
moderate values of the reduced velocity.

FIG. 21. Amplitude of the oscillations. (a) Distribution of �EM with VR for various β and Re = 16000.
(b) Distribution of A as a function of β for Re = 2000, 6666, and 16 000.
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FIG. 22. Frequency of the standing wave as a function of β and VR. Dashed lines denote the frequency
computed with the added-mass model.

VII. DISCUSSION AND CONCLUSIONS

In this paper, the temporal nonmodal growth of two- and three-dimensional perturbations in
channel flow over infinite compliant walls has been investigated. From the formalism point of view,
we have developed a Lagrangian framework for the constrained optimization problem associated
with the linearized fluid-structure interaction system. In comparison with methods used by Hœpffner
et al. [17] and Zengl and Rist [18] for the same case, which are based on the summation of eigen-
modes, the present technique is free of numerical spurious oscillations. The short-time dynamics for
either the 2D case or infinitely elongated structures in the streamwise direction is mostly amplified
for the sinuous configuration. As a consequence, a large part of the study concerns the sinuous
symmetry of the system.

Besides this point, the two key findings from this work are the following. First, for a perturbation
developing in the streamwise–wall-normal plane, the short-time dynamics is seen to be strongly
modified by the flexibility of the wall. More specifically, a close inspection of the projection of the
dynamics onto a subset of modes shows that the coupling between the TS and TWF modes generates
strong oscillations. For some range of parameters, when the frequencies of TS and TWF modes are
similar, the amplitude of the modulation reaches higher levels than the optimal gain associated with
the rigid-wall case. Hence, while the wall compliance contributes to reduce the amplification of TS
modes, the total energy growth for short times is enhanced, however. We hope that the present study
clearly shows the important roles, in the short-time dynamics, of TS and TWF modes as well as
some of the other branches of discrete modes, and could therefore be useful to design a simplified
model describing the full dynamics as has been done for the asymptotic regime by Davies and
Carpenter [13].

Second, it has been found that the transient dynamics for streamwise-invariant perturbations and
O(1) values of the reduced velocity VR is driven by the superposition of a standing wave (due to
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the interaction between two oppositely propagating TWF modes) and the roll-streak dynamics. In
particular, the two corresponding subsets appear nearly orthogonal to each other. The dynamics of
the standing wave was clearly highlighted by Hœpffner et al. [17]. However, the case studied by
these authors was associated with a very high value of the reduced velocity (VR ≈ 23.5) and for this
specific case, the roll-streak dynamics was totally overwhelmed by the large temporal oscillations
of the standing wave. In particular, as underlined in a recent study by Lebbal et al. [22], typical
values of VR for blood flow rate and arterial diameters are in the range 0.1–0.2. For aerodynamics
applications, the boundary-layer flow interacting with a Kramer-type compliant wall detailed by
Wiplier and Ehrenstein [11] gives a reduced velocity of approximately VR = 0.4. Hence, the value
used in Ref. [17] is clearly out of range of these applications.

Finally, we provide scaling laws for the amplitude of the oscillations with the Reynolds number,
spanwise wave numbers, and critical reduced velocity. The variation of its characteristic frequency
is also investigated. For this last point, the added-mass model derived by Hœpffner et al. [17] is seen
to describe perfectly well the period of the oscillations but not the amplitude of the standing-wave
oscillation. As discussed above, the case considered by Hœpffner et al. [17] is only associated with
large VR where the dynamics of the full system is mainly driven by the traveling-wave flutter modes.
However, as it is shown in the present study, for moderate values of VR, where there is a stronger
interaction between streaks and the standing wave, the model fails to reproduce the full dynamics
because it does not include the time evolution of streaks.

Using a range of computations, we show that the amplitude of the oscillation increases linearly
with the reduced velocity VR for a given spanwise wavenumber and Reynolds number. In addition,
the optimal spanwise wavenumber leading to the maximum wave oscillation is around β = 0.7
which can be compared with β = 2 associated with the spanwise scale that maximizes the streaks
amplification. In particular, for β around 0.7, the amplification of streaks is seen to be damped by the
standing-wave dynamics. We then hope that these results could be a first step to extend the model
derived by Hœpffner et al. [17] to moderate values of VR.

The study could now be adapted without any numerical complications to time-periodic flows
which are more representative of artery blood flow, in the same fashion as Pier and Schmid [29]
have recently done for the rigid-wall case. The extension of the present analysis to the pipe flow
case is also under current intensive scrutiny.
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The transport properties of the plane Poiseuille flow in which a two-dimensional,
nonlinearly saturated Tollmien-Schlichting wave is propagating are studied in terms of
residence time distributions (RTDs). First, a method for computing RTDs in any type of
open flows is developed, making use of a single trajectory over a long period of time, with a
controlled level of diffusion. With this method, RTDs of this perturbed flow are computed,
along with a quantitative measure of their dispersion through the mean absolute deviation.
Depending on the travel distance, RTDs display two kinds of pattern. For short travel
distances, a pattern of peaks and valleys is observed for long residence times, originating in
regions of negative streamwise velocity produced by the wave. For longer travel distances,
a large probability peak is observed at t = τwave, the time needed for the wave to travel one
section downstream. This peak is attributed to the cat’s eye pattern characteristic of this
type of traveling wave. It is shown that the increased dispersion of the RTD is mainly due
to the nonlinear correction of the mean velocity profile.

DOI: 10.1103/PhysRevFluids.9.104501

I. INTRODUCTION

Stirring in laminar flows is an essential step in all mixing processes [1]. Whereas mixing is
generally characterized through the decay of concentration variance, measuring stirring efficiency
requires additional tools in the absence of molecular diffusion. This can be done, for instance, using
the stretching rate of fluid elements; in the case of flows subject to chaotic advection [2,3], Lyapunov
exponents and Poincaré sections are more commonly employed. In this article we rather focus on
residence time distributions (RTDs), as first introduced by Danckwerts [4] in his seminal paper to
characterize transport properties of open flows, i.e., flows with clearly defined input and output.
The applications are numerous and diverse, for example, oil transport in pipelines [5], contaminant
dispersion in ground watersheds [6], or microfluidic devices [7,8]. Note that RTD can also be used
to obtain qualitative information about mixing by distinguishing between residence times that are
greater or smaller than the typical time needed for diffusion to be effective, as explained by Gouillart
et al. [9].

As schematized in Fig. 1, for a given fluid system, the RTD provides information about the
probability for a fluid particle to cross the system in a certain lapse of time τ = tout − tin. As shown
by Spalding [10] and Danckwerts [11] in steady conditions, the mean residence time τm is given by

τm =
∫ τmax

τmin

τ f (τ ) dτ = V
Q

, (1)

where f (τ ) is the RTD, V the volume in the system between inlet and outlet, and Q the volumetric
flow rate. The minimum and maximum residence times τmin and τmax respectively correspond to
the fastest and slowest trajectories attainable in the system. Note that Eq. (1) fails for flows with
closed fixed recirculations, as can be seen, for instance, behind an obstacle or a step. Indeed, without
diffusion, those recirculations would not be reached by particles seeded at the entrance of the system.
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FIG. 1. Schematic of an open flow with fluid trajectories, and corresponding RTD, with τm the mean
residence time, and τmin and τmax respectively the minimum and maximum residence times.

Therefore, in this latter case, the volume V should be replaced by a smaller volume V� for which
the volume occupied by the recirculations has been removed.

Ideally, a mixer should mimic as closely as possible the plug-flow model, where all particles
cross the system in the same time τ = τmin = τmax, and for which the RTD is essentially a Dirac
pulse. In practice, however, the maximum residence time τmax is generally infinite, which implies
that the RTD f (τ ) in Eq. (1) must decrease to zero at large times. Although the decay may be
exponential in a pure extensional flow [12,13], the situation is very different when considering
flows with walls, since the decay is thus algebraic, with a τ−3 tail [12], also called a heavy tail. This
tail invalidates the use of a second-order moment of the distribution f , and thus a standard deviation
does not exist. As a measure for the width of the distribution, we will therefore use the mean absolute
deviation [14].

When a flow is subject to hydrodynamic instabilities, the Eulerian flow structure can be substan-
tially modified. Whether this modification can profoundly impact the mixing, transport, and more
especially residence time properties is an important question. In the case where instabilities lead
to turbulent flow, these properties are indeed deeply impacted as was already emphasized by Hull
and Kent [5], who showed that RTDs in pipelines are more stretched in the laminar case than in the
turbulent configuration. They thus recommended that the flow is maintained in a turbulent regime
so as to limit mixing between two consecutive pockets of petroleum.

However, hydrodynamic instabilities do not always result in fully developed turbulence. In closed
flows, for instance, the instabilities may lead to a time-periodic flow that exhibits chaotic advection;
see, for instance, the work of Oteski et al. [15], who studied a two-dimensional confined convection
flow, or the works by Meunier [16], along with Lefranc et al. [17], taking advantage of triadic
resonances in a tilted tank of water to efficiently mix with limited stress, or also that of Qu et al.
[18], who showed that acoustic streaming could enable global chaos in a parallelepipedic cavity
using an oscillatory instability of the flow arising at moderate power of the source.

The case of mixing by instabilities in open flows is even more complex. Lou et al. [19] studied
how laminar vortex shedding can affect temperature and concentration fields in the vicinity of direct
contact membrane distillation channels. Venditti et al. [20] showed how the presence of transversal
vortices greatly improved the performances of open tubular liquid chromatography by containing
axial dispersion. The case of the Couette-Taylor-Poiseuille flow, or spiral Poiseuille flow (SPF),
was studied in terms of residence time distributions. Kataoka et al. [21,22] noticed that when the
vortex flow regime was maintained in the presence of an axial flow rate, the SPF displayed plug-flow
properties, with all particles inside one vortex having the same residence time. When axial flow was
increased, however, the “doubly periodic” regime—wavy vortices—led to profound broadening of
the RTD, due to enhanced intermixing between neighboring vortices.

In the present work, we characterize another type of perturbed open flow in terms of residence
time distributions: the plane Poiseuille flow (PPF), in which a fully developed, nonlinear Tollmien-
Schlichting wave propagates at constant speed.

Even though hydrodynamic stability is not the main subject of the present article, a quick review
of the main results about the linear and nonlinear stability theory for the plane Poiseuille flow is
required here.
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FIG. 2. Channel geometry and parabolic plane Poiseuille flow profile.

Among the numerous authors who have concerned themselves with the linear stability of the PPF
(for example, Lin [23], Thomas [24], and Grosch and Salwen [25]), it is Orszag [26] who eventually
established the critical Reynolds number to its now classically known value of Rec = 7696 (with
the definition adopted in the present article). Making use of a Chebyshev expansion and a spectral
method, he numerically solved the Orr-Sommerfeld equation for the normal velocity component ṽ

of an infinitesimal perturbation written in complex form as

u(x, y, t ) = ũ(y) exp [i(αx − ωt )] + c.c., (2a)

p(x, y, t ) = p̃(y) exp [i(αx − ωt )] + c.c., (2b)

where α denotes the real wavenumber of the perturbation, ω = ωr + iωi its complex frequency,
and c.c. the complex conjugate. For a given setting of Re and α, the linear eigenvalue problem
arising from the Orr-Sommerfeld equation is solved, yielding a discrete spectrum of eigenvalues ω

and the associated eigenfunctions ũ(y) and p̃(y). If the growth rate ωi of a given mode is positive,
it is exponentially amplified; otherwise it is neutrally stable, or decays asymptotically. Above the
threshold value of Rec, to which corresponds the critical wavenumber αc, a continuous band of
unstable wavenumbers exists, and for each of these unstable wavenumbers, the eigenmode with the
largest positive growth rate is referred to as Tollmien-Schlichting (TS) wave. Note that the TS mode
exhibits sinuous symmetry. In the (Re, α) plane, the locus of neutrally stable configurations is called
the neutral curve, and is reproduced (numerical methods in the next section) in Fig. 3(a), along with
contours of constant growth rates.

Interest in the nonlinear stability properties of the plane Poiseuille flow (and shear flows in
general) has developed in the wake of advancements in the linear theory, mainly to explain
why turbulence is observed in experiments way below (Re � 1500) the critical Reynolds number
[27]. Nonlinear effects manifest themselves in essentially three ways [28]: distortion of the mean
flow, modification of the fundamental from linearized theory, and generation of higher harmonics.
Essentially all works relied on some kind of spatial Fourier expansion of the total flow:

u(x, y, t ) =
∑

n

u(n)(y, t ) exp [inαx]. (3)

Early works [29,30] made use of the mean-field approximation, where this expansion is truncated
up to |n| < 2, and only the interaction between the mean flow and the fundamental is considered.
By truncating the expansion up to the second harmonic (|n| < 3), and assuming the first harmonic
to be the normalized eigenmode of linear theory multiplied by an amplitude function of time,
Stuart [31] and Watson [32] were able to study the subcritical and supercritical behavior of the
flow in the vicinity of critical conditions, notably establishing the existence of equilibrium solutions
consisting of steadily traveling two-dimensional finite-amplitude waves. This kind of expansion was
used in consecutive works like those of Zahn et al. [33] or Jiménez [34] to study different solution
branches bifurcating from basic plane Poiseuille flow. Ehrenstein and Koch [35], using Fourier
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FIG. 3. Numerical parameters for both figures: Nc = 65 and Nh = 5 for the nonlinear computations.
(a) Growth rate contours of the most unstable eigenmode of the linear eigenvalue problem. Inside the neutral
curve (black solid line), growth rates are positive. Contour values shown are −0.12 to 0.0 in steps of 0.02, and
0.0 to 0.01 in steps of 0.002. (b) Phase speed contours for the linear (dashed lines) and nonlinear (solid lines)
Tollmien-Schlichting waves. Contour values shown are 0.26 to 0.50 for linear phase speeds and 0.32 to 0.64
for nonlinear phase speeds, both in steps of 0.02.

expansion and pseudoarclength continuation, thoroughly computed two- and three-dimensional
nonlinear traveling-wave solutions, under both sub- and supercritical conditions.

The present article is concerned with this type of solution, but considers only those obtained
under supercritical conditions, i.e., for linearly unstable base flows.

There are different ways to calculate numerically a RTD in an open flow. In the case of in-line
chaotic mixers made of a succession of identical elements of length L each, chaos is global so that
the system is ergodic, and a given particle visits the whole periodic domain; a natural method is thus
to follow a unique particle over a long lapse of time, long enough for it to travel a distance M × L
with M � 1, and to monitor the time needed to cross each portion. The RTD is thus computed
as the histogram of the resulting M residence time values [12,36]. Indeed, the particle naturally
visits regions of high velocity more often than regions of low velocity, and the residence time
values are already properly weighted; this also implies that the mean value of the residence times
in the sample is the Eulerian mean time τm defined in Eq. (1). This method can be qualified as
a Lagrangian process, and is available for stationary flows; it is also very cheap, as the different
residence time values are obtained simultaneously with the points when calculating the Poincaré
section. When the flow is not chaotic and stationary, a simple technique for the calculation of
RTD is to seed homogeneously a large number of particles at the entrance of the section, follow
them on the longitudinal distance L, and note the residence times; the RTD is then the probability
density function (PDF) of the residence times weighted by the longitudinal velocity at entrance. This
method of weighted residence times is best known in porous media studies, in the context of the
continuous-time random walk (CTRW) method (see, for example, the early work of Saffman [37],
and more recently Dentz et al. [38] and Puyguiraud et al. [39]). It can, however, become difficult
to implement when the flow field is time dependent, since the velocity at entrance is both position
and time dependent. The flow considered here is not only time dependent, but also nonchaotic as
it is two dimensional and can be made stationary by a Galilean change of frame (see Ref. [40]).
We propose here to generalize the Lagrangian method by allowing the particle to diffuse and thus
“sample” the entire cross section of the flow. This was first proposed by Spalding for stationary
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flows [10], but never used in practice. The idea is here to have a diffusion large enough so as to
favor the sampling, but at the same time small enough so as not to alter much the RTDs obtained.

The paper is organized as follows. In Sec. II, the geometry studied and general equations are
recalled, followed by a quick review of the linear and nonlinear stability of the plane Poiseuille flow.
Then we explain the method for computing the nonlinear Tollmien-Schlichting waves, and introduce
a reference case typical of the situation encountered in the problem. Section III explains the diffusive
method for the calculation of the RTDs. The procedure is then validated on the parabolic plane
Poiseuille flow. Section IV first focuses on the reference case, and explains the links between
the properties of the saturated flow and the corresponding RTD. From what was learned with the
Lagrangian method, we then propose an Eulerian method, without diffusion, for the calculation of
the RTD. Finally we vary the physical parameters of the problem, and give the conclusions and
perspectives in the last section.

II. PROBLEM FORMULATION AND METHODS

A. Geometry and governing equations

Throughout this investigation, the flow between two infinite parallel plates is considered, gov-
erned by the incompressible Navier-Stokes equations,

∂t u + (u · ∇)u = ν�u − 1

ρ
∇p, (4a)

∇ · u = 0, (4b)

where ρ and ν respectively denote the constant density and kinematic viscosity of the fluid. The
entire study takes place within a two-dimensional framework, assuming neither spanwise variations
nor spanwise velocity component. Adopting Cartesian coordinates, with x denoting the streamwise
and y the wall-normal coordinates, the velocity u and pressure p then depend on position x = xex +
yey and time t . The channel is of width h and the fluid put into motion by a constant streamwise
pressure gradient G. No-slip boundary conditions prevail along the walls at y = ±h/2 (see Fig. 2).

The steady base Poiseuille flow solution follows the classical parabolic profile

U (y) ex = 3

2
Um

(
1 − 4y2

h2

)
ex, (5)

with Um = h2

12ν
G the mean velocity. Throughout this article, the definition of the Reynolds number

is based on the channel width h and the mean velocity Um:

Re = hUm

ν
. (6)

Note that the flow dynamics is entirely controlled by the choice of the Reynolds number. For
deriving numerical values, without loss of generality, we specify two dimensional parameters h = 1
and Um = 1.

B. Linear and nonlinear stability of the plane Poiseuille flow

In order to investigate the stability of the Poiseuille profile, the total instantaneous flow fields are
separated into basic and perturbation quantites as

utot(x, y, t ) = U (y) ex + upert(x, y, t ), (7)

ptot(x, y, t ) = −Gx + ppert(x, y, t ), (8)

whether the perturbation quantities are of small amplitude (for linear stability analyses) or not (for
computing the saturated fully developed nonlinear flow solutions). Replacing these expansions in
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the Navier-Stokes equations, the equations governing the evolution of the perturbation fields upert

and ppert are obtained as

∂t upert = −L(upert ) − N (upert ) + ν�upert − 1

ρ
∇ppert, (9a)

∇ · upert = 0, (9b)

where L(upert ) = U ′vpertex + U∂xupert is the linear term accounting for the advection by the base
flow and N (upert ) = (upert · ∇)upert is the nonlinear self-advection term. For the rest of this paper,
we will only consider the perturbation velocity and pressure fields upert and ppert and, for simplicity,
omit their subscript.

When considering small-amplitude perturbations, the quadratic term N (u) is neglected and the
flow fields are sought in normal-mode form as

u(x, y, t ) = ũ(y) exp [i(αx − ωt )], (10a)

p(x, y, t ) = p̃(y) exp [i(αx − ωt )], (10b)

where α is the streamwise wavenumber and ω the frequency. Substitution of this expansion into the
linearized perturbation equations results in a classical eigenvalue problem, the solution of which
yields the frequency spectrum in the complex ω plane for a given wavenumber α [41].

A positive imaginary part ωi of the frequency associated by the linear dispersion relation to
a given wavenumber α signals a linear instability. An initial spatially periodic perturbation of
wavenumber α is then exponentially amplified in time with growth rate ωi so as to reach finite
amplitude levels. The dynamics of the fully developed perturbation is then governed by the complete
Eqs. (9a) and (9b) since the nonlinear terms can no longer be neglected. After expanding the
spatially periodic finite-amplitude perturbation as

u(x, y, t ) =
∑

n

u(n)(y, t ) exp [inαx], (11a)

p(x, y, t ) =
∑

n

p(n)(y, t ) exp [inαx], (11b)

and substituting in the nonlinear evolution equations (9a) and (9b) leads to a system of coupled
partial differential equations governing the temporal evolution of the spatial Fourier components
u(n)(y, t ) and p(n)(y, t ). This is equivalent to considering the dynamics in a finite domain of length
2π/α with periodic boundary conditions in the streamwise x direction.

C. Numerical computation of the Tollmien-Schlichting waves

The numerical implementation closely follows the methods developed by Pier and Schmid [42]
in the context of pulsatile channel flow. The spatial discretization involves a Chebyshev collocation
method, using Nc Gauss-Lobatto collocation points to cover the channel diameter −h/2 � y � h/2.
Thus, the differential operator ∂y is recast as a matrix operating on the array consisting of the values
at the collocation points.

After this spatial discretization, the linear eigenvalue problem governing the eigenfunctions ũ(y)
and p̃(y) [Eqs. (10a) and ((10b) is recast as an algebraic eigenproblem, the solution of which then
yields the linear dispersion relation.

For nonlinear temporal evolution problems, the streamwise Fourier expansions (11a) and (11b)
for u(x, y, t ) and p(x, y, t ) are truncated at |n| < Nh. Then, the Chebyshev collocation method in
y transforms the governing partial differential equations (9a) and (9b) into an algebraic system of
coupled ordinary differential equations in time. Temporal integration is carried out using a predictor-
corrector fractional-step method derived from the work of Goda [43], improved by Raspo et al. [44].
More details of the general method can be found in Refs. [42,45]. The numerical implementation
in C + + is based on the "home-spun" PACKSTAB library [46]. The required numerical effort is
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reduced by explicitily taking into account symmetry properties prevailing for sinuous or varicose
perturbations: the different flow components are then either symmetric or antisymmetric in y. Thus
only half of the collocation points need to be considered, using the associated discretized differential
operators of corresponding symmetry.

The essential properties of linear and nonlinear Tollmien-Schlichting waves are illustrated
in Fig. 3.

First, maps of the linear growth rate and phase velocity are computed over the (Re, α) plane,
by solving the algebraic eigenvalue problem and monitoring the most unstable eigenvalue of the
spectrum obtained for each choice of Re and α. Figure 3(a) shows isolines of constant growth rate ωi

along with the neutral curve. Note that the most unstable eigenmode is always of sinuous symmetry.
The associated phase velocity ωr/α is plotted as dashed lines in Fig. 3(b). The region inside the
neutral curve ωi = 0 in Fig. 3(a) corresponds to linearly unstable configurations, for which temporal
integration of the nonlinear evolution problem leads to fully developed perturbations that saturate at
finite amplitude, after an initial phase of exponential growth. For the parameter ranges considered
in the present investigation, the perturbation energy is found to converge towards a constant level,
and the saturated finite-amplitude perturbations propagate as a whole at a constant velocity without
modulations. This behavior suggests the absence of secondary instablities, that would lead to more
complex dynamics. Thus, in this finite-amplitude regime, the temporal evolution of the different
Fourier components in Eqs. (11a) and (11b), is of the form u(n)(y, t ) = ũ(n)(y) exp(−inωnlt ), for
some real-valued nonlinear frequency ωnl . By monitoring the different components during the
temporal integration and computing the frequency ωnl , it is thus verified that, after convergence,
the perturbations may indeed be written as a steadily traveling nonlinear wave:

u(x, y, t ) =
∑

|n|<Nh

ũ(n)(y) exp [in(αx − ωnlt )]. (12)

This nonlinear Tollmien-Schlichting wave travels with a phase velocity cnl = ωnl/α; in a reference
frame comoving with the wave at speed cnl , the perturbation fields are thus steady in time and
spatially periodic with period λ = 2π/α, the wavelength of the perturbation. The solid lines in
Fig. 3(b) show contours of the nonlinear phase velocity cnl , computed for the parameter region
corresponding to linear instability.

Note that from Eq. (12), the velocity field is only a function of wall-normal position y and phase
φ with

φ = αx − ωnlt mod 2π with 0 � φ � 2π. (13)

Similarly, we define the periodic longitudinal position x′ in the moving reference frame as

x′ = φ/α = x − cnl t mod λ with 0 � x′ � λ. (14)

D. A reference case: α = 2 and Re = 10 000

As an example, the result of a simulation for Re = 10 000 and α = 2 can be seen in Fig. 4,
which displays the corrected mean profile and a contour map of the streamfunction of the total flow
in the frame comoving with the wave, a frame in which the flow is stationary. This configuration
is linearly unstable with ω = 0.74967 + 0.00670i. For this case we have λ = λref = 2π/α = π ,
and the nonlinear frequency is ωnl = 1.17, yielding a nonlinear wave speed cnl = 0.587 and a time
period T = 2π/ωnl = 5.36. The longitudinal extent for the contour map is the spatial pseudoperiod
λ = π .The distorted mean flow is compared to the base flow on the left, an important feature of this
distortion being that the maximal value of the mean flow is greater than in the case of the base flow.
On the right the streamlines of the total flow in the frame comoving with the wave are visualized.
The sinuous structure of the wave is clearly recognized here in the form of the Kelvin-Stuart cat’s
eye pattern, a series of cellular recirculation zones traveling downstream of the flow at a velocity
equal to the wave speed. These waves also exhibit small near-wall regions where the longitudinal
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FIG. 4. (a) Parabolic Poiseuille flow (dotted line) and distorted mean flow (solid line); (b) streamlines of the
total flow for the saturated nonlinear TS wave at Re = 10 000 and α = 2 in the frame comoving with the wave
[therefore in the (x′, y) plane]. The small near-wall regions inside the blue curves display negative longitudinal
velocities measured in the laboratory frame. Numerical parameters for the computation of the nonlinear TS
wave are Nc = 65 and Nh = 5.

velocity, measured in the laboratory frame, is negative. Basically, if a particle is close to the wall
and happens to be just below (or above) a cat’s eye, it is traveling upstream because of the vortex
motion.

In Fig. 5, we represent snapshots of the trajectories of 2500 particles over one period of the flow.
As was described by Weiss [47] for the general case of a traveling wave, the flow is essentially
separated into three distinct regions: the core region, where particles travel faster than the wave, the
near-wall region, where they lag behind it, and the trapping regions, where particles are bound to
travel around the center of the cat’s eye cells shown in Fig. 4(b). In particular, particles traveling
slowly near the separatrix are easily distinguishable at time t = T .

FIG. 5. Snapshots of the positions of 2500 particles, initially uniformly placed in the channel over two
wavelengths of the TS wave, for different instants between t = 0 and t = T . The parameters are those of the
reference case, Re = 10 000 and α = 2. In order to visualize the velocity of the wave, the blue and red vertical
lines drawn at each side of the initial blob are artificially moved at the wave speed.
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FIG. 6. Schematic of the partitioning of the flow in sections of length L, along with a particle trajectory
and retained data (τ j, y j, φ j ).

III. COMPUTATION OF RESIDENCE TIME DISTRIBUTIONS

In this section we develop a general method for the calculation of RTDs, which could in principal
be available for any type of in-line flow or mixer where no fixed recirculation is present. Note that
in our case the recirculations shown in Fig. 4(b) are not fixed since they move at the speed of the
wave. The method is validated afterwards in the case of the nonperturbed parabolic Poiseuille flow.

A. The Lagrangian method

As explained in the Introduction, we propose here to compute the residence time distributions
on a given longitudinal distance L using a single long trajectory; we allow the particle to diffuse so
as to sample the entire cross section of the flow and render the system ergodic. The advection of a
single diffusive particle can be modeled with a generalized Langevin equation

dx
dt

= u(x, t ) + ζ (t ), (15)

where ζ (t ), a Gaussian decorrelated process such that 〈ζi(t )ζ j (t ′)〉 = 2D δi j δ(t − t ′), with D the
diffusion coefficient, δi j the Krönecker symbol, and δ the Dirac delta function, models the molecular
diffusion [48]. Although diffusion is artificial in the method (it just allows to visit the whole width),
we introduce the Péclet number based on the mean velocity Um,

Pe = hUm

D
. (16)

We then proceed as follows: we solve Eq. (15) for a single diffusive particle. When the particle
enters the jth element at plane x = ( j − 1) L and time t j−1, we note its vertical position y j−1 and
the corresponding phase φ j−1 = α × ( j − 1) L − ωnl t j−1; then we calculate the residence time τ j =
t j − t j−1 in this element as the time it takes to reach the exit plane x = j L once entered. Note that,
if the particle enters the first element at time t0 = 0, the total time at the outlet of the jth element
is thus t = ∑ j

i=1 τi. In practice, we follow the particle on a very long time so as to obtain a large
sample of M data (τ j, y j, φ j )1� j�M . The process is illustrated in Fig. 6.

The RTD can thus be obtained as the histogram of the resulting M residence time values τ j ; the
other parameters (y j, φ j ) will be used for other purposes (see Sec. IV). In practice, we store these
data for L = λ. The case L = n × λ (2 � n � 10) is obtained by summing the residence times on n
consecutive elements, resulting in a smaller sample of size M/n and a mean residence time n times
larger than for n = 1. As explained in the Introduction, because of the heavy tail of the distribution,
the dispersion of the sample (τ j )1� j�M of residence times is measured through the mean absolute
deviation

σ1 = 1

M

M∑
j=1

∣∣∣∣ τ j

τm
− 1

∣∣∣∣ , (17)

where τm = L/Um is the mean residence time on the distance L.
Since the only purpose of diffusion here is to enable the computation of the residence time

distribution of the underlying flow, care must be taken when choosing the Péclet number. Indeed,
diffusion must allow the particle to sample the whole flow, without affecting the RTD.
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First of all, diffusion must not statistically modify the time needed to travel the distance L,
typically tconv = L/Um. This means that (i) the characteristic longitudinal diffusive time tdiff,x =
L2/D must be large compared to tconv, i.e., tdiff,x � tconv. Since the traveling time depends on the
streamline, this also implies that the particle must statistically not be allowed to change streamline
when traveling the distance L; this involves that (ii) the characteristic transversal time tdiff,y = h2/D
must be large compared to tconv, i.e., tdiff,y � tconv. Finally, the trajectory must be long enough for
the statistics to be converged. Denoting by M the size of the sample, the particle has traveled a
total length M × L in the x direction, associated to a typical lapse of time M × tconv. The statistics
are converged if the particle has statistically visited all the streamlines of the flow. As the particle
changes streamline thanks to diffusion, this implies that (iii) tdiff,y � Mtconv. Conditions (i)–(iii) can
be rewritten as

Pe � h/L , (18)

Pe � L/h , (19)

M � Pe h/L . (20)

Note that conditions (18) and (19) are very similar. Because in most cases the length L considered
is such that L > h, condition (18) is less restrictive, and condition (19) along with condition (20)
is sufficient in practice. Note finally that condition (20) can be rewritten Ltot � Pe h, where Ltot =
M × L is the total longitudinal distance traveled by the particle. Therefore, this last criterion should
be fulfilled equally for a couple of parameters (L, M ) or (10 L, M/10), since both cases correspond
to the same total longitudinal length traveled, Ltot.

B. Choice of the travel distance L

In spatially periodic flows, a natural choice for the travel distance L on which the RTD is
computed could be the period or a multiple number of periods (see, for instance, Ref. [49] or Ref.
[50] in the partitioned-pipe mixer). In the configuration at hand, the flow is only pseudoperiodic
and there is no true spatial periodicity. However, as the flow is periodic in the frame comoving with
the wave with period λ = 2π/α, a natural possibility is to use L = n × λ, with n reasonably chosen
between 1 and 10 [14].

C. Validation of the method

We propose to validate those conditions on the unperturbed plane Poiseuille flow, with a parabolic
profile of Eq. (5). In such a flow a nondiffusing tracer goes straight without changing streamline;
it is therefore a drastic candidate to test the method. Moreover, this flow is simple enough so as to
obtain an analytical expression for the RTD (valid in the limit Pe → ∞)

fPoi(τ ) = 1

3

τ 2
m

τ 3

(
1 − 2τm

3τ

)−1/2

, (21)

with the corresponding analytical value of the mean absolute deviation (see Appendix A),

σ1,Poi = 2/(3
√

3) � 0.385. (22)

Note that, unlike the perturbed flows considered in the present study, the parabolic flow field has no
natural length; thus Eqs. (21) and (22) are valid whatever the choice of L. Because we need a travel
distance for the validation, we choose L as the wavelength of the reference perturbed case depicted
in Sec. II D with wavenumber α = 2, and equivalently λref = π .

In order to test which Péclet numbers Pe and sample size M may fulfill conditions (18)–(20), we
proceed as follows: for a given Péclet number, we compute a single very long trajectory, long enough
to yield a converged value for σ1: a total longitudinal distance Ltot = M × π with M = 108 is fairly
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FIG. 7. RTDs for the plane Poiseuille flow for different Péclet numbers. The size of the samples for each
Péclet number is M = 108. The travel distance is L = λref = π , except for the dashed line for which L =
10 λref = 10 π . The black solid line represents the analytical RTD in the nondiffusive limit. (a) Log-log scale;
(b) lin-lin scale, with a focus on the lowest residence time values, indicated schematically in panel (a). Note
that the tails of cases (Pe = 105, L = π h) and (Pe = 106, L = 10 πh), which correspond to the same value
of Pe h/L, are almost superimposed in panel (a); a similar remark can be made for panel (b) for cases (Pe =
106, L = π h) and (Pe = 106, L = 10 πh), which correspond to the same value of Pe L/h and for which the
curves have a similar behavior at short times.

sufficient in practice. Then we compute the resulting RTDs (normalized by their corresponding
mean residence time τm) for the different Péclet numbers Pe and travel distances L, and calculate
the associated mean absolute deviations σ1.

Figure 7(a) displays the RTDs in log-log scale, so as to focus on the long-residence-times
behavior. The figure clearly illustrates criterion (ii) associated with condition (19): in the presence
of diffusion, a particle located close to the wall (where the velocity is weak) cannot remain
forever on its streamline, and arbitrary long residence times are no longer possible. This results
in a cutoff of the algebraic τ−3 tail obtained without diffusion [14]. When increasing the Péclet
number Pe for the fixed travel distance L = λ, diffusion effects are less important, and the cutoff
is shifted toward higher residence times as observed in Fig. 7(a). Reversely, when increasing the
travel distance L for a given Péclet number, a particle is more likely to change streamline so that
diffusion effects are more pronounced, and the cutoff is shifted toward smaller residence times, as
illustrated in the case Pe = 105 for L = π and L = 10 π . Note also that the tails of the RTDs of the
cases (Pe = 104, L = π ) and (Pe = 105, L = 10 π ) are almost identical. Overall, when the quantity
Peh/L increases, the cutoff is shifted toward higher residence times, as expressed in condition (19).

Figure 7(b) displays the RTDs in lin-lin scale, so as to focus on the small-residence-times behav-
ior. The figure now clearly illustrates criterion (i) associated with the less restrictive condition [Eq.
(18)]: diffusion can modify the time needed to travel the distance L, leading to residence times that
can be significantly smaller than the minimum theoretical time without diffusion, τmin = 2/3 × τm

[see Eq. ((21). When Pe is increased with a fixed travel distance, diffusion effects are less important,
and the RTDs become more peaked around τmin, as shown in the figure for L = λ. Identically, when
the travel distance L is increased at fixed Péclet number, diffusion is more likely to move the particle
equally forward and backward on the larger distance, and the RTD is more peaked, as illustrated in
the case Pe = 105 for L = λ and L = 10λ. Note finally that the shape of the RTDs at small time is
very similar for the two cases (Pe = 105, L = 10 π ) and (Pe = 106, L = π ). Overall, the RTDs are
more peaked on τmin when increasing the quantity PeL/h, as expressed in condition (18). In order to
obtain a quantitative criterion, we now turn to the computation of the mean absolute deviation. The
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FIG. 8. (a) Evolution of the mean absolute deviation with the travel distance in the plane Poiseuille flow,
for different Péclet numbers. (b) Evolution of the mean absolute deviation along the trajectory, for different
Péclet numbers and travel distances. These diagrams correspond to the RTDs of Fig. 7.

results are compared to the theoretical mean absolute deviation σ1,Poi [Eq. (22)]; we consider that a
given point is acceptable if it lies within 1% of this theoretical value.

Figure 8(a) shows the mean absolute deviations obtained for the different trajectories corre-
sponding to different Péclet numbers, for varying values of the travel distance, L = n π with
1 � n � 10. For each point the size of the sample is M/n, that is, larger than 107 (since M = 108).
The data are plotted as a function of the quantity Peh/L corresponding to the parameter involved
in the most restrictive condition [Eq. (19)]. For small values of Peh/L, the values obtained are
underestimated, which is explained by the fact that the cutoff in Fig. 7(a) is too much shifted toward
small residence times. As seen in the figure, all points corresponding to Pe = 105 or higher are
acceptable.

Condition (20) is related to the size of the sample, M: in order to optimize the method, we must
evaluate the minimum size M for which the mean absolute deviation is sufficiently converged. In
practice, we use the long trajectories calculated previously and consider subsets of increasing size
M, (τi )1�i�M , with Mmax = 108. The results are shown in Fig. 8(b), where the computed values of σ1

are plotted as a function of the nondimensional parameter ML/hPe involved in Eq. (20). Note that
we recover that for small values of Pe h/L, as discussed before, the curves do not converge toward
the correct theoretical value. This is the case, for instance, for the parameters (Pe = 104, L = 10 π ),
while the theoretical value is reached for the same Péclet number and a smaller travel distance,
i.e., for the couple (Pe = 104, L = π ). However, although they do not converge toward the same
value, the two curves behave similarly with the parameter ML/hPe; indeed, for a given value of
the parameter, as explained before, the total distance Ltot = M × L is the same (with a sample 10
times smaller for L = 10 π than for L = π h). Therefore, the convergence is identical since the two
curves are calculated with the same part of the trajectory. This is even more striking for the two sets
of parameters (Pe = 105, L = π ) and (Pe = 105, L = 10 π ), where the two curves converge toward
the same parameter and are nearly identical. Finally, in all cases, the convergence toward the final
value is effective for ML/hPe � 300.

To sum up, the Péclet number must be equal to 105 or higher, and the size M of the sample must
satisfy M � 300 × Pe h/L. Similar thresholds were obtained when considering different trajectories
(different initial points, and of course different aleatory diffusion increments). In order to have a
reasonable sample size, we therefore choose the minimum acceptable Péclet number, Pe = 105, for
the computation of residence times hereafter. The size of the sample is thus chosen as the minimum
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FIG. 9. Normalized RTDs of the reference flow (solid line) in lin-lin scale; left, L = λ; right, L = 10λ.
The sample corresponds to a single trajectory of total longitudinal length Ltot = 12 × 106 × λ. The dotted line
represents the theoretical RTD of the basic Poiseuille flow [Eq. (21)]: the minimum residence time is clearly
smaller in the reference case. The peak corresponding to the nondimensional wave residence time τ̂wave is more
pronounced for L = 10λ.

acceptable size, M ≈ 300 Pe h/L = 3 × 107h/L. For instance, for the reference case for which λ =
π (with h = 1), we need a sample of size M ≈ 107.

IV. RESULTS

In this section, we first consider the reference case, the nonlinear TS wave introduced in Sec. II D,
for which we study the influence of the travel distance L on the RTD. From this example we show
how to calculate RTDs properly with an Eulerian method (without diffusion) in the case of TS
waves. Then we vary the wavenumber and Reynolds number.

As explained in the previous section, the Péclet number chosen for the calculation of the RTD is
Pe = 105, and the minimum sample size is M = 107; numerical parameters for the computation of
the wave are Ncheby = 65 and Nh = 5.

In the following, we refer to the time τwave = L/cnl it takes for one wave train to travel the
distance L as the wave residence time; similarly, τmin is the minimum of the residence time for
the distance L. We introduce the nondimensional wave residence time τ̂wave = τwave/τm = Um/cnl

and also τ̂min = τmin/τm = Um/Umax. Note that both τ̂wave and τ̂min are independent of the travel
distance L.

A. The reference case α = 2 and Re = 10 000

We first begin with the reference case already described in Sec. II D, for which α = 2, Re =
10 000, and λ = 2π/α = π . For this case we compute the RTD, using a single diffusive tracer,
following the method outlined in Sec. III; a single trajectory is computed throughout M = 12 × 106

sections of length L = λ, resulting in a sample (τi, yi, φi ) of size M.
Figure 9 shows the RTDs obtained for the travel distances L = λ and L = 10 λ. For the purpose

of comparison, the RTD of the parabolic Poiseuille flow, obeying Eq. (21), is plotted with a
dotted line.

First we note that the minimum residence time is significantly smaller for this reference case than
for the Poiseuille flow. Indeed, the maximum mean velocity at the center of the flow is greater than
that of the Poiseuille flow, as previously seen in Fig. 4(a).

The second characteristic is the existence of a peak located at the nondimensional wave residence
time τ̂wave. The peak is much higher and more marked for the larger travel distance L = 10λ. To
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FIG. 10. Color maps of residence time values in the (φ, y) plane for the reference case α = 2 and Re =
10 000, built as follows: for a given trajectory, the position of the particle entering the jth element at ( j − 1) × L
is located by its coordinates (φ j−1, y j−1) and associated to the residence time τ j , as defined in Fig. 6. The color
maps are obtained as a two-dimensional histogram (250 × 250 uniform bins) of all the points of the long
trajectory used in Fig. 11, weighted by the residence time values, and normalized by the mean residence time
τm(L) = L/Um in each case. The color scale is identical for all figures; the color bar on the right is indicative
and not to scale. The white regions correspond to a forbidden zone empty of points. The streamlines of Fig.
4(b) are reproduced on the last panel to emphasize the connection between the different regions of the flow and
the resulting residence time properties.

explain this behavior, the samples are visualized in the (φ, y, τ ) plane in Fig. 10 for increasing
travel distances, with points colorized according to the corresponding residence time. The figure es-
sentially shows that a point starting in a recirculation region is associated with a nondimensional
residence time close to τ̂wave (green color). This behavior is more pronounced as L is increased.
Indeed, focus on the lower recirculation region in Fig. 10(a) (L = λ): the point at the center of
the recirculation (which is fixed in the moving referential) travels exactly at the velocity of the
wave in the laboratory frame, and its residence time is exactly equal to τwave. Consider now a
point initially slightly above the center: the gyratory motion sends the particle to the low-velocity,
near-wall region, and the resulting residence time is higher. Conversely, a point initially just below
the center is entrained toward the central jet, where the velocities are higher, resulting in a lower
residence time. When L is increased (L = nλ, n � 2), points that are in the recirculation region turn
around the center in the wave referential. If they make an exact number of turns, their residence
time is exactly equal to τwave = nλ/cnl ; if they do not, their residence time may be slightly higher
or lower. Consider finally the extreme case of a point located on one of the separatrices: if located
on the upper separatrix, it moves to the right toward the next saddle point on the right, and the
distance covered in the moving frame is at most equal to λ. Therefore, the residence time in the
laboratory frame is less than that of the central point, such that (n − 1) × λ/cnl � τ � n × λ/cnl .
On the contrary, a point situated on the lower separatrix moves to the left in the wave referential,
with a maximal distance covered λ in the moving frame, and the residence time is higher and
verifies n × λ/cnl � τ � (n + 1) × λ/cnl . Overall, all points in the recirculation have a residence
time such that (n − 1) × λ/cnl � τ � (n + 1) × λ/cnl . Finally, the nondimensional residence time
τ̂ of a point in the recirculation is such that

(1 − 1/n)τ̂wave � τ̂ � (1 + 1/n)τ̂wave , (23)

which approaches τ̂wave as n increases.
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FIG. 11. Normalized RTDs of the perturbed flow for four travel distances from L = λ to L = 10λ, in log-
log scale, for the reference case, α = 2 and Re = 10 000. All RTDs are plotted as histograms constituted of
500 logarithmically distributed bins. The sample corresponds to a single trajectory of total longitudinal length
Ltot = 1.2 × 107 × λ. The dotted line represents the analytical RTD of the theoretical plane Poiseuille flow.

We now focus on long residence times, corresponding to particles located near the walls, where
the longitudinal velocity is weak. Figure 11 shows the RTD obtained for different travel distances
ranging from L = λ to L = 10λ in log-log scale: although we globally recover the t−3 behavior
and its cutoff due to diffusion [14,38,39], some residence times seem underrepresented, so that a
peculiar pattern of peaks and valleys is observed for long residence times. The reason for these
less probable residence times is of Eulerian nature. Indeed, the total flow field exhibits some small
regions delimited in blue in Fig. 4, near the upper and lower walls and right at the vertical of
the recirculation regions, where the longitudinal velocity is negative in the laboratory frame: in
these regions a particle actually travels upstream. This implies that a particle cannot start or end its
trajectory on a section of length L in these particular regions (one cannot cross the start or finish
line moving backwards). This is particularly visible in Fig. 10, which represent a 2D histogram of
points entering in an element: the regions delimited in blue in Fig. 4(b) roughly correspond to those
empty of points in Fig. 10. A blowup of the bottom near-wall region is shown in Fig. 12. As can
be seen in the figure, the forbidden region is rather larger than the zone delimited in blue. This
can be explained as follows: when a particle is in a zone of negative longitudinal velocity, it goes
backwards. Therefore, it must go forward for some time before crossing the finish line. Therefore,
the forbidden region extends to the left of the blue zone. More generally, when approaching the blue
zone, the velocity decreases and approaches zero; therefore, a particle is very unlikely to cross the
finish line in the vicinity of the blue zone, and the density of points decreases as approaching this
particular region. Note finally that this does not break the ergodicity necessary to the validity of
the Lagrangian method: these regions of the flow are nevertheless visited, but these events do not
correspond to a crossing of a line x = n × L, and therefore are only forbidden from the Poincaré
section point of view inherent to residence times calculated with a Lagrangian method.
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FIG. 12. Blowup of Fig. 4(b) near the bottom wall (streamlines of the reference case, α = 2 and Re =
10 000, in the referential of the wave). In blue, region of negative longitudinal velocities in the laboratory
frame. In red, trajectory of a particle near the bottom wall in the referential of the wave. The points correspond
to the different positions of the diffusing particle in the (x′ = φ/α, y) plane when entering the jth element at
x = ( j − 1) × λ (Fig. 6) and can be seen as a Poincaré section of the diffusing trajectory.

In order to understand why those forbidden regions lead to less probable residence times, let us
consider a particle near the bottom wall that has just entered the jth element: because it is located
near the wall, its longitudinal velocity is very weak [and sometimes negative when crossing the
region delimited in blue in Fig. 4(b)]. Therefore, it travels a long time before leaving the jth element
of length L. The trajectory of such a particle in the moving frame is depicted in Fig. 12: in this
referential the particle moves very rapidly toward the left, at a velocity close to cnl . When the particle
leaves on the left in the periodic frame of Fig. 12 it reenters on the right, on the same trajectory if
diffusion is negligible; the time taken to cross once from left to right is roughly λ/cnl in the moving
frame. Because it travels a long time, it moves over a long distance in the referential of the wave,
and reenters many times in the domain.

Let us now focus on Fig. 12: a particle starting outside the forbidden region is always allowed
to travel a distance equal to n × λ in the moving frame (corresponding to the distance L in the
laboratory referential), because then the finish line is also outside the forbidden region. This very
probable configuration corresponds to a travel time τ ≈ m × λ/cnl , where m is an integer which is
at least such that m � 2 (because of the long times involved in this near-wall region). On the other
hand, because of the large forbidden and rarefied region, it is more likely to end in the forbidden
region when traveling a distance equal to (m + 1/2) × λ, which makes this distance in the moving
frame less probable. This corresponds to a rare travel time τ ≈ (m + 1/2) × λ/cnl .

Let us come back now to Fig. 11: in the case L = λ, the mean travel time is τm = λ/cnl .
Therefore, the most probable nondimensional times are

τ̂peak ≈ m × τ̂wave. (24)

Similarly, the positions of less probable nondimensional times (valleys) are given by

τ̂valleys ≈ (
m + 1

2

) × τ̂wave . (25)

This is indeed what is observed in Fig. 11(a). When L = n × λ with n � 2, as in Figs. 11(b)–11(d),
the mean traveling time is τm = n × λ/cnl , and the peaks are located at τ̂peak ≈ m/n × τ̂wave, with
the minima at τ̂valleys ≈ (m + 1/2)/n × τ̂wave. This explains why two events (peaks or valleys) get
mechanically closer to each other for increasing L, as shown in the figure.

Note also that those patterns become less pronounced when L is increased (see also Sec. IV B
later for the nondiffusive case). There are two reasons for this: the first one is that diffusion effects
are more important for larger travel distances; the second one is that the events (peaks or valleys)
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get mechanically closer to each other for increasing L, and sampling very rare events close to each
other tend to blur the results.

As the perturbed Poiseuille flow is expected to mix better than the basic Poiseuille flow, we would
also expect the width of the RTD (measured using the mean absolute deviation) to be smaller in the
perturbed case. Surprisingly, the width is larger in the perturbed configuration for the reference case.

Indeed, starting with σ1,Poi � 0.385 for the basic plane Poiseuille flow, mean absolute deviations
of σ1 = 0.431 for L = λ and σ1 = 0.424 for L = 10λ are attained, corresponding to a significant
increase of 12% and 10%, respectively. This is due to the increase in maximum velocity at the center
of the channel due to the nonlinear correction of the mean velocity profile. Indeed, increasing the
maximum velocity while keeping the mean velocity constant automatically produces residence time
values that are not only farther away from the mean residence time, but also highly probable (since
associated with a high-velocity region). The main peak located at τ̂ = τ̂wave leads to the same kind
of effect, although less prominent given the much smaller height of the peak as seen in lin-lin scale
in Fig. 9.

Finally, note that the width of the distributions is only slightly modified when increasing the
traveling length L: the mean absolute deviation σ1 decreases from σ1 = 0.431 for L = λ to σ1 =
0.424 for L = 10λ, which corresponds to a 1.6% decrease only. This is because the main peak is
located at τ = τmin and is related to the maximal velocity at the center; see discussion later at the
end of the section.

B. RTDs in the nondiffusive limit

From what was learned before, is it possible to calculate the RTD by seeding particles at the
entrance of a section? Indeed, when computing the PDFs of the positions yi and the phases φi

corresponding to the residence time samples previously obtained in the reference case, it appears
that the positions follow a distribution based on the mean velocity profile and that the phases obey
an almost uniform distribution (see Appendix B).

Therefore, we propose to build a RTD in the limit Pe → ∞ following an Eulerian method, by
seeding a large number M of nondiffusing tracers at the entrance of a section of length L, as follows:

(1) For each tracer i (1 � i � M), the initial position is characterized by xi = 0, and an initial
position yi and phase φi chosen randomly, both following a uniform distribution.

(2) The trajectory of each tracer is calculated until reaching the exit (xi = L).
(3) The corresponding residence time τi is weighted by the initial longitudinal velocity at en-

trance. This weighting reflects the fact that regions of high longitudinal velocity are more frequently
crossed by traveling particles [14,37,38]. If the longitudinal velocity is negative, which corresponds
to a point going backwards and initially located in one of the blue zones of Fig. 4(b), the point is
omitted.

Note that we do not omit here all the points in the forbidden region (which is larger than the blue
zone); however, the transverse velocities are very small in the whole forbidden region, which gives
a negligible weight to all the forbidden points. Therefore, we expect the resulting RTDs to be very
close to those calculated with diffusion.

The resulting RTDs are shown for the reference case in Fig. 13, with (a) L = λ and (b) L = 10λ.
For the sake of comparison the diffusive RTDs obtained by the Lagrangian method with Pe = 105

[Figs. 11(a) and 11(d)] are also plotted.
In the case L = λ [Fig. 13(a)], the RTDs are almost identical, except for the very long times

where the artificial cutoff due to diffusion is no more present with the Eulerian method. Note indeed
that with this latter method, the algebraic τ−3 tail is recovered, although modulated by the peak
and valley pattern already addressed. In the case L = 10λ [Fig. 13(b)], although the RTDs are
identical for the most probable values (above 10−1), the effect of diffusion is much more visible,
not only for the very long times, but also in the vicinity of the main peak at τwave. Indeed, without
diffusion, a particle remains forever in the recirculation region where it was initially located. Since
the residence time of all points in a recirculation region approaches τwave as L is increased [(Eq. (23);
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FIG. 13. RTDs of the reference flow (α = 2, Re = 10 000), for the Eulerian method (dark colors) and for
the Lagrangian method with diffusion (Pe = 105, light colors), for (a) L = λ and (b) L = 10λ. The diffusive
RTDs are the same as in Figs. 11(a) and 11(d). The dotted line is the RTD of the Poiseuille flow.

see also Fig. 10], the peak at τ = τwave gets narrower, which can be associated with unattainable
residence time values; those zero probability regions are erased by diffusion, which allows particles
to escape the recirculations on long distances, yielding intermediate residence values. Finally, at
long residence times, the algebraic tail is also recovered (with a less visible pattern) with the Eulerian
nondiffusive method.

Overall, in terms of dispersion of the RTDs, the two methods lead to very similar values, with
a mean absolute dispersion σ1 within a 1% difference only, both for L = λ and L = 10 λ. This
is because the most probable values (short times and peak at τ = τwave) are identical with both
methods. Indeed, the RTDs obtained in Fig. 13 are almost identical when plotted in lin-lin scale (not
shown here).

C. Variation of physical parameters Re and α

Up to now we have only considered the so-called reference case, α = 2 and Re = 10 000.
We found that in that case, the TS waves tend to increase the width of the RTDs compared to
the unperturbed Poiseuille flow, and also uncovered the existence of a peculiar pattern at long
residence times. We now vary the wavenumber α and Reynolds number Re in order to explore
the whole range of parameters of instability.

We begin with two sets of numerical experiments using the Lagrangian method: in the first one,
the Reynolds number is kept fixed and α is varied; reversely, in the second one, the wavenumber is
kept fixed, and the Reynolds number is varied. The results are displayed in Fig. 14.

We first address Fig. 14(a), for which the Reynolds number is Re = 10 000, and α varies from
αmin � 1.76 to αmax � 2.18; those values correspond to the lower and upper limits of the neutral
curve at this Reynolds number. What is most noticeable is the shift of the position of the peak
corresponding to the TS waves towards lower residence time values when α is increased. Indeed,
the peak occurs at τ̂wave = Um/cnl , with Um = 1 for the whole study, and the nonlinear phase speed
cnl is an increasing function of the wavenumber, as can be derived from Fig. 3(b).

Another characteristic of importance is the amplitude of the main peak, which increases with the
wavenumber. This is a direct consequence of the fact that the total energy of the perturbation is also
an increasing function of the wavenumber: when the total energy increases, the propagating vortices
also proportionally grow in size in the periodic region [0 � x′ � λ; −h/2 � y � h/2)] [Fig. 4(b)],
all the more so as the wavelength λ decreases when increasing α. Thinking in Lagrangian terms,
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FIG. 14. RTDs for L = 10λ resulting from nonlinear Tollmien-Schlichting waves for (a) fixed Reynolds
number Re = 10 000 and varying wavenumber, from αmin = 1.76 to αmax = 2.19 in steps of 0.04; (b) fixed
α = 2, and varying Reynolds number, from Re = 8000 to Re = 11500 in steps of 500. Main plots are in log-log
scale, while subplots focusing on the peaks are in lin-lin scale. At the top right of each plot are schematized the
ranges considered throughout the neutral curve.

this means that a given particle will be more likely trapped in a recirculation region, associated with
a residence time τ � τwave, which explains the higher peaks when α is increased.

Those changes are still present but much less pronounced in the case when the wavenumber α

is kept constant, and the Reynolds number is varied, as shown in Fig. 14(b), where α = 2 and the
Reynolds number is varied between 8000 and 12 000: this is because the characteristics of the TS
waves change much less in that case, in terms of nonlinear phase speed cnl and total energy.

Finally, note that the peculiar pattern of peaks and valleys observed in the reference case at small
residence lengths L (and less visible when L is increased, as explained before) is in practice nearly
always observed whatever the parameters α and Re are taken inside the neutral curve. Only at very
low wave energy, slightly above the bottom neutral curve, when no negative longitudinal velocities
exist, can the pattern disappear. An example of the RTDs found in such a rare case is shown in
Appendix C for L = λ and L = 10λ.

In terms of width of distributions, a map of values of the mean absolute deviation σ1, calculated
for L = λ with the Eulerian method (so as to compare with the values already obtained with the
Lagrangian method and validate the method with more cases) is shown in Fig. 15(a).

As can be seen, the width of the distribution always increases when going away from the
neutral curve. This is surprising from what was previously shown: because the peak at τ = τwave

increases and gets closer to τm as α or Re increase, one could imagine that σ1 would consequently
decrease. However, the highest peak in the distributions is the one at the minimum residence time,
corresponding to the maximum velocity at the center. A map of the mean flow correction at the
center is given in Fig. 15(b): as can be seen, the velocity at the center increases away from the
neutral curve, so that the minimum time τmin decreases, and curves are very similar in the lower part
of the instability region, when the peak at τ = τwave is small, while the effect of this peak is more
visible in the upper part.

V. SUMMARY AND CONCLUSION

In this paper, the flow resulting from the nonlinear saturation of a linearly unstable Tollmien-
Schlichting wave in the plane Poiseuille flow has been studied in terms of residence time
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FIG. 15. (a) Levels of mean absolute deviation σ1, from 0.385 (plane Poiseuille flow value) to 0.445 in
steps of 0.002, for L = λ. (b) Levels of mean flow correction at the center of the channel, from 0.0175 to
0.0675 in steps of 0.005.

distributions. A method for computing the RTD of this nonchaotic flow, making use of diffusion
as a way for a single particle to visit the entire cross section of the channel, has been outlined and
validated on the simple case of the basic parabolic plane Poiseuille flow.

Since the choice of the travel distance was arbitrary, its impact on the RTD of the flow has first
been assessed, an assessment which at the same time brought to light the main features of the RTD
and their links with the physical properties of the wave, which can be summarized as follows:

(i) For relatively small travel distances, the existence of regions of the flow where the longi-
tudinal velocity is negative leads to a peak-valley pattern situated on the RTD’s tail. This pattern
indicates that some long residence times are much less likely to be encountered than others, entirely
because of the steadily propagating vortices.

(ii) For longer travel distances, a main peak appears on the RTD, precisely located on the
wave residence time. This peak is the consequence of particles being trapped and entrained in the
propagating vortices, which travel downstream at constant speed.

(i) No matter what the travel distance is, the distortion of the mean velocity profile decreases
the minimum residence time (keeping the same mean residence time) compared to the basic plane
Poiseuille flow.

This distortion of the mean velocity profile has been shown to be the main reason for increased
dispersion of the RTD. Indeed, by varying the wavenumber of the disturbance, at constant Reynolds
number, and computing the dispersion of the RTD resulting from the corresponding saturated
nonlinear Tollmien-Schlichting wave, good agreement has been found between the dispersion of
the RTD—quantified by the mean absolute deviation—and the maximum velocity attained at the
center of the channel. It is thus interesting to note that, despite having better mixing capacities than
the basic plane Poiseuille flow, saturated PPF suffers the counterpart of having increased dispersion
of residence time values, which in some applications is of critical importance.

The Lagrangian method introduced in this article for the calculation of RTDs could easily be
applied to any kind of open flow. For example, intermediate equilibrium states of the channel
flow (3D disturbances, modulated Tollmien-Schlichting waves, etc.) could be considered up until
complete destabilization to a turbulent state, in order to observe how the dispersion of residence
time values evolves from the laminar value to the presumably very low dispersion attained with the
turbulent velocity field.
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APPENDIX A: CALCULATION OF THE RTD AND ITS MEAN ABSOLUTE DEVIATION
FOR THE PLANE POISEUILLE FLOW

The probability for a fluid particle to cross a given cross section of the channel at this distance
must be proportional to the velocity field at this point. If we take y as the distance from the center
of the channel, the velocity profile of the plane Poiseuille flow is

UPoi(y) = 3

2
Um

(
1 − 4y2

h2

)
. (A1)

Normalizing the velocity field in order to have an integral unity across half the channel width, we
obtain the probability density

gPoi(y) = 3

h

(
1 − 4y2

h2

)
. (A2)

Let fPoi(τ ) be the probability density of the time needed to cross an element of length L. Thus, the
probability for a fluid particle to travel a length L in a time between τ and τ + dτ is equal to the
probability for the particle to begin the crossing between ordinates y and y + dy; that is,

fPoi(τ ) dτ = gPoi(y) dy. (A3)

We denote by τm the mean time to travel the distance L; we have

τ = L

UPoi(y)
= 2

3

τm

1 − 4y2/h2
, (A4)

which implies

y = h

2

√
1 − 2

3

τm

τ
. (A5)

This can be differentiated into

dy

dτ
= h

6

τm

τ 2

(
1 − 2τm

3τ

)−1/2

. (A6)

Combining Eqs. (A2), (A3), and (A6), we finally obtain

fPoi(τ ) = 1

3

τ 2
m

τ 3

(
1 − 2τm

3τ

)−1/2

. (A7)

Note that, despite being singular in the limit τ → τmin = 2
3τm, the following classical properties

hold: ∫ +∞

τmin

fPoi(τ ) dτ = 1 and
∫ +∞

τmin

τ fPoi(τ ) dτ = τm. (A8)

We can now calculate the mean absolute deviation of this distribution:

σ1,Poi =
∫ +∞

τmin

∣∣∣∣ τ

τm
− 1

∣∣∣∣ fPoi(τ ) dτ =
∫ τm

τmin

(
1 − τ

τm

)
fPoi(τ ) dτ +

∫ +∞

τm

(
τ

τm
− 1

)
fPoi(τ ) dτ .

(A9)
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FIG. 16. PDF of the (a) transversal positions yi and (b) phases φi corresponding to the sample studied in
Sec. IV A.

First, by setting u = τ/τm, we obtain

σ1,Poi =
∫ 1

2/3

1 − u

3u3

(
1 − 2

3u

)−1/2

du +
∫ +∞

1

u − 1

3u3

(
1 − 2

3u

)−1/2

du (A10)

=
∫ 1

2/3

(
1

3u
− 1

3

)(
1 − 2

3u

)−1/2 du

u2
+

∫ +∞

1

(
1

3
− 1

3u

)(
1 − 2

3u

)−1/2 du

u2
. (A11)

Then, by setting x2 = 1 − 2/3u, so that xdx = 1/3du/u2 and 1/3u = (1 − x2)/2, we obtain

σ1,Poi =
∫ 1/

√
3

0

1 − 3x2

2
dx +

∫ 1

1/
√

3

3x2 − 1

2
dx (A12)

=
[

x(1 − x2)

2

]1/
√

3

0

+
[

x(x2 − 1)

2

]1

1/
√

3

, (A13)

FIG. 17. RTDs of the perturbed flow for (a) L = λ and (b) L = 10λ normalized by the mean residence time
τm = L/Um. The physical parameters are here Re = 12 000 and α = 1.6475; the resulting nonlinear wavespeed
is cnl = 0.331.
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and finally,

σ1,Poi = 2/(3
√

3) . (A14)

APPENDIX B: PDFS OF POSITION AND PHASE

Figure 16(a) shows the PDF of transversal positions yi and Fig. 16(b) shows the phases φi

corresponding to the sample obtained by the Lagrangian method in the reference case (α = 2,
Re = 10 000) with a Péclet number Pe = 105. The positions follow a distribution based on the
mean velocity profile and the phases conform to an almost uniform distribution.

APPENDIX C: RTD OF LOW-ENERGY WAVE

Figure 17 shows the RTDs for L = λ and L = 10λ in a case of very low wave energy, when there
are no negative longitudinal velocities: the patterns of peaks and valleys are no longer present at
large residence times.
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